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Simple Summary: An important clinical issue to consider when selecting neoadjuvant chemother-
apy treatment for breast cancer is the likelihood of cancer recurrence. Accurately predicting the
future outcome of the patient based on data available prior to treatment initiation could impact
the treatment selection. We study a cohort of 1738 patients and explore the contribution of clinical
history, immunohistochemical markers, and multiparametric magnetic resonance imaging to the
prediction of post-treatment cancer recurrence. We analyzed this multimodal data using classical
machine learning, image processing, and deep learning to increase the set of discriminating features.
Our results demonstrate the ability to predict recurrence using each modality alone, and the possible
improvement achieved by combining the modalities. We show that the models are especially accurate
for differentiating specific groups of young women with poor prognoses. These methods were also
used on a different dataset of 193 patients in an international challenge, where they won second place.

Abstract: In current clinical practice, it is difficult to predict whether a patient receiving neoadjuvant
chemotherapy (NAC) for breast cancer is likely to encounter recurrence after treatment and have
the cancer recur locally in the breast or in other areas of the body. We explore the use of clinical
history, immunohistochemical markers, and multiparametric magnetic resonance imaging (DCE,
ADC, Dixon) to predict the risk of post-treatment recurrence within five years. We performed a
retrospective study on a cohort of 1738 patients from Institut Curie and analyzed the data using
classical machine learning, image processing, and deep learning. Our results demonstrate the
ability to predict recurrence prior to NAC treatment initiation using each modality alone, and the
possible improvement achieved by combining the modalities. When evaluated on holdout data, the
multimodal model achieved an AUC of 0.75 (CI: 0.70, 0.80) and 0.57 specificity at 0.90 sensitivity.
We then stratified the data based on known prognostic biomarkers. We found that our models can
provide accurate recurrence predictions (AUC > 0.89) for specific groups of women under 50 years
old with poor prognoses. A version of our method won second place at the BMMR2 Challenge, with
a very small margin from being first, and was a standout from the other challenge entries.

Keywords: breast cancer recurrence; neoadjuvant chemotherapy; magnetic resonance imaging (MRI);
machine learning; deep learning; image processing; radiomics

1. Introduction

Breast cancer remains the most widely diagnosed cancer and the leading cause of death
among women today [1]. One of the options for treating locally advanced breast cancer
is neoadjuvant chemotherapy (NAC), in which chemotherapy and optionally targeted
treatment are administered prior to surgery. Potential clinical advantages of NAC have
been largely studied and include improving the rate of breast-conserving therapy, obtaining
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accurate in vivo tumor sensitivity, and a correlation between the response to primary
chemotherapy and overall survival [2].

The decision to select NAC or an alternative treatment is mainly based on well-
established prognostic biomarkers or factors. A prognostic biomarker/factor is any mea-
surement available before treatment that correlates with disease-free or overall survival
in the absence of systemic adjuvant therapy and, as a result, can relate to the natural
history of the disease. Several breast cancer prognostic factors have been discussed in
the literature, including clinical, pathological, and biological parameters. In our setting,
the well-established prognostic biomarkers/factors include age, hormone receptor status,
human epidermal growth factor receptor 2 (HER2), tumor size, number of affected nodes,
disease grade, tumor proliferation rate, clinical stage, and lymphovascular involvement [3].
Typically, tumor location and size are estimated from medical images and used in daily
clinical practice, but no other radiographic information is used for treatment selection.

An important clinical issue to consider when selecting NAC treatment is the likelihood
of future cancer recurrence or determining if the cancer is likely to recur either locally
in the breast (local relapse) or in other distant areas in the body (metastasis). Accurately
predicting the future outcome of the patient based on data available prior to the initiation
of NAC could inform the therapeutic options and impact the treatment selection. Today,
aside from the use of the above-mentioned prognostic biomarkers and factors, clinicians are
limited in their ability to assess which of the NAC-treated patients will suffer a recurrence.
In fact, the progression of the disease of a group of patients characterized by similar
prognostic biomarkers is often nonunanimous. Some patients are recurrence-free, while
others encounter cancer recurrence. For this reason, newer prognostic biomarkers and
factors are needed to help perform precision medicine in an attempt to define disease-
related prognosis more accurately. The study described in this paper holds the promise
of identifying novel composite prognostic biomarkers that would enable more accurate
outcome prediction. Clinicians’ treatment selection and decision-making could be assisted
and empowered by artificial intelligence models that could accurately predict recurrence.
Moreover, discovery of novel composite biomarkers could lead to a better understanding
of the heterogeneous nature of this cancer [4].

