
Supplemental Material 

Model Formulation: 
The model we present was formulated incrementally as a series of changes, modifications, and 

occasional failures over time. This is a summary of the steps taken to get from an established 

starting point to the final form of the model presented in this publication.  

We began with a model published by Baez et al (1). The Baez model is a system of four differential 

equations that represent: the volumes of two cancer cell subpopulations, the cell quota of androgen, 

and the serum concentration of PSA. The model is as follows:   
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When we reproduced the Baez model, we found that we could rarely recreate the whole range of 

androgen and PSA data. Peaks of data caused by spikes in data values were often truncated to 

some lower level. Our original goal was to discover if adjustments could be made that would allow 

the model to better represent these peaks.  

 

Figure S1: This one result of our recreation of the Baez model. The data are represented by black 

circles, while the simulated results are solid lines. The figure titled ‘u’ shows when the patient was 



on or off treatment. This purpose of this figure is to show that, in the case of both androgen and 

PSA, the model was not reproducing the entire range of data. The upper end of measurements, or 

‘peaks’, are cut off.    

To that end, our first change was to condense the two death rate parameters into just one term. 

When we examined the optimized parameters returned to us by the fmincon function, we noticed 

that there was always very little difference between the values of d1 and d2. We decided that the 

difference was small enough to justify merging these terms so that the model might better identify 

the other parameters. On the other hand, we also split the 𝜎 parameter into 𝜎1 and 𝜎2. We did this 

to allow for the possibility that both subclones were producing PSA at different rates. This is what 

the model looked like after making those changes. 
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Figure S2: An example of the results produced by the first series of modifications to the Baez 

model. The two death terms, d1 and d2, were merged into one, d, and the σ parameter was split into 

σ1 and σ2. The apparent result of these two adjustments was an improved capacity for the model 

to represent the data.  



Taken together, these two changes were found to somewhat improve the model’s ability to 

simulate larger measurements. An example of the results may be seen in Figure S2. These changes 

were tested separately, and it was found that making the change to 𝜎 alone was not sufficient to 

apparently improve the result. 

Next, we implemented three substantial modifications. These changes were tentative and 

experimental, so they were all tested separately and in combination with each other. In addition, 

all of these model variations were tested with and without the addition of a degradation term to the 

dQ equation.  

The first modification was the complete removal of the death terms. Negative growth is already 

made possible by the Droop equations in the growth terms (growth is negative when 𝑄 < 𝑞i), and 

we wanted to see if this negative pressure would be sufficient to control the cell populations 

without the death terms.  

The second modification was the removal of the dx2 equation. We wanted to know exactly how 

much the second layer of complexity contributed to the outcome. We thought it possible, since we 

were continually fitting the parameter q, that resistance might be adequately modeled by the 

dynamics of q alone. If we could remove one of the differential equations without substantially 

damaging the result, it would make it much easier for fmincon to identify the remaining critical 

parameters (see section below for more information on fitting and critical parameters). 

The third modification was a substantial change to the PSA equation and involved incorporating 

the Droop functions from the growth terms into the PSA production terms. This is a novel 

modification that introduces an entirely different interpretation of what motivates PSA production 

and is discussed in the main body of this publication.  

This is the system of differential equations that incorporates all three of these modifications, and 

includes the degradation term in the dQ equation: 
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The products of this system were surprising, but still useful, and may be seen in Figure S3. Clearly 

this is a failed result, but it was immediately apparent where we had made the mistake: by applying 

the Droop functions to the dP equation, we had conferred the possibility for negative growth (due 

to a lack of androgen) to PSA as well. Furthermore, we can see that by removing the death terms 

that the tumor volumes and PSA concentrations have both grown far beyond the limits of 

believability. 

 



 

Figure S3: This figure shows the result of removing the death terms and applying Droop functions 

to PSA production. This is clearly a failed attempt. PSA oscillates between positive and negative 

values, which is clearly impossible. Furthermore, by the end of treatment the magnitude of the 

tumor volume is entirely incredulous. 

To rectify this mistake, we applied maximum functions to all the related Droop terms. Negative 

growth needed to be eliminated from PSA production, but for consistency we applied the 

maximum functions to the growth terms as well. In doing so, we eliminated the built-in capacity 

for negative growth in the dx equations, where it was needed. This, in addition to the explosive, 

runaway growth of the cell volumes seen the previous result, required us to reintroduce death terms 

to the model.  

