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Simple Summary: Adipose tissue is the major microenvironment of breast cancer. Adipose tissue-

derived mesenchymal stromal/stem cells (ASCs/MSCs) are key players in adipose tissue. 

ASCs/MSCs, particularly in the obese state, are critical in remodeling the tumor microenvironment 

and promoting breast cancer progression. In this review, we have addressed the impact of obesity 

on ASCs/MSCs, summarized the crosstalk between ASCs/MSCs and breast cancer cells, discussed 

related molecular mechanisms, and highlighted related research perspectives. 

Abstract: Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-

related death in women. It is well recognized that obesity is associated with an enhanced risk of 

more aggressive breast cancer as well as reduced patient survival. Adipose tissue is the major mi-

croenvironment of breast cancer. Obesity changes the composition, structure, and function of adi-

pose tissue, which is associated with inflammation and metabolic dysfunction. Interestingly, adi-

pose tissue is rich in ASCs/MSCs, and obesity alters the properties and functions of these cells. As a 

key component of the mammary stroma, ASCs play essential roles in the breast cancer microenvi-

ronment. The crosstalk between ASCs and breast cancer cells is multilateral and can occur both 

directly through cell–cell contact and indirectly via the secretome released by ASC/MSC, which is 

considered to be the main effector of their supportive, angiogenic, and immunomodulatory func-

tions. In this narrative review, we aim to address the impact of obesity on ASCs/MSCs, summarize 

the current knowledge regarding the potential pathological roles of ASCs/MSCs in the development 

of breast cancer, discuss related molecular mechanisms, underline the possible clinical significance, 

and highlight related research perspectives. In particular, we underscore the roles of ASCs/MSCs in 

breast cancer cell progression, including proliferation and survival, angiogenesis, migration and 

invasion, the epithelial–mesenchymal transition, cancer stem cell development, immune evasion, 

therapy resistance, and the potential impact of breast cancer cells on ASCS/MSCs by educating them 

to become cancer-associated fibroblasts. We conclude that ASCs/MSCs, especially obese 

ASCs/MSCs, may be key players in the breast cancer microenvironment. Targeting these cells may 

provide a new path of effective breast cancer treatment. 

Keywords: ASCs/MSCs; obesity; breast cancer; tumor microenvironment; cancer-associated  

fibroblasts; cancer-associated stem cells; epithelial–mesenchymal transition; therapy resistance 

 

1. Introduction 

The prevalence of obesity has tripled during the last decades, posing a major chal-

lenge to the entire society and health care systems worldwide [1–3]. Obesity, a condition 

of increased adiposity resulting from an imbalance between food intake and energy ex-

penditure [4], is categorized according to body mass index (BMI) ≥ 30 kg/m2 [5]. Obesity 
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associates with multiple disorders, including diabetes, hypertension, and cardiovascular 

diseases [6]. In addition, it is characterized by an increased incidence of cancer in various 

organs, such as the colon, rectum, kidney, pancreas, gallbladder, liver, thyroid, breast, 

ovary, and endometrium [7–9]. Obesity associates with inflammation and metabolic dys-

function, which greatly promote cancer development. Among various adipose tissue cell 

types, adipose tissue-derived mesenchymal stromal/stem cells (ASCs), belonging to mes-

enchymal stromal/stem cells (MSCs), are dramatically altered during obesity progression 

[10]. Obesity-associated ASCs are of crucial importance, contributing to the establishment 

of the breast cancer microenvironment and promoting the progression of breast cancer. In 

this narrative review, we have summarized the current knowledge regarding the potential 

pathological roles of obese ASCs/MSCs in the development of breast cancer, addressed 

the possible impact of obesity on ASCs/MSCs, discussed the intertwined relationship be-

tween ASCs and breast cancer cells, explored associated molecular mechanisms, and high-

lighted related research perspectives. 

2. Method 

A search was performed for original articles and reviews published between January 

2000 and April 2022 in PubMed with a focus on ASCs/MSCs and breast cancer by using 

the following search terms (or combination of terms): ASCs, MSCs, obesity, breast cancer, 

cancer microenvironment, proliferation, invasion, metastasis, cancer progression, and 

therapy resistance. Only English-language and full-text articles were included. 

3. Obesity and Breast Cancer 

Among the malignancies, breast cancer is the most frequently diagnosed cancer and 

a common cause of cancer-related death in women. It originates from deregulation of nor-

mal growth pathways in mammary epithelial cells due to genetic mutations or epigenetic 

modifications [11]. Breast cancer is composed of distinct subtypes and is highly heteroge-

neous in both molecular and clinical terms. Based on the expression of the estrogen recep-

tor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), 

as well as a proliferation marker Ki67, breast cancer can be divided into four intrinsic mo-

lecular subtypes: luminal A (ER+, PR+, HER2−, Ki67Low), luminal B (ER+, PR+, HER+/−, 

Ki67High), HER2-enriched (ER−, PR−, HER2+), and basal-like subtype (ER−, PR−, HER2−), 

which largely resembles triple-negative breast cancer (TNBC) and comprises approxi-

mately 15% of all breast cancer cases [12]. Among these subtypes, TNBC, typically more 

aggressive, is associated with a higher rate of relapse and poor prognosis owing to the 

development of metastases in distant organs such as brain, liver, bone, and lungs [13,14]. 

The therapy of breast cancer consists of surgical resection, radiation, chemotherapy, and 

other therapeutic options, including antihormone therapy, signaling pathway targeting, 

DNA repair inhibition, aberrant epigenetic reversion, and immuno-oncology therapeutics 

[15]. Despite advanced therapeutic options, breast cancer remains one of the most com-

mon causes of female death [16], largely due to therapy resistance and metastases to brain, 

liver, lung, or bone. It is therefore necessary to explore the molecular mechanisms of can-

cer progression and pave new ways that offer more effective breast cancer treatment.  

Obese women with breast cancer have larger tumors and an enhanced risk of metas-

tasis that contributes to a 30% increased risk of death [17–19]. Specifically, obesity associ-

ates with enhanced risk of more aggressive breast cancer as well as reduced survival of 

postmenopausal breast cancer patients [20,21]. While numerous meta-analyses have con-

sistently shown positive associations between obesity and risk of hormone-receptor-pos-

itive (ER+ and PR+) breast cancer [22–24], growing evidence suggests that abdominal obe-

sity, also known as central obesity, may increase the risk for TNBC in premenopausal 

women [25–27]. Moreover, compared to lean patients, obese patients respond worse to 

therapy, particularly when diagnosed with TNBC, contributing to the overall worse prog-

nosis [27]. 
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The dramatic increase in the prevalence of obesity, combined with the fact that over 

75% of new cases of breast cancer occur in postmenopausal women [28], represents a 

pressing challenge in breast cancer prevention, treatment, and survival. Despite being a 

field of intensive research, the molecular mechanisms underlying the association of obe-

sity with breast cancer are still incomplete. 

Adipose Tissue: Microenvironment, ASCs and Obesity 

Although breast cancer initiation is largely driven by acquired genetic alterations, the 

tumor microenvironment (TME) is crucial in its progression. Breast cancer cells are mainly 

surrounded by mammary adipose tissue and intermingled with a repertoire of stromal 

cells such as ASCs, fibroblasts, endothelial, and immune cells. Breast cancer is able to 

change the adjacent adipose tissue by stimulating the transcription of genes associated 

with tumor growth, stemness, and progression [29,30]. In turn, adipose tissue cells, both 

adipocytes as well as stromal cells, promote cancer progression by secreting growth fac-

tors, cytokines, chemokines, and pro-migratory extracellular matrix (ECM) components 

[31,32]. Thus, breast-cancer-educated adipocytes and stromal cells, together with soluble 

factors as well as insoluble ECM proteins secreted by adipocytes, stromal cells, and cancer 

cells, constitute the TME [15,33]. Of importance, the TME is dynamic, as a multitude of 

stromal cell types, such as endothelial progenitors, immune cells, fibroblasts, ASCs, and 

MSCs, are recruited to develop the TME [34,35]. The TME is not only critical for cancer 

progression, but also for coordinating cancer plasticity and immune escape [15]. 

Obesity changes the landscape of adipose tissue. In the early stages of adipose tissue 

expansion, adipocyte hypertrophy generates a local hypoxia that contributes to increased 

secretion of adipokines, inflammatory cytokines, and lipid metabolites. These changes 

further reduce the metabolic flexibility of adipocytes, increase the rate of apoptosis, and 

recruit more inflammatory cells, including lymphocytes and macrophages, in adipose tis-

sue [36]. The chronic hypoxia observed in obese adipose tissue results in chronic inflam-

mation, endoplasmic reticulum (ER) stress, and an alteration of the ECM. In fact, obese 

adipose tissue is characterized by elevated saturated fatty acids released by obesity-asso-

ciated lipolysis that induce macrophage activation via toll-like receptor 4 (TLR4) stimu-

lating nuclear factor kappa B (NF-kB) signaling and inflammation in adipose tissues [37]. 

This further activates the transcription of pro-inflammatory genes including interleukin 6 

(IL6), IL1β, and tumor necrosis factor α (TNFα) in adipocytes and stromal cells, causing 

local and systemic inflammation [38]. Accordingly, obesity is characterized by increased 

levels of circulating factors including insulin, insulin-like growth factor 1 (IGF-1), leptin, 

and inflammatory cytokines such as IL6 and TNFα [39]. Obese adipose tissue is further 

marked by increased infiltration of immune cells, cellular stress, hypoxia, insulin re-

sistance, glucose intolerance, adipocyte hyperplasia and hypertrophy, reduced angiogen-

esis, and impaired tissue homeostasis [10]. In particular, obesity increases the number of 

myofibroblasts in mammary adipose tissue that deposits a more fibrillary and stiffer ECM, 

correlating with the malignant behavior of mammary epithelial cells and with inflamma-

tion [40]. Thus, various cell types of obese adipose tissue communicate with breast cancer 

cells, promote breast cancer progression, reshape metabolism in the TME, and suppress 

anti-tumor immunity [41–43]. Collectively, obesity changes the composition, structure, 

and function of adipose tissue, which associates with inflammation and metabolic dys-

function and promotes breast cancer development.  

Interestingly, adipose tissue, a mesodermal-derived organ, is the richest source of 

MSCs in the human body [44]. MSCs are multipotent cells involved in the maintenance of 

tissue homeostasis, regulation of local immune response, and regeneration of damaged 

tissues [45]. ASCs, like other MSCs in the body, have many characteristics in common 

with MSCs, including morphology, extensive proliferation potential, and the ability to 

undergo multi-lineage differentiation in vitro [32,46–48]. ASCs are able to produce a large 

variety of growth factors and have immunomodulatory properties [10,49,50]. Moreover, 

ASCs are anti-inflammatory because of their multiple capabilities, such as inhibiting the 
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activation of natural killer cells, impairing cytotoxicity processes, reducing the prolifera-

tion of B cells, decreasing immunoglobulin production, and suppressing B cell functions 

[49].  

However, obesity alters most of the enumerated functions of ASCs, which in turn 

affect their surrounding cells in adipose tissue [10,51]. In this context, the interaction be-

tween ASCs and breast cancer cells could have a crucial role in malignant progression 

[52–54]. In fact, ASCs have been shown to impact breast cancer progression by secreting 

cytokines/chemokines and other regulatory factors influencing angiogenesis, migration, 

and invasion of breast cancer cells [53,55,56]. Additionally, breast-cancer-associated ASCs 

interfere with the immunomodulatory function of natural killer cells [57]. These data sug-

gest that the communication between obesity-associated ASCs, immune cells, and breast 

cancer cells may modify cellular compartments, leading to the co-evolution of cancer cells 

and their microenvironment [58]. 