In this paper, we present multimodal AI models that predict cancer recurrence within
five years from diagnosis, using both clinical data and multiparametric magnetic resonance
imaging (mpMRI) taken prior to treatment. Predicting treatment outcome using mpMRI
is an emerging area of interest in the medical community [5] and an important enabler
of precision medicine. Our study examines the contribution of mpMRI in the case of
breast cancer. We combine a deep learning model and automatic image processing and
radiomics techniques for mpMRI, a classical machine learning model for clinical data, and
an ensemble model of the individual clinical and mpMRI models. We evaluate and compare
the models using the receiver operating characteristic (ROC) curve and the area under the
ROC curve (AUC) with confidence interval. We then use several metrics to evaluate and
compare the models at high-sensitivity operation points and the statistical significance
(p-value) of this comparison. High-sensitivity operation points are used in models deployed
in clinical practice and thus are of special interest. We also use interpretability methods [6]
to explain the model and identify important clinical features for predicting recurrence that
combined together can serve as novel candidate composite biomarkers. Finally, we analyze
several subgroups of patients experiencing similar prognostic biomarkers. We show that
our model can improve the discrimination within the subgroup between the recurrence-free
patients and those that will encounter recurrence.

The rest of the paper is organized as follows: We present the methods used to develop
our multimodal predictor in Section 2 and the evaluation of our models in Section 3. We
describe the work related to this topic in Section 4. We then discuss our results in Section 5
and finalize with conclusions in Section 6.
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2. Materials and Methods

We worked with a real-world retrospective dataset of patients, composed entirely of
women diagnosed with breast cancer who received NAC. The data of each patient include
clinical information such as height, weight, age, histological type of the tumor, progesterone
status, and many more features. We consider all these data as a single clinical modality.
Some of the patients also had in their record the MRI data acquired prior to NAC initiation,
which are considered a second modality. Given that we have different sizes of datasets
for the different modalities, we divided our model into two branches. One branch was
trained using clinical data and images, while the other branch was trained using only
clinical data. We then combined the two branches into one final ensemble model. In this
section, we present the study design and our dataset, describe the mpMRI model branch
and the clinical model branch, and then detail the final ensemble model that combines the
two branches.

2.1. Study Design

A typical study design includes an index date, and in our case, we use the date of the
mpMRI exam acquired prior to treatment start. All data that are available up until that date
are considered clinical history, including various clinical tests and immunohistochemical
markers. The diagnosis date on which the cancer was diagnosed by biopsy is generally very
close to the mpMRI acquisition date (up to six weeks difference). During treatment, the
woman obtains chemotherapy with optional targeted medication, followed by surgery and
post-surgical treatment. Outcome assessment is established based on five-year recurrence
counted from the diagnosis date, which is approximately equivalent to the index date.
Figure 1 depicts the overall study setting.
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Figure 1. Study setting. Multiparametric MRI and clinical data acquired prior to NAC treatment start
are analyzed to predict breast cancer recurrence within five years after diagnosis. The NAC treatment
includes six months of chemotherapy with optional targeted treatment followed by surgery. After
surgery, there is follow-up and sometimes additional treatment such as radiotherapy.

The mpMRI imaging is routinely carried out prior to NAC initiation. Our study
includes four types of MRI imaging. The first type, dynamic contrast-enhanced MRI
(DCE-MRI) volumes, acquires T1 changes in tissues before and after the injection of a
gadolinium-based contrast agent. We used subtraction volumes that are digital subtraction
between the DCE-MRI volume acquired after the injection of the contrast agent and the
baseline volume acquired before the injection. The second type of imaging that we used is
apparent diffusion coefficient (ADC) volumes, which are derived from a diffusion-weighted
MRI (DW-MRI) imaging series. The third and fourth types of MRI volumes are water and
fat suppression volumes from the Dixon multi-echo MRI series that enable, respectively,
the visibility of fat or water in the breast tissue.