We initially tested two variations on these death terms, 𝑑1𝑥1 vs 𝑑1𝑥1
2, and found that the latter was 

necessary to keep the populations under control. When we reintroduced these death terms we used 

two separate death rate parameters: d1 and d2. 

After experimenting with all the variations, and implementing these corrections, the best 

performing model was this (see also Figure S4): 
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Figure S4: This figure is an example of the result produced by the model when the Droop functions 

were applied to the PSA production terms and upon reintroducing death terms to the growth 

equations. This result was viewed as a success, but we identified a remaining challenge in that the 

volume of the resistant cell colony was still unrealistically large. 

Our next challenge was that the simulated tumor volumes were often impossibly large. In Figure 

S4, for example, we see that the volume of the treatment-resistant subpopulation is approaching 

four liters. Our next task was to implement changes that might affect a reduction in those numbers.  

We first tested a range of new values for the death rate parameters, with varying levels of success, 

before again merging them into a single parameter d. We also tested a range of new values for the 

growth parameter μ. Unable to find the bounds for 𝜇 that gave the desired result, we incorporated 

a change in how the 𝜇 parameter was optimized. Whereas before we programmed fmincon to 

optimize 𝜇, alongside other parameters, against a short, two-cycle test segment, the program was 

changed such that 𝜇 was fitted first, before any other parameters, against an even shorter, half-

cycle segment. The resulting value of 𝜇 was then fixed before any other parameters were 

optimized. This was found to successfully reduce the upper bounds of our tumor volumes without 

substantially changing the underlying dynamics.  



 

Figure S5: Changing the method of optimizing the single parameter 𝜇 resulted in a more realistic 

range of resistant tumor volume. Notable is that the CS and CR populations co-exist throughout 

the course of treatment, with one never overtaking the other.  

Feeling that the volumes of x1 and x2 were now under control, we moved on to something new. 

We noticed that the resistant and susceptible tumor populations, x1 and x2, often coexisted together 

throughout the course of the treatment. This can be seen in Figure S5 where, although both 

populations grow and shrink according to treatment status, one is never seen to outcompete the 

other. This did not conform to our expectations, which were for the resistant subpopulation to 

become dominant as treatment is applied repeatedly over time. To address this, we decided to 

modify the death terms once again, this time to introduce an element of interspecific competition 

between these two subpopulations.  

These are the first two differential equations after the introduction of interspecific competition: 
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Implementing this change had some of the desired effect on the dynamics of the susceptible 

population. Figure S6 shows that, upon the implementation of these new death terms, the 

susceptible population was indeed seen to go extinct. This was, however, only a partial success. 

We would have preferred to see less oscillation in the resistant population, and for the susceptible 

population to fail over a longer period. Ideally, we want to see that PSA dynamics are driven by 

oscillations in the susceptible population, and that extinction of the susceptible population 



coincided with a deviation between androgen and PSA behavior. This is open challenge that we 

may address in the future.  

At the time, however, the primary problem was that by introducing interspecific competition we 

had significantly damaged the model’s ability to reproduce androgen data. Therefore, we 

undertook one final modification in the hopes of improving upon that shortcoming: the 

introduction of a fifth differential equation. 

 

Figure S6: This figure shows the result of introducing interspecific competition. The susceptible 

subpopulation is now seen to die off, as expected. This result is only a partial success. The desired 

outcome was achieved, but likely too early, and too abruptly. We would also have preferred to see 

less oscillation in the resistant subpopulation. Finally, the ability of the model to reproduce 

androgen values has noticeably worsened.  

The purpose of introducing a fifth differential equation was to compartmentalize the serum 

androgen, for which we had measurements, from the cell quota of androgen that motivated tumor 

growth and PSA production. We tested two different forms of this fifth differential equation. The 

first was published by Phan et al, and the second by Reckell et al (2,3). We found that, in the 

context of this model, the second equation produced better results.  

Androgen equation (Phan et al): 
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Implementing this fifth differential equation gives the final form of the model presented in the main body 

of the publication. Using this model, we were able to accomplish some of the goals we had when we 

began, but there remain opportunities for improvement. Upon introducing the fifth differential equation, 

we saw that the volumes of the resistant subpopulations again started to approach unrealistically large 

values. Furthermore, the model still struggles to reproduce androgen data for many of the patient 

datasets we tested. This is, to an extent, an expected consequence of how we weigh error (80% in favor 

of PSA), but we still believe that improvement is possible. 