4. Crosstalk between ASCs and Breast Cancer Cells 

The crosstalk between ASCs and breast cancer cells can occur directly via cell–cell 

interaction and indirectly via the secretome released by the cells. Cancer cells secrete nu-

merous chemotaxis signals [59], which recruit ASCs from local adipose tissues as well as 

MSCs from bone marrow into malignant tissue [60]. Cancer-educated ASCs/MSCs may 

differentiate into cancer-associated ASCs/MSCs or cancer-associated fibroblasts (CAFs) 

[61]. These ASCs/MSCs in turn promote breast cancer progression [62]. In particular, the 

ASC/MSC secretome, which is composed of a large number of secreted proteins, peptides 

and extracellular vesicles (EVs), is considered to be the main effector of their regenerative, 

tropic, trophic, angiogenic, and immunomodulatory functions. 

Regarding the indirect manner, both breast cancer cells and ASCs/MSCs are potent 

in secreting a large number of soluble bioactive factors [61,63]. In particular, MSCs have 

the ability to migrate into malignant areas and stimulate cancer development by secreting 

a range of paracrine factors such as chemokines C-X-C ligand 1 (CXCL1), CXCL2, CXCL5, 

CXCL7, and CXCL12/stromal-cell-derived factor 1 (SDF1); cytokines such as IL6, IL8, and 

transforming growth factor β (TGFβ); and growth factors including epidermal growth 

factor (EGF), insulin-like growth factor 1 (IGF1), and vascular endothelial growth factor 

(VEGF) [58,61,64]. It has been shown that MSCs facilitate angiogenesis by paracrine secre-

tion of angiogenic growth factors such as platelet-derived growth factor (PDGF) and 

VEGF [58,65]. Our own studies also demonstrate that ASCs isolated from subcutaneous 

as well as visceral adipose tissue released numerous cytokines, chemokines, and growth 

factors involved in inflammation, angiogenesis, and cell migration and proliferation, such 

as IL6, IL8, TNFα, CXCL1/2/3, CXCL5, monocyte chemotactic and activating factor 

(CCL2), and EGF [32,48,66]. 

Moreover, both breast cancer cells and MSC/ASC-derived EVs are essential for the 

crosstalk between MSCs/ASCs and breast cancer cells [63,67,68]. EVs are a heterogeneous 

group of membrane-bound vesicles released from cells by invagination and budding. 

They facilitate cell-to-cell interactions via contact with neighboring cells or internalization 

by recipient cells, which includes fusion with membrane and endocytosis [69]. According 

to the biogenesis, biophysical properties, and function, EVs can be classified into three 

main subtypes, namely exosomes (30–150 nm), microvesicles (MVs) (50–1000 nm), and 

apoptotic blebs (1000–5000 nm) [70]. Among these EVs, exosomes and MVs are of partic-

ular importance in cell–cell communication [70]. Both of them contain lipids, proteins, and 

genetic material, such as DNA, messenger RNA (mRNA), microRNA (miRNA), and long 

non-coding RNAs (lncRNA) that can be delivered to and reprogram the recipient cells 

[71]. Studies have shown that MSC/ASC-EVs exert both inhibitory and promoting effects 

in several situations and different stages of breast cancer. Through the transfer of various 

tumor-related factors, EVs promote proliferation, angiogenesis, metastasis, and drug re-

sistance of malignant tumor cells [72,73], as shown in breast cancer cells stimulated with 
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Her2-loaded EVs [72]. These data suggest that ASCs/MSCs may secrete molecules that act 

in concert with the secretome of breast cancer cells to remodel the microenvironment. 

The direct crosstalk between ASCs and breast cancer cells is strictly dependent on 

their close contact that is established in the TME. Interestingly, tunneling nanotubes 

(TNTs) have emerged as  

a new important means of cell–cell communication. TNTs are thin membrane pro-

trusions that connect cells over long distances allowing the exchange of various cellular 

components, including organelles, proteins, calcium ions, viruses, and bacteria [74]. No-

tably, TNTs are able to connect multiple cells forming functional cellular networks [75]. 

TNTs are therefore considered as novel bridges of intercellular communication in physi-

ological and pathological cell processes [76]. Interestingly, MSCs have been shown to form 

TNTs and transfer mitochondria and other components to target cells [77–79]. This occurs 

under both physiological and pathological conditions, where cells are under stress, lead-

ing to changes in cellular energy metabolism and functions [76]. In this context, it is feasi-

ble to hypothesize that the protective role of ASCs/MSCs in breast cancer cell survival may 

be partially mediated through the formation of TNTs, in particular, when breast cancer 

cells are under stress from chemotherapy or radiotherapy. 

Moreover, the activation of several signaling pathways requires direct cell–cell con-

tact via their membrane-bound ligands and receptors, such as the canonical Notch signal-

ing pathway [80]. Notch signaling is linked to the maintenance of breast cancer stem cells 

[81] and induction of epithelial-to-mesenchymal transition (EMT) resulting in an increase 

in migration and invasion of breast cancer cells [82]. In fact, direct co-culture of obese 

ASCs enhanced Notch signaling in ER+ breast cancer cells co-responsible for radiation re-

sistance [83]. 

Finally, cell–cell fusion, a process that merges the lipid bilayers of two different cells, 

plays a crucial role during embryonic development as well as in tissue regeneration 

[84,85]. Studies also provide evidence that cell–cell fusion is closely related to cancer de-

velopment and metastasis [86]. Although this highly regulated process is not yet fully 

understood, bone-marrow-derived cells were reported to be able to fuse to cancer cells, 

and the fused hybrids acquired more malignant characteristics and enhanced self-renewal 

ability [87]. In line with this observation, MSCs were reported to fuse with diverse malig-

nant cells to promote proliferation and metastasis, including with lung cancer cells [88], 

liver cancer cells [89], and gastric cancer cells [90]. In particular, it was demonstrated that 

MSCs were fused with breast cancer cells and promoted their metastatic capacity [91]. 

Recently, is has been revealed that ASCs are able to fuse spontaneously with breast cancer 

cells, where breast cancer stem cell (CSC) markers CD44+CD24−/lowEpCAM+ are enriched 

in this fused population [92]. These studies suggest cell fusion as a direct interaction be-

tween ASCs/MSCs and cancer cells. Further investigations are needed to explore the mo-

lecular mechanisms by which ASCs/MSCs and malignant cells are able to fuse and how 

this process promotes malignancy. 

In sum, as illustrated in Figure 1, the crosstalk between ASCs/MSCs and breast cancer 

cells is multilateral and majorly mediated by indirect patterns such as the secretion of 

soluble bioactive factors and EVs released by ASCs as well as breast cancer cells. Although 

observed mainly in vitro, the interaction of breast cancer cells with ASCs/MSCs may be 

supported by direct cell–cell contacts including the formation of TNTs, binding of mem-

brane-bound ligands to receptors, and cell–cell fusion. These communications may re-

shape the TME and fuel breast cancer progression and therapy resistance. 
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Figure 1. Simplified model representing the crosstalk between ASCs/MSCs and breast cancer cells. 

The communication between ASCs/MSCs and breast cancer cells may occur directly via cell–cell 

contact, namely TNTs, cell fusion, and the binding of membrane-bound ligands to receptors, or in-

directly via released soluble bioactive factors such as cytokines, chemokines, and growth factors, 

and EVs including exosomes and microvesicles. EV, extracellular vesicles; ASCs, adipose tissue-

derived mesenchymal stromal/stem cells; MSCs, mesenchymal stromal/stem cells; mRNA, messen-

ger RNA; miRNA, microRNA; lncRNA, long non-coding RNA; TNTs, tunneling nanotubes. 

5. Mutual Interaction between ASCs/MSCs and Breast Cancer Cells 

The communication between MSCs/ASCs and breast cancer cells has been an inten-

sive research focus. The related studies are mostly performed using in vitro models to 

investigate the effects of ASCs/MSCs or their conditioned medium on proliferation, sur-

vival, migration, and invasion of breast cancer cell lines. Breast cancer cell lines are classi-

fied based on the status of three important cell surface receptors conventionally used for 

breast cancer subtyping, ER, PR, and HER2 [93]. Most studies used the following breast 

cancer cell lines: low metastatic breast cancer cell line BT474 (ER+, PR+, HER2+), MCF-7 

(ER+, PR+, HER2−) and T47D (ER+, PR+, HER2−), metastatic breast cancer cell lines HCC1954 

(ER−, PR−, HER2+, with wild type breast cancer gene 1 (BRCA1)), SKBR3 (ER−, PR−, HER2+, 

with wild type BRCA1), and MDA-MB-453 (ER−, PR−, HER2+, with wild type BRCA1), and 

highly metastatic breast cancer cell lines MDA-MB-231 (triple negative, with wild type 

BRCA1), MDA-MB-468 (triple negative, with wild type BRCA1), MDA-MB-436 (triple 

negative, mutated BRCA1), and SUM149 (triple negative, mutated BRCA1) [93]. Regard-

ing ASCs/MSCs, while tumor adjacent cells [94] or “cancer-educated” MSCs [95] were re-

cently used, most of the studies employed ASCs/MSCs isolated from non-breast sources, 

including abdominal adipose tissue, bone marrow, and peripheral blood [32,58,96]. It is 

well-known that ASCs/MSCs from different tissues and organs have distinct tran-

scriptomic, biochemical, and secretory profiles, as well as biologic functions in tissue-spe-

cific homeostasis, immune modulation, and vasculogenesis/angiogenesis [97]. This, to-

gether with other diversities, such as different BMI, varied donor age, variable ASC/MSC 

passages, and individual experiment settings, often leads to inconclusive results with 
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breast-cancer-supportive and -suppressive functions [58,98], which may not reflect the sit-

uation in vivo in breast cancer tissue. 

5.1. ASCs/MSCs Influence Breast Cancer and Related Molecular Mechanisms 

Much attention has been paid to elucidating how ASCs/MSCs impact breast cancer 

cells as well as their TME (Table 1). Although their exact roles are not yet completely un-

derstood, ASCs/MSCs are described as both pro- or anti-tumorigenic, depending on the 

type and source of ASCs/MSCs, the use of breast cancer cell lines, and the in vitro or in 

vivo models. The studies concerning the anti-tumorigenic impact of MSCs are limited. 

MSCs have been reported to exert their negative impact on breast cancer by impairing 

angiogenesis via secretion of exosomes [99], reducing migration and invasion via the re-

lease of tissue inhibitor of metalloproteinase (TIMPs) [100], and decreasing breast tumor 

growth via down regulation of the STAT3 signaling pathway [101]. Nevertheless, the ma-

jority of studies report pro-tumorigenic effects of ASCs/MSCs on breast cancer cells, which 

are multilayered, as depicted in Table 1. The related molecular mechanisms are discussed 

in detail. 

Table 1. Functional alterations of breast cancer cells induced by ASCs/MSCs. 

ASC/MSC Source Study Design Functions and Molecular Mechanisms Ref. 

Breast cancer promoting effects of ASCs/MSCs derived from human tissues 

Human ASCs derived 

from visceral and sub-

cutaneous adipose tis-

sue 

MCF7, MDA-MB-231 BC  

cell lines and MCF10A in 

vitro 

Direct co-culture of ASCs promoted proliferation of BC 

cells with an upregulation of AURKA, PLK1, BCL6, IL6, 

and IL8, whereas indirect co-culture led to EMT of BC 

cells via STAT3 and ERK signaling. 

[32] 

Human ASCs obtained 

from ATCC 

MCF7 and BT474 BC cell 

lines in vitro 

Supernatant of ASCs increased BC cell proliferation 

and radiotherapy resistance by IGF1 secretion. BC cells 

overexpressed IGF1R upon radiotherapy. 