2.2. Dataset

Our dataset includes a collection of 1738 patients that received NAC treatment between
2012 and 2018 at Institut Curie in France. In this collection, 11 patients had metastasis



Cancers 2022, 14, 3848 4 of 20

disease already at the time of diagnosis and hence were excluded from the data, resulting
in 1727 patients.

A complete description of the dataset characteristics can be found in Appendix A. For
each patient, the data describe whether the patient encountered relapse or metastasis after
treatment, the number of days from birth to diagnosis, and then the number of days to
relapse or metastasis if they occurred, among other information. In addition, the dataset
includes a binary flag indicating whether the patients are censored or not, i.e., if they
were diagnosed within the last five years. Since the anonymization process applied to the
hospital health records did not allow us to have exact dates, we could not use regression
models such as the Cox [7] model to handle the censored patients. As a result, we utilized
a different approach.

A randomly selected subset of the cohort of patients who had clinical and MRI data,
100 patients, was set aside for holdout evaluation. The remaining 1627 patients were consid-
ered for our training cross-validation experiments. The distribution of positive recurrence
patients in training and holdout was approximately 16% in each. The censored data in the
holdout cohort were excluded from evaluation, resulting in 62 uncensored patients.

Table 1 summarizes the cohorts in our dataset. Because some patients had only clinical
data while other patients had both clinical and MRI data, we used two training cohorts
in our experiments. The first cohort, referred to as the Clinical cohort, is the full cross-
validation dataset of 1627 patients for clinical data evaluation. The clinical data included
patients’ characteristics such as age, weight, and height; tumor properties such as breast
cancer histology, tumor grade, and Ki67; and immunohistochemical subtypes based on
estrogen, progesterone, and HER2 expression. This cohort consisted of 928 uncensored
patients diagnosed 5 years or more before data collection, and 699 censored patients
diagnosed less than 5 years before data collection.

Table 1. Cohorts and the number of patients in the dataset.

Total Number of Patients Uncensored Patients

Clinical cohort 1627 928

MRI+Clinical cohort 463 317

Holdout cohort 100 62

The second cohort, the MRI+Clinical cohort, includes 463 patients who had MRI scans
taken prior to NAC treatment, in addition to their clinical data. The MRI scans had several
types of series taken in the same visit, including DCE-MRI volumes acquiring contrast
agent effects, ADC volumes derived from diffusion-weighted imaging, and Dixon volumes
with both water suppression and fat suppression. This cohort included 317 uncensored
patients, and 146 censored patients that were diagnosed less than 5 years before data
collection. The MRI+Clinical cohort is a subset of the Clinical cohort.

2.3. Multiparametric MRI Model

We split the MRI+Clinical cohort of 463 patients with clinical and MRI data into 5 folds
and performed 5-fold cross-validation. In that process, we iteratively selected a different
validation fold and trained on the remaining 4 folds, resulting in 5 models validated on
different folds. For the holdout evaluation, the patient score is the average of the scores of
the five models selected from the 5-fold cross-validation.

Our approach to handling censored patients was to exclude them from the respective
validation fold but keep them in the other folds that served for training. The label of the
censored patients when used in training was the prediction obtained from a side model. The
side model was created by training a random forest classifier on the uncensored patients.
This approach allowed us to retain the amount of training data while having an accurate
validation evaluation as our evaluation was performed only on uncensored patients.
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The mpMRI model uses multiple volumes of the same study and consists of two
components. The first is the subtraction component with a convolutional neural network
(CNN) model that receives annotated subtraction volumes as input and produces 32 deep
features. The annotation includes the most important subtraction volume, in which the
tumor appears to be the brightest in terms of relative illumination. In the selected volume,
the annotation also includes the most significant slice in which the tumor was the largest.
The second component is the Dixon-ADC component, which receives a Dixon series
consisting of fat-only and water-only volumes as input, as well as a series of diffusion-
weighted MRI-derived ADC volumes. Image processing and radiomics methods are used
to generate morphological and texture volumetric features that are augmented with clinical
metadata. Finally, the features from both components are concatenated and transformed to
produce the mpMRI model score. A detailed diagram of the mpMRI model architecture
is depicted in Figure 2. The following subsections describe each component and how it is
integrated into the overall mpMRI model.
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Figure 2. Multiparametric MRI model architecture. (Top) Subtraction component in which seven
adjacent MRI slices (three pre-significant, significant, three post-significant) form the input to seven
2D-CNNs that have the same weights. The features are aggregated into a 3D-CNN followed by an
average global pooling layer. (Bottom) Dixon-ADC component in which three 3D MRI volumes form
the input to volumetric 3D image processing that generates volumetric features. The features from
the two components are concatenated and transformed into the output score.