 

Figure S7: One result of compartmentalizing serum androgen from cell quota of androgen. The 

model’s ability to recreate androgen has been improved, but the volumes of the resistant 

subpopulation have again grown to levels that may yet be too large. This is the final form of the 

model presented in this publication.  

Objective Function: 
Essential for the operation of the Matlab’s fmincon function is the definition of the objective 

function, used to calculate the discrepancy between the model output and the actual data. We used 

the following objective function: 
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We chose to use this rather than something like sum of squared errors because we did not want the 

function to disproportionally weigh the largest errors. This reduced the power of outliers to 

disproportionally influence the optimized parameters. For the purposes of this investigation, PSA 

error was weighed far more heavily than androgen error (80% vs 20%).  



 

Parameters and Fitting 
The parameter values and ranges used in this model follow directly from work done by Phan et al 

(2).  

Three of the fifteen parameters used in this model, c, K, and 𝛾2, are permanently fixed at some 

static value. We do this following the sensitivity analysis done by Phan et al, which led to them 

permanently fixing five of their parameters: c, K, 𝛿1, 𝛿2, and 𝛾2 (Note: Where they use 𝛿 for the 

density-dependent death rate, we use d) (2).  

The mutation rate parameters c and K govern the rate that members of the susceptible population 

dynamically respond to treatment, and therefore move from the treatment susceptible to the 

treatment resistant population. The sensitivity analysis done by Phan et al demonstrated that these 

parameters were particularly insensitive, and that fixing these parameters was therefore a reliable 

way to improve the identifiability of the more critical parameters. A basis for the range of c was 

first published by Ideta et al (4). Following that, subsequent models, including this model, have 

used a fixed value of 0.00015 for c, and of 1 for K (1,2,5). 

The next parameter 𝛾2 stands for the rate of secondary (adrenal) androgen production. This 

parameter is so insensitive that Phan et al set it to zero in their work (2). We did not set it to zero, 

but instead fixed it such that it would be a small percentage of 𝛾1, the primary androgen production 

parameter.  

When it comes to the density death rate parameter d we deviate from the values used in earlier 

publications. The changes made to this model, and in particular the introduction of interspecific 

competition, require entirely new parameters. We therefore had no basis for setting a fixed value 

for d and allowed the parameter to be fitted by fmincon.  

The twelve remaining parameters, including d, are all fitted in some way by fmincon. These 

parameters may be sorted into three different groups: four critical parameters, μ in a category by 

itself, and seven partially fitted parameters. The four parameters most sensitive and most important 

to our investigation are re-optimized for every half-cycle of treatment. In other words, every time 

the data indicates a switch in treatment status fmincon calculates a new best-fit value for that 

segment of treatment. This allows us to study the dynamics of these parameters over the whole 

course of treatment. μ is only fitted against the first half-cycle of treatment. The program runs for 

one half-cycle, discovers a set of best-fit parameters for that single half-cycle, and then fixes μ at 

that value. The seven remaining parameters are fitted against a two-cycle test segment, and then 

fixed at the resultant optimal value. In order, first the program runs the single half-cycle to find 

the fixed value of μ, then it runs for two whole cycles to find the fixed values of the seven partially-

fitted parameters, and then the program runs the whole dataset, fitting and re-fitting only the four 

critical parameters.  

The four sensitive, critical parameters are: q2, representing the minimum amount of androgen 

required by the resistant cell population to survive and proliferate; 𝛾1, the primary (testicular) rate 

of androgen production; A0, the maximum serum level of androgen; and 𝜎2, the rate of PSA 

production by the resistant cell population.  

 

We cannot overstate the importance of the parameters q2 and 𝜎2 to this investigation. It is q2 that 



is most responsible for simulating the development of resistance, and it forms a critical component 

of one of our proposed predictive indicators. Likewise, 𝜎2 is directly related to resistance, because 

it is a key driver of the divergence between androgen and PSA seen in patients as they become 

resistant to treatment. It is due to their direct effect on the modeling of resistance that these two 

parameters are considered critically important, and therefore re-fitted against every half-cycle of 

treatment. 

We use the same upper and lower bounds for q1 and q2 as those published by Phan et al (2). They 

discovered work wherein was published the lowest and highest recorded serum androgen levels 

caused by hormonal therapy (0.41 nMol/L and 1.73 nMol/L) (6). We invariably see that androgen 

suppression therapy initially succeeds at reducing the volume of a tumor, so we may safely infer 

that the minimum cell quota for the susceptible population, q1, lies somewhere in that range. 