[102] 

Human BM-MSCs 

MCF7, T47D, and  

SK-Br-3 BC cell lines  

in vitro 

BM-MSC supernatant increased proliferation of BC 

cells independent of IL6 and VEGF, but both signaling 

proteins stimulated migration by the activation of 

MAPK, AKT, and p38 MAPK. 

[103] 

Human BC-derived 

MSCs 
MCF7 BC cell line in vitro 

Mammary MSCs increased proliferation and cisplatin 

resistance of MCF7 cells by triggering the IL6/STAT3 

pathway. 

[104] 

Human MSCs from pri-

mary BC tissue 

Co-transplantation BC  

xenograft mouse model  

of MCF7 and MSCs in vivo  

and in vitro 

Mammary MSCs promoted BC proliferation and mam-

mosphere formation via EGF/EGFR/AKT signaling. 
[105] 

Human ASCs from adi-

pose tissues  

MCF-7, BT-474, T-47D, and 

4T1 BC cell lines in vitro  

and in vivo 

PDGF-D secreted by ASCs stimulated tumor growth in 

vivo, mammosphere formation in vitro, and EMT in BC 

cells. 

[106] 

Human MSCs from su-

praclavicular lymph 

node (LN-MSCs) and 

liver (Lv-MSCs) 

MDA-MB-231, –436, –468, 

MCF7 BC cell lines, and 

MCF10A cells in vitro  

and in vivo 

The engulfment of MSCs by BC cells increased the gene 

expression of WNT5A, MSR1, ELMO1, IL1RL2, ZPLD1, 

and SIRPB1. This further increased BC cell migration, 

invasion, and mammosphere formation in vitro and the 

tumor metastasis in vivo. 

[107] 

Human ASCs from fa-

cial or abdominal lipo-

suction 

MCF7 BC cell line in vitro 

ASCs co-cultured with MCF7 stimulated EMT in BC 

cells. The data also suggest that EMT was induced by 

the cross-interactions with the TGFβ/Smad and 

PI3K/AKT pathways. 

 

[108] 
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Human ASCs isolated 

from SAT via bariatric 

surgery, and mammary 

ASCs from subcutane-

ous breast preadipo-

cytes 

MCF7 and SUM149 BC cell 

lines in vitro, and orthotopic 

grafting of 4T1 cells into the 

mammary fat pad in vivo 

Both ASCs subtypes suppressed the cytotoxicity of cis-

platin and paclitaxel. Depletion of ASCs by D-CAN, a 

proapoptotic peptide targeting specific ASCs, reduced 

spontaneous BC lung metastases in a mouse allograft 

model and a BC xenograft model, when combined with 

cisplatin treatment. 

[109] 

Human ASCs isolated 

from breast adipose tis-

sues of breast cancer pa-

tients and normal indi-

viduals underwent cos-

metic mammoplasty 

surgery 

Breast tissue and BC tissue 

samples in vitro 

ASCs isolated from breast cancer patients displayed el-

evated levels of IL10 and TGFβ1, and the supernatant 

stimulated the expression of IL4, TGFβ1, IL10, CCR4, 

and CD25 in PBLs. 

[110] 

Human ASCs isolated 

from breast tumor (T-

MSC) and normal 

breast adipose tissue 

(N-MSC) 

Breast tissue and BC tissue 

samples in vitro, PBLs in 

vitro 

The TME altered the secretome of T-MSCs with in-

creased secretion of TGFβ, PGE2, IDO, VEGF, and low-

ered secretion of MMP2/9 compared to N-MSCs. T-

MSCs also stimulated the proliferation of PBLs. 

[111] 

Human ASCs isolated 

from normal breast adi-

pose tissue (nASCs) or 

that of a woman with 

breast cancer (cASCs) 

Breast tissue and BC tissue 

samples in vitro, B cells and 

Tregs in vitro 

nASCs reduced proliferation of B cells in direct co-cul-

ture, and the TNFα+/IL10+ B cells ratio decreased in all 

co-cultures with ASCs, to a barely significantly higher 

extent in cASCs. nASCs shifted the cytokine profile of B 

cells toward an anti-inflammatory profile. 

[112] 

Human ASCs isolated 

from the breast adipose 

tissue of reduction 

mammoplasty patients 

with different BMI 

MCF7 and SUM159PT BC 

cell lines and HMEC breast 

cell line in vitro 

Supernatant of all analyzed ASCs stimulated prolifera-

tion, migration, and invasion of breast cancer cells and 

increased the number of lipid droplets in their cyto-

plasm. This was mechanistically associated with the up-

regulated expression of the fatty acid receptor CD36, 

presenting the capacity of ASCs to induce metabolic re-

programming via CD36-mediated fatty acid uptake. 

[113] 

Human primary subcu-

taneous pre-adipocytes 

(pre-hASCs, Lonza) 

MCF7, T47D, ZR-75-1, SK-

BR-3 BC cell lines and mu-

rine 3T3-L1 pre-adipocytes in 

vitro 

Conditioned medium of ASCs stimulated proliferation 

and migration of MCF7, T47D, SK-BR-3, and ZR-75-1 

cells. Additionally, supernatant of ASCs upregulated 

the expression of S100A7 and its knockdown abrogated 

the tumorigenic effect of ASCs on the tested breast can-

cer cells. 

[114] 

Breast cancer promoting effects of ASCs/MSCs derived from murine tissue 

Murine MSCs derived 

from spontaneous lym-

phomas, mouse bone 

marrow, and mouse 

ears 

Syngeneic tumor transplan-

tation mouse model in vivo 

TNFα dependent monocyte/macrophage recruitment 

led to increased tumor volume upon co-injection with 

MSCs, associated with CCR2 dependent immunosup-

pression of neutrophils, monocytes, and macrophages. 

[115] 

Murine BM-MSCs and 

MSCs isolated from 

murine lung cancers 

4T1 BC mouse model  

in vivo 

BM-MSCs and MSCs from lung cancers were able to re-

cruit CXCR2+ neutrophils into the tumor by TNFα via 

activation of CXCL1, CXCL2, and CXCL5 and pro-

moted tumor metastasis. 

[116] 

Murine BM-MSCs 

Murine mammary cancer  

cell lines PyMT-Luc, 17LC3-

Luc and LLC in vitro 

Secretion of CXCL5 by BM-MSCs increased, but with-

out significance, while proliferation of murine BC cell 

lines was unchanged, whereas CXCL1 and CXCL5 pro-

moted BC cell migration. 

 

[117] 
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Murine and human BM-

MSCs  

4T1 BC mouse model  

in vivo and in vitro 

Both types of BM-MSCs stimulated 4T1 BC cell prolifer-

ation in vivo and in vitro upon direct cell–cell contact. 

BM-MSCs also promoted vessel formation of HUVECs 

in vitro and in vivo in DU145 tumors via TGFβ, VEGF, 

and IL6 release. 

[118] 

Murine ASCs isolated 

from abdominal cavity  

4T1 BC mouse cell line in 

vitro and CT26 murine  

colon cancer cell line  

in vitro 

Co-culture of ASCs induced stemcellrelated genes in 

cancer cells such as SOX2, NANOG, ALDH1, and 

ABCG2. ASCs accelerated tumor growth. Secretion of 

IL6 regulated stemcellrelated genes and activated 

JAK2/STAT3 in murine cancer cells. 

[119] 

Breast cancer promoting effects of obese ASCs/MSCs 

Human ASCs isolated 

from breast cancer tis-

sue of lean and obese 

patients 

Human BC patient-derived 

xenograft cells in vivo 

Adipsin secreted by obese ASCs stimulated factor B 

and C3a, which induced BC proliferation and expres-

sion of CSC genes CD44, CXCR4, SNAI2, SNAI1, ZEB1, 

and BMI1. 

[120] 

Human lean and obese 

ASCs isolated from ab-

dominal lipo- 

aspirates of subcutane-

ous adipose tissue 

MCF7, ZR75, or T47D BC  

cell lines in vitro and  

MCF7 xenograft mouse 

model in vivo 

Leptin secreted from obese ASCs enhanced BC prolifer-

ation and increased the expression of EMT and metas-

tasis-related genes such as Serpine1, MMP2, and IL6. 

[121] 

Human lean (ln) and 

obese (ob) ASCs from 

abdominal lipo- 

aspirates of subcutane-

ous adipose tissue 

MCF7 and MDA-MB-231  

BC cell lines in vitro 

Increased proliferation of BC cells by leptin expression 

via estrogen stimulation and increased protein levels of 

CDKN2A, GSTP1, PGR, and ESR1 in BC cells co-cul-

tured with ob-ASCs. 

[122] 

Human and murine 

ASCs isolated from  

lean and obese individ-

uals 

Tumor and stromal cell 

transplantation in a mam-

mary mouse xenograft  

model in vivo and MCF7  

BC cell line in vitro 

Obese ASCs secreted higher levels of IGF1, promoting 

tumor growth and metastasis, which could be partially 

ameliorated by weight loss. 

[123] 

Human lean and obese 

ASCs from abdominal 

lipoaspirates of subcu-

taneous adipose tissue  

BT20, MDA-MB-231, MDA-

MB-468, MCF7, and 

HCC1806 BC cell lines in 

vitro and patient-derived 

xenograft mouse model 

Obesity increased the tumorigenic capacity of ASCs in-

dicated by increased EMT genes Serpine1, SNAI2,  

and TWIST1. This effect was likely mediated via  

leptin, since its knockdown led to reduced pro-meta-

static effects of obese ASCs. 

[124] 

Human ASCs isolated 

from lipoaspirate of 

subcutaneous adipose 

tissue from lean and 

obese patients. 

MCF7, T47D, and ZR-75 BC 

cell lines in vitro 

Obese ASCs induced a cancer-stem-like phenotype in 

BC cells with elevated gene expression of Notch1, 

Notch3, DLL1, and JAG2. This led to radioresistance  

and reduced oxidative stress after radiation in co-cul-

tured BC cells mediated by leptin. 

[83] 

Human lean and obese 

ASCs derived from 

mammary adipose tis-

sue  

MDA-MB231 BC cell line  

and MCF10AT1 in vitro 

Obese ASCs activated BC cell migration more effec-

tively compared to lean ASCs by direct co-culture. 

Obese ASCs had an increased potential for ECM re-

modeling. 

[125] 

Human lean and obese 

ASCs from abdominal 

lipoaspirates of subcu-

taneous adipose tissue  

MCF7 BC cell line in vitro 

The known CAF markers NG2, ACTA2, VEGF, FAP, 

and FSP were elevated in obese ASCs. Obese ASCs 

were more potent in inducing the gene expression of 

pro-tumorigenic factors in BC cells including Serpin1, 

CCL5, TARC (CCL17), IL24, IL6, IGFBP3, adiponectin, 

and leptin. 

 

[126] 
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Human lean and obese 

ASCs isolated from 

elective liposuction  

MCF7 BC cell line in vitro 

and patient-derived mam-

mary xenograft (PDX)  

mouse model in vivo 

The increased tumor growth rate observed in obese-

ASCs-enriched PDX tumors was leptin dependent. The 

increased metastatic capacity was leptin independent 

and was associated with increased gene expression of 

Serpine1 and ABCB1 in tumor cells. 