2.3.1. Subtraction Component

The subtraction component is based on a CNN from previous work [8]. The input to
the CNN is the significant slice and the six pre- and post-adjacent slices (i.e., seven slices
in total) that are extracted from the selected DCE-MRI subtraction volume. The selected
slices undergo a cropping and resizing process as follows: First, since our data consisted of
axial MRI volumes that contain both sides of the breast, we cropped the image vertically
and continued processing only the relevant side in which the tumor was located. Next, we
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cropped the image horizontally to exclude non-breast parts that appeared in the image.
Each of the vertically and horizontally cropped slices was then resized to 512 × 256 pixels
to bring them all to the same size. The last two steps of the preprocessing included rotating
the slices, so the breast was facing in the same direction for all slices, and under-sampling
the slices where there was overlap between slices in the volume.

Our CNN model is a modification of ResNet [9] as a classifier. We specifically used the
ResNet18 formulation but reduced the number of filters per layer to speed up training and
avoid over-fitting. For our network, we used 7 residual blocks with (32, 64, 64, 128, 128,
256, 256) filters per convolutional layer. This 2D-CNN model was applied simultaneously
to the 7 slices; i.e., the same 2D-CNN model with the same weights was applied to each
slice. Next, we used a 4D-tensor to aggregate features produced from the 7 input slices.
Finally, a 3D convolution layer was applied, followed by a 3D average global pooling layer.
The output of the pooling layer includes 32 features that are the output of this component.

2.3.2. Dixon-ADC Component

The Dixon-ADC component is based on fuzzy c-means (FCM) clustering for automatic
image segmentation with two phases. The first phase uses FCM to segment the whole
MRI volume and detect voxels that belong to the breast tissue. The approach follows
Klifa et al. [10], but we use water-only and fat-only Dixon volumes. In the second phase,
voxels are once again clustered with FCM, but this time to segment the lesions. This phase
also uses the diffusion ADC volume when available. The clusters with the biggest overlap
on high-intensity areas on ADC and water-only volumes are selected as lesion regions. This
process generates three 3D masks: bilateral breast tissue mask, tumor side breast tissue
mask, and lesion mask. An example of this segmentation can be found in Appendix B.

Based on the automatically generated 3D masks, various imaging features describing
the morphological properties of the lesions and the breast tissue were generated; these
include tumor size, volume, shape, intensity, and texture under different masks and MRI
sequences. If the segmentation algorithm had produced multiple separate lesion volume
masks, only the largest volume was used to calculate the volumetric features. The most
important features were found to be: (1) tumor volume in cubic millimeters; (2) tumor
surface area in square millimeters; (3) number of separate regions in tumor segmentation;
(4) mean intensity of tumor region in comparison to other breast tissue intensity using
water suppression volume of Dixon MRI sequence; and (5) spread of the tumor: the sum
of the maximum lengths of the x, y, and z dimensions of the tumor in the 3D volume, in
millimeters. In practice, any of these designed features can be visualized for the clinical
operator with MRI volume if necessary. Finally, the volumetric features were augmented
with clinical metadata and transformed via 5 fully connected layers with (16, 16, 16, 32, 32)
filters to 32 features.

2.3.3. Overall mpMRI Model

The overall mpMRI model is based on DCE-MRI subtraction and Dixon and ADC
volumes of the same study. The computed DCE-MRI subtraction deep features and the
computed Dixon-ADC volumetric-based features are concatenated and transformed via
fully connected layers with (64, 32, 1) filters to produce the mpMRI score.

We performed 5-fold cross-validation and computed the ROC AUC with confidence
interval (CI). We selected several high-sensitivity operation points that are of clinical interest
and computed their specificity and other metrics. We also used the model to evaluate the
holdout data ROC AUC and various metrics at the chosen high-sensitivity operation points.