Furthermore, we assume that q2 is always less than q1, and therefore set the upper bound of q2 at 

the lower bound of q1. There is no data to support the range of q2, and so the lower bound is an 

estimate.  

The maximum serum androgen, A0, is one of the critical parameters because it is both patient-

specific and especially sensitive. The data demonstrates that although values are typically below 

27nm/mole, there is still considerable variation in each patient’s maximum serum androgen 

measurement (7). For the purposes of this investigation, each patient’s maximum measurement 

was identified and the upper and lower bounds of A0, for that patient, were set to be ±10 nMol 

from that maximum.  

The parameter 𝛾1 has a singular impact on the shape and behavior of simulated androgen and PSA 

levels. Unfortunately, there is no known clinical value for the rate of testicular androgen 

production. This parameter is considered one our critical parameters both because of its sensitivity 

and because we have no basis from which to estimate its value. In their work, Phan et al started 

from a range published by Ideta et al, and then reduced that range until it suited their investigation 

(2,4). We follow their lead and use the same upper and lower bounds. 

Regarding the remaining parameters: the sequence of modifications made in the formulation of 

our model have left us unable to use prior, published values for the density death rate parameter d. 

Therefore, we tested a range of estimated bounds, and selected the best performers. The bounds of 

q1 are identical to the bounds of q2, which have already been discussed. Likewise, the bounds for 

σ1 are identical to the bounds for σ2. Like d, we tested the upper and lower bounds of μ by testing 

a range of estimated values. In the end, however, we determined that the best performing bounds 

were the same as those published by Phan et al (2). Those bounds for μ were derived from work 

done by Berges et al, wherein they measured the proliferation rates of prostate cancer cell 

populations in both androgen-rich and androgen-poor environments (8). The work to establish the 

bounds of the remaining parameters: ϵ, b, m, and 𝛿, was done by Baez et al, and Portz et al (1,5). 

  



Trend of 𝑞2 
We examine the evolution of the cell quota parameter for the resistant cancer population, 𝑞2. In theory, 

𝑞2 should decrease with each treatment, making the ratio 𝑞1/𝑞𝑛 an increasing sequence where n is the 

current treatment cycle. We fit a linear model to this ratio for all patients. 

 

Figure S8: increasing trend of 𝑞2 over each treatment cycle. 

PSA and androgen summary statistics 
We summarize the statistics regarding the recorded PSA and androgen data (Figure S9). 

 

Figure S9: Summary statistics of PSA and androgen at the start and end of treatment. 

Additionally, these are the more specific details regarding the data. 
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---Mean --- 
First PSA data (success): 16.6941 
First PSA data (failure): 17.195 
Last PSA data (success): 5.171 
Last PSA data (failure): 14.349 
First androgen data (success): 12.9824 
First androgen data (failure): 11.98 
Last androgen data (success): 4.4784 
Last androgen data (failure): 1.375 
 
---Range --- 
First PSA data (success): 60.8, [0.2, 61] 
First PSA data (failure): 32.9, [7.9, 40.8] 
Last PSA data (success): 42.68, [0.02, 42.7] 
Last PSA data (failure): 57.94, [1.06, 59] 
First androgen data (success): 21.2, [0.2, 21.4] 
First androgen data (failure): 16.6, [4.8, 21.4] 
Last androgen data (success): 18.4, [0.1, 18.5] 
Last androgen data (failure): 5.6, [0.2, 5.8] 
 
---Median --- 
First PSA data (success): 14.1 
First PSA data (failure): 14.7 
Last PSA data (success): 3 
Last PSA data (failure): 9.915 
First androgen data (success): 13.2 
First androgen data (failure): 12.2 
Last androgen data (success): 3.2 
Last androgen data (failure): 0.8 
 
--- IQR --- 
First PSA data (success): 11.55, [8.2, 19.75] 
First PSA data (failure): 10.55, [10.95, 21.5] 
Last PSA data (success): 8.125, [0.3575, 8.4825] 
Last PSA data (failure): 8.75, [5.95, 14.7] 
First androgen data (success): 6.25, [9.75, 16] 
First androgen data (failure): 4.75, [8.55, 13.3] 
Last androgen data (success): 6.3, [0.5, 6.8] 
Last androgen data (failure): 1.15, [0.5, 1.65] 
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