[127] 

Abbreviations: ASCs, adiposetissue-derived mesenchymal stromal/stem cells; MSCs, mesenchymal 

stromal/stem cells; BM-MSCs, bonemarrow-derived mesenchymal stromal/stem cells; IL6, interleu-

kin 6; EMT, epithelial-to-mesenchymal transition; BC, breast cancer; STAT3, signal transducer and 

activator of transcription 3; ERK, extracellular-signal regulated kinase; IGF1, insulin-like growth 

factor 1; IGF1R, insulin-like growth factor 1 receptor; VEGF, vascular endothelial growth factor; 

MAPK, mitogen-activated protein kinase; AKT, protein kinase B; EGF, epithelial growth factor; 

EGFR, epithelial growth factor receptor; PDGF-D, platelet-derived growth factor D; WNT5A, wing-

less/integrated 5a; MSR1, macrophage scavenger receptor types I; ELMO1, engulfment and cell mo-

tility protein 1; IL1RL2, interleukin 1 receptor like 2; AURKA, Aurora kinase A; PLK1, Polo-like 

kinase 1; BCL6, B-cell lymphoma 6; SAT, subcutaneous adipose tissue; CDKN2A, cyclin-dependent 

kinase inhibitor 2A; GSTP1, glutathione S-transferase P; ABCB1, ATP-binding cassette subfamily B 

member 1; ZPLD1, zona pellucida-like domain-containing 1; SIRPB1, signal-regulatory protein beta-

1; TGFβ, transforming growth factor β; Smad, suppressor of mothers against decapentaplegic family 

member; PI3K, phosphoinositide 3-kinase; CCR4, C-C motif chemokine receptor 4; PBL, peripheral 

blood lymphocytes; MMP, matrix metalloprotease; PGE2, prostaglandin E2; IDO, indoleamine 2,3-

dioxygenase; TNFα, tumor necrosis factor α; CXCL1, C-X-C motif chemokine ligand 1; HUVEC, 

human umbilical vein endothelial cell; CD44, cluster of differentiation 44; SNAI, snail family tran-

scriptional repressor; ZEB1, zinc finger E-box binding homebox 1; BMI, body mass index; PGR, pro-

gesterone receptor; ESR1, estrogen receptor 1; ob, obese; ln, lean; DLL1, delta-like canonical Botch 

ligand 1; JAG2, jagged canonical Notch ligand 2; IGFBP3, insulin-like growth factor binding protein 

3; JAK2, Janus kinase. 

5.1.1. Promoting Proliferation and Survival 

ASCs/MSCs secrete various growth factors including IGF1 and EGF, and numerous 

cytokines such as leptin, IL6, adipsin, and TNFα, which stimulate proliferation and sur-

vival of breast cancer cells [67,102,103,116,120,121]. In particular, obesity is associated with 

an increase of IL6 in the circulation, reinforcing systemic inflammation [128]. Interest-

ingly, increased IL6 was correlated with poor prognosis, progression, and migration of 

ER-positive breast cancer [129]. IL6 was shown in vitro to activate the signal transducer 

and activator of transcription 3 (STAT3)/protein kinase B (AKT)/mitogen-activated pro-

tein kinase (MAPK) pathways, triggering proliferation of both triple negative and triple 

positive breast cancer cell lines [103,104,130]. TNFα, another important inflammatory cy-

tokine released by adipose stromal cells, including ASCs/MSCs, was increased in the TME 

of patients with obesity, causing adipose tissue inflammation and inhibiting apoptosis of 

TNBC cells [131,132]. This elevated level of TNFα in individuals with obesity might es-

tablish a positive feedback loop, since TNFα was shown to activate ASCs/MSCs and stim-

ulate their secretion of multiple cytokines, such as chemokine (C-C motif) ligand 5 (CCL5), 

CXCL1, CXCL2, and CXCL5, which significantly enhanced tumor growth and metastasis 

[115,116]. Morbid obesity, defined as BMI equal to or greater than 40 [133], is associated 

with hyperleptinemia and increased leptin impairs the negative feedback mechanism be-

tween the adipose tissue and neurons in the hypothalamus [134,135]. In support of this 

notion, ASCs isolated from obese individuals secreted significantly higher levels of leptin 

that stimulated the proliferation of low and high malignant breast cancer cells [121,122]. 

This is linked to leptin receptor activation, which triggers multiple pathways, such as Ja-

nus kinase (JAK) and MAPK, with the expression of downstream target genes involved 

in cell cycle progression and proliferation, including cyclin D1 (CCND1), VEGF, and proto-

oncogene C-Fos (FOS), transcription factor AP-1 subunit jun (JUN), and transcription fac-

tor AP-1 subunit JunB (JUNB) [136]. Adipsin is another adipokine upregulated in ASCs 

derived from obese patients, which stimulates the cell surface receptor complement C3a 

receptor 1 (C3aR) and the cleavage of factor B, leading to proliferation of breast cancer 
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cells [120]. Moreover, obesity is associated with increased levels of circulating IGF1, also 

secreted by ASCs/MSCs [137]. Breast cancer cells express IGF1 receptors, and binding of 

IGF1 activated phosphoinositide 3-kinase (PI3K) and MAPK pathways, promoting cancer 

cell proliferation [138–140]. Similarly, serum levels of hepatocyte growth factor (HGF) 

were elevated, which is secreted by stromal cells, including ASCs, during obesity [123], 

and its receptor, tyrosine-protein kinase Met (c-Met), is expressed on breast cancer cells 

[126]. Thus, increased expression of HGF promoted c-Met-induced cell proliferation and 

subsequent progression of breast cancer [141,142]. In addition, ASCs/MSCs are capable of 

modulating the metabolism of breast cancer cells by stimulating, for example, the upreg-

ulation of cluster of differentiation 36 (CD36), a fatty acid receptor, leading to an increased 

proliferation rate [113], or the upregulation of S100 calcium-binding protein A7, involved 

in cell cycle regulation [114]. Moreover, numerous studies demonstrate that cancer cells 

are able to educate ASCs/MSCs, resulting in an altered gene and protein expression [143]. 

The interaction with cancer cells increased the release of tumor-promoting cytokines such 

as CCLs, CXCLs, SDF, and EGF [105,117]; angiogenesis factors including VEGF, angiopoi-

etins, EGF, galectin-1, IGF1, and keratinocyte growth factor (KGF) [102,115,118,144]; and 

EMT inducers such as TGFβ, platelet-derived growth factor D (PDGF-D), and stem cell 

factor (SCF) [106,118,145]. These data strongly suggest that ASCs/MSCs promote prolifer-

ation and survival of breast cancer cells by releasing diverse bioactive factors activating 

various signaling pathways. 

5.1.2.  Stimulating Tumor Angiogenesis 

ASCs/MSCs are regarded as an important cell type influencing vascular repair mech-

anisms [146] and as inducers of neovascularization [147]. The proposed models by which 

ASCs/MSCs facilitate these functions are diverse, including direct cell–cell contact [148], 

differentiation into endothelial cells (ECs) [147], and paracrine signaling [149]. The molec-

ular mechanisms depend on the release of angiogenic factors such as angiopoietin 1 

(Ang1), Ang2, VEGF, TGFβ, SCF, and von-Willebrand factor (vWF); lipids including fatty 

acids, phospholipids, ceramide, and sphingolipids; microRNAs such as miR-181b-5p, 

miR-494, miR-125a, and miR-210; and signaling molecules including wingless/integrated 

3a (Wnt3a), Wnt4, and matrix metalloprotease (MMP) inducer in ECM [146,147,149]. Obe-

sity influences the direct cell–cell interaction, and the paracrine signaling and differentia-

tion ability of ASCs/MSCs [10,50,150]. Consistently, it was shown that obese ASCs/MSCs 

had deficient angiogenic properties [151,152], and were not able to promote VEGF expres-

sion and tube formation of injured human umbilical vein endothelial cells (HUVECs) 

[153]. Moreover, EVs secreted by obese ASCs lost their capacity to stimulate angiogenesis 

in endothelial cells, possibly by a significantly reduced expression of miR-126, leading to 

an upregulation of sprouty-related EVH1 domain containing 1 (Spred1) and an inhibition 

of extracellular-signal regulated kinase (ERK1/2) essential for endothelial cell angiogene-

sis [154]. A recent high-throughput sequencing analysis presents a more complex picture 

[155]. This study analyzed secreted EVs from obese and lean ASCs, and 83 miRNAs were 

found to be significantly deregulated in obese ASCs, with significant implications in an-

giogenesis [155]. Clinical data provide further evidence that obesity is associated with re-

sistance to anti-VEGF therapies, enlarged tumor size and increased vascularization in 

breast cancer patients [156–158]. This could be explained on several levels, including in-

creased IL6 and other inflammatory cytokines released by ASCs [66], macrophages, and 

adipocytes, which were shown to trigger resistance toward anti-VEGF therapy [156]. 

Moreover, an increased secretion of IL1β, which is also significantly elevated in obese 

ASCs [159], was identified to trigger an NLR family CARD-domain-containing protein 4 

(NLRC4)-dependent upregulation of angiopoetin-like 4 (ANGPTL4), which is a known 

angiogenic factor in the TME of breast cancer [158]. Its genetic knockout prevented obe-

sity-induced enhanced angiogenesis in mice [158]. Leptin is described as another major 

driver in the context of obesity-induced angiogenesis [157], which stimulates the expres-

sion of VEGF by activating the hypoxia-inducible factor 1-alpha HIF1α and NFĸB 
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pathways [160]. Interestingly, inhibition of leptin signaling also decreased the vascular 

endothelial growth factor receptor 2 (VEGFR-2) expression levels in endothelial cells and 

breast cancer cells [161]. Collectively, ASCs/MSCs display a pro-angiogenic phenotype in 

the TME through diverse signaling. 

5.1.3.  Escape of Immune Response 

To escape anti-tumor immunity, cancer cells exploit cell-intrinsic pathways associ-

ated with resistance to immune cell-mediated attack and avoid recognition by anti-tumor 

immune cells [162–164]. Cancer cells may also enhance immunosuppression of the TME 

by regulating the expression or secretion of immunosuppressive molecules, including cy-

tokines and chemokines. On the one hand, this intercellular communication network ef-

fectively inhibits immune effector cells, including T-cells, natural killer (NK) cells, and 

dendritic cells (DCs). On the other hand, it promotes the functions and/or the recruitment 

of immunosuppressive cells such as regulatory T-cells (Tregs) and tumor-associated mac-

rophages [165,166]. Cancer cell escape from the immune response is mediated mainly by 

paracrine and autocrine stimulation in the TME by a variety of growth factors and cyto-

kines, including TGFβ, basic fibroblast growth factor (bFGF), VEGF, PDGF, and ILs 

[167,168]. 

ASCs/MSCs in the TME are well-known for their exceptional immunomodulatory 

capacity. They have a low expression of major histocompatibility complex (MHC) class I, 

and expression of class II MHC molecules is completely absent [169], which helps these 

cells evade immune recognition. Moreover, ASCs/MSCs are capable of modulating the 

immune response by suppressing lymphocytes proliferation, inhibiting differentiation of 

monocyte-derived immature DCs, and reducing the cytotoxic activity of NK cells 

[170,171]. Their functions are supported both by direct cell–cell interaction and by para-

crine signaling through the release of multiple cytokines and other soluble factors 

[171,172]. Intriguingly, cancer cells were shown to exploit the immunomodulatory capac-

ity of ASCs/MSCs. The supernatant of ASCs, which were isolated from breast cancer tis-

sue, was reported to upregulate a panel of anti-inflammatory cytokines, such as IL4, IL10, 

CCR4, CD25, and TGFβ in peripheral blood lymphocytes (PBLs) and to increase the num-

ber of Tregs, which could establish an anti-inflammatory reaction in the TME [110]. It was 

also reported that breastcancer-educated MSCs enhanced the proliferation of PBLs by 

higher secretion of TGFβ, prostaglandin (PGE2), indoleamine 2,3-dioxygenase (IDO), and 

VEGF [111]. In line with these results, the co-culture of cancer associated ASCs with T-

cells expanded the CD25+FOXP3+CD73+CD39+Treg population and increased the release 

of immune suppressive cytokines IL10, IL17, and TGFβ [173]. In addition, indirect co-cul-

ture of ASCs with activated PBLs reduced the number of killer cell lectin-like receptor K1 

(NKG2D+) and CD69+ NK cells [57]. Interestingly, reduced proliferation of B-cells and 

TNFα+/IL10+ cells was observed only in direct co-culture but not in indirect co-culture ex-

periments [112], suggesting the importance of direct cell–cell contact. These data demon-

strate that ASCs/MSCs greatly contribute to the immune escape by affecting the prolifer-

ation and function of diverse immune cells such as PBLs and T- and B-cells in the TME. 

Obesity is a key factor influencing the immunomodulatory capacity of ASCs/MSCs, 

mainly by altering the cytokine secretion profile with a loss of anti-oxidant molecules such 

as glutamate-cysteine ligase (GCL), peroxiredoxin-5 (Prdx5) and Prdx6, as well as a loss 

of functions of the tissue development regulators including Ang, Angptl4, follistatin-re-

lated protein 3 (Fstl3), and placental growth factor (PLGF) [174]. In contrast, obesity trig-

gers the secretion of cytokines involved in osteoporosis, negative vessel remodeling, and 

inflammation with increased leukemia inhibitory factor (LIF), IL1β, CCL2, leptin, inter-

feron gamma (IFNγ), IL6, and TNFα [66,121,159,174,175]. This switch in the secretome of 

ASCs/MSCs contributes to adipose tissue inflammation in patients with morbid obesity 

[10], as highlighted by multiple investigations [175–178]. The in vitro co-culture of obese 

ASCs with mononuclear cells enhanced monocyte and Th17 activation [178] and pro-

grammed cell death ligand 1 (PD-L1) expression, decreased the cytokine secretion in Th1 
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cells, and reduced the cytolytic activity in Th1 cells dependent on the elevated IFNγ re-

lease of ASCs [175]. It was also shown that obese ASCs lost their ability to regulate the 

polarization of M1/M2 macrophages in vitro and in vivo [176], which was associated with 

a four-fold higher concentration of TNFα in the supernatant of obese ASCs [176]. Accord-

ingly, it was reported that co-culture with obese ASCs promoted a pro-inflammatory phe-

notype in murine macrophages and microglial cells through increased expression of genes 

involved in inflammation, altered nitric oxide activity, and impaired phagocytosis [177]. 

Strikingly, Benaige et al. found that obese ASCs induced a different phenotypic switch in 

macrophages with pro- and anti-inflammatory features, leading to a tumor-associated 

macrophage phenotype [179]. These authors also reported that co-cultured macrophages 

secreted survivin, stimulating the progression of cancer cells [179]. Beyond ASCs/MSCs’ 

secretome, ASC-orchestrated ECM regulation is crucial in restricting access of immune 

cells to cancer, by generating a physical barrier to tumor infiltration, inhibition of cytotoxic 

response, and the drug diffusion [180,181]. In conclusion, the immunosuppressive fea-

tures of cancer-educated ASCs/MSCs, particularly obese ASCs/MSCs, may greatly con-

tribute to the immune evasion of breast cancer cells. 

5.1.4.  Inducing EMT, Migration and Invasion 

EMT is the trans-differentiation process that causes epithelial cells to lose their epi-

thelial characteristics, such as cell junctions and apical-basal polarity, and acquire mesen-

chymal features, promoting cell motility and invasion [182]. ASCs/MSCs release cytokines 

and growth factors such as TGFβ, EGF, PDGF, and HGF, which trigger EMT [183,184]. 

The main signaling pathways that induce EMT include the TGFβ, Wnt/β-catenin, and 

Notch pathways [185]. All these pathways converge on the expression and activation of 

the transcriptional factors such as Snail, Slug, Twist-related protein (TWIST), forkhead 

box C1 (FOXC1), FOXC2, and zinc finger E-box binding homebox 1/2 (ZEB1/2). These 

transcription factors suppress the expression of adherens junction and integrin proteins, 

which causes tumor cells to lose their polarity and dissociate from adjacent cells and the 

basal membrane [186,187]. While Snail, Slug, and ZEB2 are able to directly repress the E-

cadherin promoter, TWIST1, FOXC2, and ZEB1 possess an indirect molecular mechanism, 

which disrupts cell polarity and gives rise to the mesenchymal phenotype [186,188]. In 

particular, TWIST1 is able to promote transformation of normal mammary epithelial cells 

into mesenchymal-like cells with increased expression of vimentin, N-cadherin, and fi-

bronectin [189]. Moreover, ZEB1 also plays an important role in EMT regulation in breast 

cancer cells [190], dramatically increasing the metastatic rate, plasticity, and therapy re-

sistance of breast cancer [191].  

MSCs/ASCs are potent in promoting the EMT process of breast cancer cells and foster 

their migration and invasion through various pathways. S1007A is a protein that has been 

shown to be strongly upregulated in breast cancer cells treated with conditioned medium 

from ASCs, and this upregulation was associated with markedly increased migration 

[114], possibly by inducing EMT as reported in cervical cancer cells [192]. MSCs/ASCs are 

capable of reshaping the TME by secreting lots of MMPs, including MMP1, MMP2, 

MMP3, MMP8, MMP9, MMP10, and MMP13 [193–195], which degrade the tumor-associ-

ated ECM. The proteolytic degradation of ECM generates bioactive matrikines and re-

leases matrix-bound VEGF, supporting the growth, migration, and metastasis of cancer 

cells [196]. The engulfment of MSCs by breast cancer cells is another cellular mechanism 

by which cancer cells promote their migration, invasion, metastasis, and self-renewal ca-

pacity [107]. The process increased the gene expression of oncogenic factors such as cellu-

lar tumor antigen p53 (p53), WNT5A, Myc proto-oncogene protein c (c-MYC), TGFβ, and 

cell-membrane-associated genes including macrophage scavenger receptor types I and II 

(MSR1), engulfment and cell motility protein 1 (ELMO1), interleukin 1 receptor-like 2 

(IL1RL2), zona pellucida-like domain-containing protein 1 (ZPLD1), and signal-regulatory 

protein beta-1 (SIRPB1) [107]. In fact, low expression of WNT5A and MSR1 was linked to 

reduced metastasis and longer cancer-free survival of breast cancer patients [107,197]. In 
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addition, it was reported that breast cancer cells treated with ASC supernatant upregu-

lated their fatty acid receptor CD36, which is associated with migration and invasion [113].  

Interestingly, various reports showed a reinforced effect of obese ASCs/MSCs on the 

malignancy of breast cancers. This could be attributed to several aspects. First, this en-

hanced effect could be induced by an increased secretion of cytokines, as shown for IGF1 

[123], which stimulated the invasiveness of breast cancer cells by activating its down-

stream targets ERK, serine/threonine-protein kinase mTOR, and STAT3 [137], and for lep-

tin, with the expression and activation of its various effector genes [83,124]. Second, obese 

ASCs were described to induce the invasion of breast cancer cells more efficiently com-

pared to lean ASCs by direct cell–cell contact, helping the generation of traction forces 

within the TME and releasing various MMPs [125]. Third, obesity is associated with an 

enhanced de-differentiation of ASCs into CAFs, which changes significant parts of their 

secretome toward a cancer-supporting phenotype [126,198]. The changed secretome 

might explain the changes observed in constitutively active ER+ breast cancer cell lines 

upon co-culture with obese ASCs [127]. In conclusion, ASCs/MSCs have the ability to sup-

port breast cancer cell migration through multiple pathways, in particular through pro-

moting EMT and reshaping the ECM, which is abused by cancer cells and fueled by mor-

bid obesity on various molecular levels to increase cancer migration, invasion, and metas-

tasis. 

5.1.5.  Raising Cancer-Associated Stem Cells 

The term cancer stem cell (CSC) characterizes a subpopulation of cancer cells with an 

intrinsic self-renewal and tumorigenic capacity, mirrored by their significant role in tumor 

development, therapy resistance, relapse, and metastasis [199]. The pathways responsible 

for establishing a CSC phenotype are diverse and differ among cancer entities [200]. In 

breast cancer cells, the most important pathways for this process are STAT, Hedgehog, 

protein kinase C (PKC), MAPK, Notch, and Hippo, with hundreds of downstream genes 

responsible for enhanced stemness [201]. Obesity increases systemic levels as well as cel-

lular secretion of many cytokines and adipokines including leptin, IL6, TNFα, IGF1, fatty 

acid binding protein 4 (FABP4), and resistin, which are all involved in regulating the path-

ways associated with the development of CSCs in breast cancer tissue [202]. In accordance 

with this, Sabol et al. showed that patient-derived xenograft (PDX) tumors co-cultured 

with obese ASCs increased the formation of metastases and the number of CD44+CD24− 

breast cancer stem cells in a severely immunodeficient (SCID) mouse model [124]. Re-

markably, the stable knockdown of leptin in obese ASCs led to a significant reduction in 

circulating CSCs [124], suggesting leptin as a key factor to induce CSCs by obese ASCs. 

Furthermore, leptin was reported to stimulate the secretion of TGFβ, which leads to the 

activation of SMAD family member 2 (Smad2), Smad3, and Smad4 transcription factors, 

the repression of cadherin 1 (CDH1) coding for E-cadherin, and an increased CSC pheno-

type in breast cancer cells [203]. Moreover, leptin-induced TGFβ was shown to trigger de-

differentiation of stromal cells in the TME, including fibroblasts, ASCs, and MSCs, toward 

a cancer-associated phenotype [204], which altered their cytokine secretion pattern and in 

turn increased TGFβ secretion [205]. Resistin, another adipokine with an increased secre-

tion in obese adipose tissue [206], was highly associated with the transcription of plurip-

otency genes such as aldehyde dehydrogenase 1 family member A1 (ALDH1A1), ITGA4, 

protein lin-28 homolog B (LIN28B), smoothened homolog (SMO), and sirtuin 1 (SIRT1) in 

low malignant breast cancer cells and non-carcinogenic breast epithelial cells [207]. Fi-

nally, the obese adipose tissue is characterized by systemic and local chronic inflammation 

with a highly increased level of circulated IL6 [208], which is also secreted by ASCs in 

obese adipose tissue [66]. This elevated IL6 level was associated with the activation of the 

JAK2/STAT3 signaling cascade and increased levels of SRY-Box transcription factor 2 

(SOX2), Nanog homeobox (Nanog), ALDH1A1, and ATP-binding cassette subfamily G 

member 2 (ABCG2) genes in breast cancer cells in vitro and in vivo [119], which was com-

pletely prevented by blocking the cellular IL6 signaling [119]. These data strongly suggest 
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that ASCs/MSCs have the potential to stimulate breast cancer stemness, which is signifi-

cantly enhanced by factors associated with obesity. 

5.1.6.  Facilitating Therapy Resistance 

ASCs/MSCs reshape the TME, promote EMT, and support the generation of CSCs, 

which are associated with radio- and chemotherapy resistance [199,209]. The co-culture 

of ER+ breast cancer cells with obese ASCs activated many pathways such as leptin, IL6, 

Notch, and jagged canonical Notch ligand 2 (JAG2), which mediated radiation resistance 

in ER+ breast cancer cells [83]. Blocking either leptin or IL6 from the culture medium pre-

vented this radiotherapy resistance [83]. Beside the secretion of cytokines, the direct co-

culture of breast cancer cells with ASCs/MSCs activated TGFβ/Smad, PI3K/AKT, and 

MAPK signaling, leading to the induction of chemotherapy resistance after 72 h even in a 

time frame before EMT occurred [32,108]. Interestingly, an in vivo experiment showed 

that specific depletion of ASCs within the TME by selective peptide targeting D-CAN, 

consisting of ASC binding domain and a pro-apoptotic domain, resulted in decreased cis-

platin and paclitaxel resistance in a human breast cancer xenograft model [109]. In support 

of this observation, another study reported that ASC removal increased the efficiency of 

cisplatin and suppressed obesity-induced EMT in obese mice with prostate cancer [210]. 

In addition, ASCs/MSCs were also reported to increase the chemotherapy resistance of 

other cancer entities, including colorectal [211], ovarian [212–214], lung [215], squamous 

cell carcinoma [216], and acute myeloid leukemia [217], by modulating PDGF-BB [213], X-

linked inhibitor of apoptosis (XIAP) [218], Notch [217], STAT3 [101], Hedgehog [214], and 

p53 signaling [211]. These data highlight the general role of ASCs/MSCs in rendering can-

cer cells resistant to radio- and chemotherapy by activating diverse signaling, in particu-

lar, by generating EMT and CSCs, and by reshaping the TME. 

In sum, ASCs/MSCs, particularly in the obese state, promote the development of 

breast cancer by facilitating cell proliferation and survival, EMT, migration and invasion, 

angiogenesis, CSC formation, immune escape, and therapy resistance (Figure 2). While 

most reports emphasize supportive effects for breast cancer cells, ASCs/MSCs have also 

been shown to have an anti-tumorigenic function [101,219]. Secreted factors of human 

MSCs isolated from umbilical cords were shown to suppress tumor progression and in-

crease radiosensitivity through downregulating intra-tumoral STAT3 signaling in a xen-

ograft mouse model and in breast cancer cell lines [101]. Additionally, ASC supernatant 

was reported to be able to induce cell death with increased caspase-3/7 activity, whereas 

this was associated with the augmentation of stemness in breast cancer cells [219]. Further 

studies are needed to clarify the relationship between ASC/MSC and breast cancer cells. 
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Figure 2. Schematic representation of potential effect of ASCs/MSCs on breast cancer cells and re-

lated molecular mechanisms. ASCs/MSCs may promote breast cancer cell proliferation and sur-

vival, EMT, migration, and invasion; CSC formation; angiogenesis; immune evasion; and therapy 

resistance. ASCs, adipose-tissue-derived mesenchymal stromal/stem cells; MSCs, mesenchymal 

stromal/stem cells; IL6, interleukin 6; EMT, epithelial-to-mesenchymal transition; STAT3, signal 

transducer and activator of transcription 3; ERK, extracellular-signal regulated kinase; IGF1, insulin-

like growth factor 1; VEGF, vascular endothelial growth factor; MAPK, mitogen-activated protein 

kinase; AKT, protein kinase B; CCL2, monocyte chemotactic and activating factor; EGF, epithelial 

growth factor; PDGF-D, platelet-derived growth factor D; Wnt, wingless/integrated; TGFβ, trans-

forming growth factor β; PI3K, phosphoinositide 3-kinase; CCR4, C-C motif chemokine receptor 4; 

TNFα, tumor necrosis factor α; CD25, cluster of differentiation 25; SNAI, snail family transcriptional 

repressor; ZEB1, zinc finger E-box binding homebox 1; CAF, cancer-associated fibroblast; CSC, can-

cer stem cell; JAK2, Janus kinase 2; FABP4, fatty acid binding protein 4; PKC, protein kinase C; HGF, 

hepatocyte growth factor; MMP, matrix metalloprotease; bFGF, basic fibroblast growth factor; vWF, 

von-Willebrand factor.  

5.2. Breast Cancer Cells Educate ASCs/MSCs and Related Molecular Mechanisms 

While ASCs/MSCs influence breast cancer cells, numerous investigations show that 

breast cancer as well as its TME “educate” their surrounding cells, including fibroblasts 

(FBs) and ASCs/MSCs, toward pro-tumorigenic phenotypes [220]. The most precisely 

characterized cells are FBs. As depicted in Table 2, multiple cancer-associated fibroblast 
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(CAF) phenotypes have been identified during the last decade as key components of the 

TME with implications in tumor growth, therapy resistance, metastasis, ECM remodeling, 

and immune tolerance [34,205,221]. Interestingly, ASCs/MSCs are morphologically indis-

tinguishable from fibroblasts. These two cell types share many common features includ-

ing their surface marker composition, proliferation pattern, differentiation capacity, im-

munomodulation property, and, to some extent, even their gene expression profiles 

[222,223]. The major difference between these two cell types seems to be their methylation 

profile. While the general methylation patterns of MCSs are maintained in long-term cul-

ture and aging [224], the methylation of fibroblasts seems to decrease with aging or pro-

longed culture [225]. Indeed, ASCs/MSCs have been proposed to be immature FBs and 

one of the sources for FBs [222].  

Recently, increasing evidence highlights that ASCs/MSCs are educated and de-dif-

ferentiated by cancer cells and the TME, fueling malignancy and therapy resistance 

[226,227]. Cancer-cell-secreted factors and direct cancer cell–ASC/MSC contacts induce a 

pro-tumorigenic population of ASCs/MSCs, named cancer-associated MSCs (CA-MSCs) 

[143]. CA-MSCs have the ability to differentiate into multiple cell lineages, such as fibro-

blasts and adipocytes, suggesting that MSCs may play a key role in the generation of most 

stromal components of the TME. A number of reports have demonstrated that CA-MSCs 

differentiate into CAFs and cancer-associated adipocytes (CAAs) in the presence of ma-

lignant cells [105,228]. While the exact mechanisms underlying the de-differentiation of 

CA-MSC are not yet clear, this switch resulted in a highly secretory phenotype with in-

creased secretion of bone morphogenetic protein (BMP2), BMP4, and IL6 [229]. In line 

with this observation, there was evidence suggesting that cancer-released TGFβ was able 

to activate the Smad signaling pathway in MSCs, which drove differentiation into a can-

cer-associated phenotype [230]. In other tumor entities, including lymphomas [115], lung 

[215], and gastric cancer [231,232], IL6, IL8, IL17, IL23, and TNFα secreted by monocytes, 

macrophages, neutrophils, and non-MSC stromal cells were shown to be capable of pro-

moting malignant transition of ASCs/MSCs, which was associated with significantly in-

creased metastatic rates and tumor growth [115,215,227,231,232]. Other molecular mech-

anisms proposed for CAF activation include Notch/Eph-ephrin signaling, ECM composi-

tion in the TME, DNA damage, physiological stress, inflammatory stimuli, RTK ligands, 

and TGFβ-mediated signaling [34]. Moreover, the primary cilium, a sensory organelle 

with an exceptionally high receptor density [233], was shown to play a critical role in the 

de-differentiation process of adipose progenitors toward a CAF phenotype by mediating 

TGFβ signaling [234]. All these studies suggest that diverse pathways are responsible for 

the activation of CAFs, and the TME is likely the major player in triggering the de-differ-

entiation of ASCs/MSCs into different CAFs, depending on their cellular context and the 

tumor entity. 

Table 2. Subtypes of CAFs in different cancer entities. 

Fibroblast/CAF Source Study Design Functions and Molecular Mechanisms Ref. 

Impact of cancer cells on the fibroblast phenotype 

FBs and CAFs isolated from 

surgical explantation and 

human BM-MSCs obtained 

from AOU Meyer Hospital 

(Florence) 

Co-culture experiments 

with FBs, CAFs, and BM-

MSCs with PC3, DU145, and 

LNCaP prostate cancer cell 

lines in vitro  

Prostate cancer cells secreted TGFβ1 and recruited 

BM-MSCs into the TME. This in turn led to an ele-

vated secretion of TGFβ1 in cancer-educated BM-

MSCs. Blocking TGFβ1 reduced the recruitment of 

BM-MSCs into the tumor as well as their trans-dif-

ferentiation. 

[230] 

Pancreatic ductal adenocarci-

noma (PDAC) tissue 

Single-cell RNA sequencing 

to characterize CAF subpop-

ulations in PDAC 

The analysis revealed intertumoral heterogeneity 

between CAFs, ductal cancer cells, and immune 

cells in extremely dense and loose types of PDACs. 

A highly metabolic active subtype (meCAFs) was 

[235] 
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identified. Patients with abundant meCAFs had a 

significantly increased risk for metastasis and poor 

prognosis. These patients, however, showed a 

highly increased response to immunotherapy. 

Murine normal pancreatic 

and cancer tissue 

Single-cell RNA sequencing 

to characterize CAF subpop-

ulations (normal vs. pancre-

atic cancer tissue) 

The analysis revealed a landscape of CAFs in pan-

creatic cancer during in vivo tumor development. 

The LRRC15+ CAF lineage was shown to be TGFβ-

dependent and correlated with a poor patient out-

come treated with immunotherapy in multiple 

solid tumor entities. 

[236] 

Human and murine PDAC 

resection specimens and nor-

mal pancreas tissue 

Single-cell RNA sequencing 

to characterize CAF subpop-

ulations (human and mu-

rine) 

The analysis from neoplastic and TME of human 

and mouse PDAC tumors displayed already de-

scribed myCAFs and iCAFs with distinct gene ex-

pression profiles. It further revealed a novel sub-

type that expressed MHC class II and CD74 called 

“antigen-presenting CAFS (apCAFs)”. These cells 

activated antigen-specific CD4+ T cells. These im-

munomodulatory CAFs were likely associated with 

a reduced immune response of PDAC tumors. 

[237] 

Human breast and BC tissue 

Single-cell RNA sequencing 

to characterize CAF subpop-

ulations (normal vs. BC tis-

sue) 

The analysis identified different CAF subpopula-

tions in BC tissue. CAF-S1 (CD29, FAP, α-SMA, 

PDGFRβ, FSP1, and CXCL12) was analyzed in de-

tail. These cells induced an immunosuppressive 

TME by retaining CD4+CD25+ T cells through the 

signaling of OX40L, PD-L2, and JAM2, and in-

creased CD25+FOXP3+ T lymphocytes, and B7H3, 

DPP4, and CD73 signaling. 

[238] 

Human BC tissue and meta-

static lymph nodes tissue 

(LN)  

Single-cell RNA sequencing 

to characterize CAF subpop-

ulations (BC and LN tissue) 

and co-culture experiments 

with MCF7, MDA-MB-231, 

and T47D  

The analysis identified four CAF subpopulations in 

LN. Two had a myCAF gene expression pattern, 

CAF-S1 and CAF-S4, accumulated in LN and corre-

lated with cancer cell invasion. CAF-S1 stimulated 

cancer cell migration by stimulating EMT, through 

CXCL12 and TGFβ signaling. CAF-S4 induced can-

cer cell invasion through Notch signaling. Patients 

with a high ratio of CAF-S4 cells were prone to de-

velop late distant metastases. 

[239] 

Murine BC tissue and nor-

mal mammary fat pad tissue 

Single-cell RNA sequencing 

to characterize CAF subpop-

ulations (BC compared to 

pancreatic cancer tissue) 

The study identified six CAF subpopulations in a 

triple-negative syngeneic breast cancer mouse 

model. Among these six subpopulations, myCAFs, 

iCAFs, and apCAFs were found to exist in BC can-

cers and PDAC. The subtype expressing MHC class 

II proteins similar to apCAFs were also found in 

normal breast/pancreas tissues, indicating that this 

specific subtype is not TME induced. The compari-

son to a pancreatic tumor model suggested that 

similar phenotypes exist in both cancer entities 

without a TME-specific subtype. 

[240] 

Murine and human BC tis-

sue and normal mammary 

fat pad tissue 

Single-cell RNA sequencing 

to characterize CAF subpop-

ulations (murine, human BC 

tissue vs. normal mammary 

A negative selection strategy was used to analyze 

768 single-cell RNA sequencing transcriptome data 

of mesenchymal cells in a BC mouse model. In this 

approach, three distinct CAF subpopulations were 

[241] 
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fat pad tissue) and co-cul-

ture experiments with hu-

man MDA-MB-231 as well 

as murine 4T1 and EO771. 

defined. These populations were named “vascu-

lar”-CAFs, “matrix”-CAFs and “development”-

CAFs. The found gene signatures were further veri-

fied on the transcriptional and protein levels in var-

ious experimental cancers. Human tumors and 

every CAF gene profile were correlated with dis-

tinctive molecular functions. 

Normal breast, BC tissue 

samples, and metastatic 

lymph nodes obtained from 

surgery 

Comparison of multiple ge-

nome transcriptomic RNA 

sequencings 

These approaches revealed that most of the de-

scribed cancer hallmark signaling pathways were 

significantly upregulated in triple-negative breast 

cancer with a highly enriched CAF population. 

BGN, a soluble secreted protein, was upregulated 

in CAFs compared to normal cancer-adjacent fibro-

blasts (NAFs). The expression was negatively asso-

ciated with CD8+ T cells and poor prognostic out-

comes. 

[242] 

Human primary bladder tu-

mor tissues and adjacent 

normal mucosae tissues 

Single-cell RNA sequencing 

to characterize CAF subpop-

ulations (bladder cancer tis-

sue vs. normal mucosae tis-

sue) 

iCAFs were identified as poor prognostic marker 

with potent pro-proliferation capacities, and their 

immunoregulatory function in the TME of bladder 

cancer was further deciphered. The LAMP3+ den-

dritic cell subgroup might be able to recruit regula-

tory T cells, which could be a step toward an im-

munosuppressive TME. 

[243] 

Abbreviations: FB, fibroblast; BC, breast cancer; CAF, cancer-associated fibroblast; apCAF, antigen 

presenting cancer-associated fibroblast; meCAF, metabolic active subtype cancer-associated fibro-

blast; iCAF, inflammatory cancer-associated fibroblast; myCAF, myofibroblast cancer-associated fi-

broblast; BM-MSCs, bone-marrow-derived mesenchymal stromal/stem cells; PDAC, pancreatic duc-

tal adenocarcinoma; TME, tumor microenvironment; CD29, cluster of differentiation 29; α-SMA, 

smooth muscle actin; PDGFRβ, platelet-derived growth factor receptor beta; IL6, interleukin 6; 

BGN, biglycan; LAMP3, lysosomal-associated membrane protein 3; FSP1, fibroblast-specific pro-

tein-1; CXCL1, C-X-C motif chemokine ligand 1; JAM2, junctional adhesion molecule 2; DPP4, di-

peptidyl peptidase 4; B7H3/CD273, cluster of differentiation 273. 

5.2.1. CAF Subtypes and De-Differentiation of MSCs/ASCs into CAFs 

Single-cell RNA sequencing is a tool to classify multiple different subtypes of CAFs, 

with a specific gene signature for many tumor entities [235,244]. In general, the following 

three major phenotypes have been described: myCAFs (myofibroblast-like CAFs) with a 

high expression of smooth muscle actin (αSMA), TGFβ signaling and the capacity to re-

model the ECM [235]; iCAFs (inflammatory CAFs), defined by an increased secretion of 

inflammatory cytokines, chemokines, and the complement complex [236]; apCAFs (anti-

gen-presenting), featured as a cell type able to induce T-cell receptor ligation in CD4+ T 

cells in an antigen-dependent manner and express CD74- and MHC-class-II-related genes 

[237]. 

Strikingly, a recent study was able to recapitulate the de-differentiation of human 

ASCs into similar phenotypes in a pancreatic cancer stromal-rich xenograft model [245]. 

ASCs were shown to de-differentiate into three major subpopulations, myCAF, iCAF, and 

apCAF [245], demonstrating that ASCs/MSCs are also susceptible to gaining malignant 

phenotypes in an in vivo mouse model [245]. Furthermore, a computational analysis of 

single-cell gene expression from pan-cancer biopsies could recapitulate the transition of 

ASCs into CAFs expressing COL11A1 [246]. This phenotypical switch appears to be de-

pendent on the interaction between the TME and ASCs. In vitro experiments showed that 

the direct co-culture of ASCs with human pancreatic cancer cells led to the gene expres-

sion profile of myCAFs, whereas the indirect co-culture with the same cells induced an 
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iCAF gene expression pattern [247]. In line with this observation, the direct co-culture 

with low malignant breast cancer cells and TNBCs was shown to stimulate the transition 

toward a myCAF-like phenotype driven by TGFβ/Smad3 signaling [94]. 

Interestingly, obesity seems to fuel this de-differentiation process. It was reported 

that obese ASCs expressed significantly higher levels of myCAF-associated genes, includ-

ing actin alpha 2 (ACTA2), fatty-acid-binding protein 1 (FAP1), fibroblast-specific protein-

1 (FSP1), and chondroitin sulfate proteoglycan (NG2), compared to lean control ASCs 

[126]. These cells also displayed an increased secretion of pro-tumorigenic cytokines, such 

as TARC (CCL17), CCL5, IL24, and IL6 [126]. This could be of clinical relevance, since 

breast cancers from obese women have an elevated incidence of desmoplasia, and these 

desmoplastic tumors are described as highly fibrillar collagen enriched with an increased 

number of CAFs [40,248], which can be further deciphered into different CAF subtypes 

with individual roles inside the TME [249,250]. In fact, subtypes of cancer associated 

ASCs/CAFs have been identified in breast cancer, as demonstrated in Table 3. 

Table 3. Subtypes of cancer associated ASCs/CAFs in breast cancer. 

Fibroblast/CAF Source Study Design Functions and Molecular Mechanisms Ref. 

Human adipose progenitors 

(APs) isolated from adipose 

tissue and breast-APs (B-

APs) isolated from breast ad-

ipose tissue 

MCF-7 and T47D cell lines 

in vitro 

Primary cilia of APs were required for de-differen-

tiation of APs into CAFs stimulated by breast can-

cer cells. Inhibition of cilia stopped the malignant 

transition of APs. Primary cilia mediated TGFβ1 

signaling to APs. 

[234] 

Human lean and obese ASCs 

from abdominal lipoaspi-

rates of subcutaneous adi-

pose tissue 

MCF7 cell line in vitro 

Co-culture of breast cancer cells with lean and 

obese ASCs induced a CAF-like phenotype with el-

evated gene expression of NG2, ACTA2, VEGF, 

FAP, and FSP. This cancer-educated phenotype 

was enhanced in obese ASCs compared to lean 

counterparts. Obese ASCs were more potent in in-

ducing the expression of pro-tumorgenic factors in 

breast cancer cells including Serpin1, CCL5, TARC, 

IL24, IL6, IGFBP3, adiponectin, and leptin. 

[126] 

Human adipocytes/pre-adi-

pocytes isolated from breast 

cancer tissue or reduction 

mammoplasty 

Co-culture with murine 3T3-

F442A pre-adipocytes cell 

line, murine 4T1 breast can-

cer cell line, human breast 

cancer cell line SUM159PT 

in vitro 

Co-culture of breast cancer cells with mature adipo-

cytes or pre-adipocytes led to enhanced secretion of 

fibronectin and collagen I. This was associated with 

enhanced migration/invasion and the expression of 

known CAF marker FSP1. The de-differentiation 

process was triggered by the reactivation of the 

Wnt/β-catenin pathway in response to Wnt3a. 

[251] 

Human ASCs isolated from 

unprocessed subcutaneous 

adipose tissue  

MDA-MB-231 and MCF7 

cell lines and supernatant, in 

vitro 

ASCs were de-differentiated in response to super-

natant of breast cancer cells, shown by the expres-

sion of ACTA2, SDF1, CCL5, and tenascin-C, medi-

ated by TGFβ1/Smad3.  

[94] 

Immortalized human AD-

MSC cell line ASC52telo 

(ATCC) 

Capan-1 and MIAPaCa-2 

human PDAC cell lines and 

stroma-rich cell-derived 

xenograft (Sr-CDX) mouse 

model in vitro/in vivo 

The SR-CDX model resembled the PDAC pheno-

type induced by CAFs with accelerated tumor 

growth, stromal cell proliferation, chemoresistance, 

and dense stroma. Single-cell RNA sequencing re-

vealed that the CAFs in the TME were derived 

from the transplanted AD-MSCs, which de-differ-

entiated into known and unknown CAF subtypes. 

[245] 

Data sets from multiple pan-

cancer biopsy tissues  

Single-cell RNA sequencing 

data sets from multiple 

This analysis revealed that CAFs originated from a 

particular subset of ASCs present in the stroma 
[246] 
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cancer biopsies to recapitu-

late ASC de-differentiation 

process in vitro 

vascular fraction of normal adipose tissue. The 

transition stages of ASCs were recapitulated to-

ward a cance-associated phenotype by using a rich 

pancreatic cancer dataset. At the endpoint of this 

transition process, the cells presented the following 

upregulated genes: MMP11, COL11A1, C1QTNF3, 

CTHRC1, COL12A1, COL10A1, COL5A2, THBS2, 

AEBP1, LRRC15, and ITGA11.  

Immortalized human AD-

MSC cell line ASC52telo 

(ATCC) 

Capan-1, SUIT-2, and MI-

APaCa-2 human PDAC cell 

lines and stroma-rich cell-

derived xenograft (Sr-CDX) 

mouse model in vitro 

AD-MSCs acted as precursors for CAFs in vitro. 

AD-MSCs could be induced into myCAFS and 

iCAFs upon co-culture with PDAC cells. Direct co-

culture led to a myCAF phenotype, whereas indi-

rect co-culture induced an iCAF gene expression 

pattern.  

[247] 

Human ASCs (ADSC-GM) 

from Lonza 

MDA-MB-231 breast cancer 

cell line and HUVECs in 

vitro 

EVs from MDA-MB-231 converted ASCs into a my-

CAF-like phenotype, with increased VEGF and 

ECM remodeling, and partly driven by MAPK sig-

naling. 

[252] 

Abbreviations: AP, adipose progenitors; ASCs, adipose-tissue-derived mesenchymal stromal/stem 

cells; MSCs, mesenchymal stromal/stem cells; BM-MSCs, bone-marrow-derived mesenchymal stro-

mal/stem cells; IL6, interleukin 6; CAF, cancer-associated fibroblast; myCAF, myofibroblast cancer-

associated fibroblast; EMT, epithelial-to-mesenchymal transition; VEGF, vascular endothelial 

growth factor; MAPK, mitogen-activated protein kinase; AKT, protein kinase B; EGF, epithelial 

growth factor; BC, breast cancer; C1QTNF3, complement C1q tumor necrosis-factor-related protein 

3; CTHRC1, collagen triple helix repeat-containing protein 1; THBS2, thrombospondin-2; AEBP1, 

adipocyte enhancer-binding protein 1; LRRC15, leucine-rich repeat-containing protein 15; ACTA2, 

actin alpha 2; MMP, matrix metallopeptidase. 

5.2.2. De-Differentiation of MSCs/ASCs into myCAFs Remodeling ECM 

The myCAF subpopulation is characterized by an upregulation of genes involved in 

smooth muscle contraction, focal adhesion, ECM organization, and collagen formation 

[237]. Additionally, myCAFs are associated with gene expression of ACTA2, transgelin 

(TAGLN), myosin light chain 9 (MYL9), tropomyosin 1/2 (TPM1/2), FAP, FSP1, and plate-

let-derived growth factor receptor beta (PDGFRβ) [253]. This subpopulation was shown 

to be essential for fibrosis in the TME, causing increased density and stiffness [254]. This 

highly fibrotic ECM decreased T-cell infiltration, and was associated with a hypoxia-in-

duced metabolic switch, further suppressing the immune response in the TME [254]. As a 

consequence, myCAFs stimulated tumor proliferation, migration, and invasion [253]. In 

the TME of breast cancer, myCAFs were shown to promote an immunosuppressive envi-

ronment by attracting and retaining CD4+CD25+ T-cells through the ligands tumor necro-

sis factor receptor superfamily member 4 (OX40L), PD-L2, and the adhesion molecule 

junctional adhesion molecule B (JAM2). Additionally, they were able to increase the num-

ber of CD25+FOXP3+ T-cells through dipeptidyl peptidase 4 (DPP4), CD73, and B7H3 

(cluster of differentiation 276) signaling [238]. As a direct effect on breast cancer, these 

cells were reported to trigger EMT by activating the CXCL12 and TGFβ pathways in breast 

cancer cells [239]. This significantly increased EMT process was associated with enhanced 

tumor migration and lymph-node metastasis [253]. In addition, a single-cell tran-

scriptomic analysis comparing tumor-derived FBs and normal tissue-resident FBs re-

vealed that about 79% of CAFs exhibited a myCAF phenotype with high gene levels of 

αSMA in 4T1 murine breast tumors [240]. Another study further defined these αSMA-

positive cells into matrix CAFs (mCAFs), with a specific function in matrix remodeling 

[241]. Interestingly, a high prevalence of mCAFs was observed at the invasive front of 

cancers and a low abundance in the cancer core [241]. Similar results were shown for ASCs 
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de-differentiated into the myCAF phenotype. These cells promoted TME fibrosis, 

desmoplasia and chemoresistance in a stroma-rich xenograft mouse model [245] and en-

hanced breast cancer cell invasion in vitro [94]. Given that obesity was reported to stimu-

late the de-differentiation of ASCs into an cancer-associated phenotype [126], this might 

explain that obesity fuels the malignant progression of breast cancer by reshaping its TME. 

5.2.3. De-Differentiation of MSCs/ASCs into iCAFs with Secretion of Soluble Factors and 

Exosomes 

Another important CAF subpopulation is iCAFs with a low αSMA expression and 

high cytokine production as well as secretion [242], found in breast cancer and in pancreas 

ductal adenocarcinoma (PDAC) [240,253]. This extraordinary secretory activity is related 

to a high gene expression of important signaling regulators, such as PDGFRα, dermato-

pontin (DPT), C-type lectin domain family 3 member B (CLEC3B), collagen type XIV alpha 

1 chain (COL14A1), lymphocyte antigen 6c1 (Ly6c1), hyaluronan synthase 1 (HAS1), 

HAS2, IL6, IL8, IL11, CXCL1, CXCL2, and CCL2 [240,253]. The data from single-cell RNA 

sequencing of PDAC and bladder urothelial carcinoma tissue revealed that the cytokine-

cytokine receptor interaction pathway was significantly enriched in iCAFs [243,255]. In-

creased gene levels of VEGF, FGF, FGF7, IGF1, and IGF2, known for their proliferation-

promoting effects in endothelial, fibroblasts, and cancer cells, were also detected [243]. 

Indeed, the supernatant of iCAFs isolated from bladder urothelial carcinoma tissue pro-

moted proliferation of tumor cells [243]. These cells were also capable of suppressing the 

immune response by interfering with the activity of CD8+ T-cells, CD4+ T-cells, Tregs, NK 

cells, mast cells, myeloid cells, and neutrophils through the secretion of various cytokines, 

such as CXCL1, CXCL12, CXCL16, IL6, IL8, IL11, IL33, LIF, PGE2, PVR cell adhesion mol-

ecule (PVR), podoplanin (PDPN), DPP4, PD1, PD2, and TGFβ [243,255]. This immuno-

suppressive function could be associated with the poor response to immunotherapy in 

fibrotic cancers with a high number of iCAFs [254]. Additionally, pharmacologic blockade 

or depletion of LIF, a key paracrine factor from iCAFs [250], was shown to reduce the 

progression of PDAC in a mouse model by modulating cancer cell differentiation and the 

EMT status [256]. Interestingly, the function of iCAFs was not limited to paracrine signal-

ing. These cells expressed the genes HAS1 and HAS2 responsible for the synthesis of hy-

aluronan, which is a major component of the ECM [237], and its expression has been 

shown to correlate with low immune response and poor prognosis in multiple cancer en-

tities, including breast cancer [257,258]. Furthermore, many factors released from iCAFs 

into the TME facilitate tumor growth, angiogenesis, and metastasis [259], though further 

in vivo and in vitro evidence for these functions is needed. Similar to myCAFs, the de-

differentiation process of ASCs toward an iCAF phenotype could be recapitulated in the 

stroma-rich xenograft mouse model, which was found to be connected to increased tumor 

growth [245]. In accordance, a recent study showed that MSCs were able to de-differenti-

ate into inflammatory cancer-associated cells by activating the IL1α/ETS-related transcrip-

tion factor Elf-3 (Elf3)/yes1-associated transcriptional regulator (YAP) signaling axis [260]. 

These data strongly suggest that cancer-cell-educated ASCs/MSCs are capable of under-

going de-differentiation into iCAFs as well as myCAFs [245,260]; the latter may be driven 

by morbid obesity [126]. 

Collectively, these data highlight that breast cancer cells are able to de-differentiate 

ASCs/MSCs into different CAF subtypes (Figure 3). Multilateral communication between 

ASCs/MSCs, breast cancer cells, and the components of the TME promote breast cancer 

progression by activating various signaling pathways via paracrine signaling or direct 

cell–cell contact.  
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Figure 3. Simplified model showing that breast cancer cells induce de-differentiation of MSCs/ASCs 

into at least two distinct CAF subtypes. The de-differentiation process of MSCs/ASCs in the TME of 

breast cancer is triggered by multiple factors including cytokines TGFβ, IL6, IL8, IL17, IL23, and 

TNFα, DNA damage, cellular stress, direct cell–cell contact and inflammatory stimuli. This malig-

nant transformation shifts ASCs/MSCs into several cancer-supportive populations including two 

typical phenotypes: myCAFs promoting tumor growth, EMT, migration, invasion, and metastasis, 

and iCAFs mediating immune evasion, tumor growth, angiogenesis, and metastasis. ASCs, adipose 

tissue-derived mesenchymal stromal/stem cells; MSCs, mesenchymal stromal/stem cells; TGFβ, 

transforming growth factor β; IL6, interleukin 6; EMT, epithelial-to-mesenchymal transition; TNFα, 

tumor necrosis factor α; ECM, extracellular matrix; TME, tumor microenvironment; CD8, cluster of 

differentiation 8; myCAF, myofibroblast cancer-associated fibroblast; iCAF, inflammatory cancer-

associated fibroblast; ACTA2, smooth muscle actin, TAGLN, transgelin; MYL9, myosin light chain 

9; TPM, tropomyosin; FAP, fibroblast activation protein; FSP1, fibroblast-specific protein-1; 
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PDGFRβ, platelet-derived growth factor receptor beta; LIF, leukemia inhibitory factor; CXCL, chem-

okines C-X-C ligand; HAS, hyaluronan synthase; CCL, monocyte chemotactic and activating factor; 

COL14A1, collagen type XIV alpha 1 chain. 

6. Clinical Significance 

ASCs/MSCs, in particular obese ASCs/MSCs, may contribute significantly to breast 

cancer development through several mechanisms, including remodeling the TME (“the 

soil for the seed”), promoting EMT, and inducing CSCs that cause clinical complications 

such as therapy resistance, cancer relapse, and metastasis. Moreover, mammary 

ASCs/MSCs may de-differentiate into CAFs, distribute at the interface between blood ves-

sels and breast cancer cells, contribute to increased tumor interstitial fluid pressure, and 

represent a physical barrier to several drugs [251]. In fact, altered ECM induced by 

ASCs/MSCs/CAFs may induce tissue stiffness and increased tension, which have been 

associated with poor outcome in patients with many solid tumors [261]. Importantly, the 

immunosuppressive and poorly accessible TME drastically limits the potential of effective 

therapeutics.  

ASCs/MSCs/CAFs may also provide new therapeutic opportunities. Overcoming im-

munosuppression of the TME and suppressing the development of CSCs by targeting can-

cer-associated ASCs/MSCs/CAFs are of decisive importance for the effective treatment of 

breast cancer. Indeed, pre-clinical studies targeting ASCs by a killer peptide D-CAN 

showed promising results with a significantly reduced EMT and cancer progression in 

prostate cancer mouse models [210]. Moreover, a protein inducing apoptosis in CAFs and 

angiogenic endothelial cells by targeting a novel site of integrin αvβ3 displayed a strong 

reduction in intra-tumoral levels of EGF, IGF1, PDGF, collagen, and angiogenic vessels in 

an orthotopic xenograft model [262]. Consequently, malignant progression was highly 

decreased with reduced cancer cell proliferation, metastasis, tumor growth, and resistance 

to chemotherapy [262]. Other CAF targeted therapies include compounds against αFAP 

(myCAFs) [263], dasatinib/imatinib (PDGFR inhibitor, myCAFs) [264], galunisertib/vac-

tosertib (TGFβRI inhibitor, myCAFs) [265], and ruxolitinib (JAK signaling inhibitor, 

iCAFs) [249]. Many of these inhibitors have been already analyzed in completed clinical 

trials [265]. In addition, ASCs/MSCs might also be an exceptional tool to deliver chemo-

therapeutics, demonstrated by a recent study where paclitaxel-loaded ASCs reduced 

breast tumor growth [266]. These interesting data highlight that targeting cancer-educated 

ASCs/MSCs/CAFs in the TME may pave a novel path to effectively combat malignancies, 

including breast cancer.  

7. Conclusions and Perspectives 

Recent data clearly suggest that ASCs/MSCs, in particular obese ASCs/MSCs, play 

key roles in remodeling the TME and supporting breast cancer development. Much work 

remains. First, further investigations are required to unravel the complex crosstalk be-

tween ASCs/MSCs, breast cancer cells, and other stromal cells. In this context, breast can-

cer cells grown in 3D and co-cultured with ASCs/MSCs or other stromal cells will be use-

ful to represent a more physiological morphology with prevalent cell junctions and polar-

ity, and to resemble a more physiological phenotype in cell proliferation, gene expression, 

and differentiation [267]. Second, in-depth analyses are necessary to explore how obesity 

remodels the TME, affects the communication between breast cancer cells and 

ASCs/MSCs, and potentiates breast cancer cells to educate ASCs/MSCs into CAFs. Third, 

given the heterogeneity of ASCs/MSCs, additional work is required to identify and ade-

quately classify various subpopulations that may have different functions in breast cancer 

progression, especially the subpopulation that is able to raise CSCs from breast cancer 

cells. This will be crucial to understand how ASCs/MSCs contribute to cancer develop-

ment and may lead to the identification of new therapeutic targets or biomarkers as well 

as the use of ASCs/MSCs as therapeutic tools. In particular, the use of ASCs/MSCs as a. 

therapeutic tool could benefit from the in-depth characterization of different subtypes, as 
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human umbilical-cord-derived MSCs have been discussed for their anti-tumorigenic ef-

fect [58,101]. Fourth, the future challenge is to elucidate the detailed molecular mecha-

nisms in vivo by which obese ASCs/MSCs promote tumor growth, induce EMT, facilitate 

angiogenesis, raise CSCs, and fuel breast cancer metastasis. Finally, inhibition of the cross-

talk between ASCs/MSCs and breast cancer cells could be an attractive strategy in cancer 

therapy. As ASCs/MSCs migrate toward cancer sites, it will also be interesting to develop 

ASCs/MSCs as a targeted anticancer therapy through genetic modification or engineering.  
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