2.4. Clinical Model

We split the Clinical cohort of 1627 patients with clinical information into 5 folds with
equally distributed positive and negative samples among folds. The folds were created in
correlation with the folds of the MRI+Clinical cohort; i.e., a patient remains in the same
fold in both cohorts. In addition, similar to the MRI model, in each iteration of the cross-
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validation, the censored patients were excluded from the fold that was used for validation
but were retained in the other folds that were used for training.

To select the best classifier for our task, we preprocessed and trained the data with
three known machine learning algorithms: random forest, logistic regression, and XGBoost.
The preprocessing included a scaler that scaled all features to the [0, 1] range and an
imputation process to replace missing values with the mean value. Since our data were
highly unbalanced, we used sample weighting that is inversely proportional to the class
frequencies in the input data for the random forest and logistic regression classifiers. For
XGBoost, we used positive scaling that is proportional to the ratio between negative and
positive samples.

We performed cross-validation and computed the ROC AUC with CI. We selected
several high-sensitivity operation points that are of clinical interest and computed specificity
and other metrics for them. We then selected the best model, which ended up being random
forest. We used that model to evaluate the holdout data AUC and metrics at the selected
high-sensitivity operation points. We also examined the features of importance produced
by our clinical model using the Shapley Additive Explanations (SHAP) algorithm [6], an
interpretability method that demonstrated how each feature of each patient affects the
predictive model results.

2.5. Ensemble Model and Subgroup Analysis

The ensemble model receives six scores per patient: three scores based on clinical data
and three scores based on the MRI data. To improve generalization, we created multiple
variations of each model using a method similar to [8], in which a different variation started
its training with a different seed. Thus, the three scores for clinical data are produced from
three clinical models’ variations that differ in their training seed initialization, and the three
scores for MRI data are produced from three MRI models’ variations. Each clinical or MRI
model is calibrated using Platt’s method [11] to normalize the scores of each model. We
then examined several strategies for combining and ‘ensembling’ the models. However, we
found that the most effective strategy used the mean value of all available scores per patient.

The final ensemble model and the scores it obtained for the validation and holdout sets
for the uncensored patients were the basis for our subgroup analysis. Based on clinicians’
suggestions, we divided our MRI+Clinical cohort and the Clinical cohort based on the
values of age, cancer subtype, histological type, tumor grade, and Ki67. We evaluated
the AUC with CI for each subgroup and explored whether matching patients with similar
prognostic parameters can be differentiated by our model.

3. Results

We evaluated the individual per modality models and the ensemble model. The final
ensemble model was evaluated on the MRI+Clinical cohort since it included both MRI
and clinical data, and we could compare the contribution of each modality. As part of our
evaluation, we performed a 5-fold cross-validation as well as a test on a holdout dataset.
For both the cross-validation and holdout independent test, we report AUC with a 95% CI,
and for several clinically important high-sensitivity operation points, we report specificity,
F1-score, balanced accuracy, positive predictive value (PPV), and negative predictive value
(NPV). We also explain the model using the SHAP algorithm to identify important clinical
features. Finally, we report AUC with 95% CI on several subgroups exhibiting similar
prognostic biomarkers.

3.1. Model Evaluation

Table 2 summarizes the results of the cross-validation and holdout independent test.
When using just the subtraction component without using the Dixon-ADC component
(row 1), we achieved in cross-validation lower results than when using the mpMRI that
combines both the subtraction and Dixon-ADC MRI volumes (row 2). In the clinical
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model branch (row 3), the cross-validation obtained similar AUC to the mpMRI but on a
completely different modality.

Table 2. Evaluation of the models on cross-validation and holdout test. Best results are in bold.

Model Cross-Validation
AUC [95% CI]

Holdout Test
AUC [95% CI]

1 Subtraction-only MRI 0.67 [0.61, 0.72] 0.64 [0.60, 0.70]

2 Multiparametric MRI (mpMRI) 0.70 [0.65, 0.75] 0.65 [0.59, 0.70]

3 Clinical 0.71 [0.66, 0.76] 0.71 [0.66, 0.76]

4 Ensemble subtraction-only
MRI and clinical 0.73 [0.68, 0.78] 0.73 [0.67, 0.78]

5 Ensemble multiparametric
MRI and clinical (final model) 0.75 [0.70, 0.80] 0.75 [0.70, 0.80]

The mpMRI model shows an advantage over the subtraction-only model also in the
ensemble model. The ensemble of the subtraction-only MRI with the clinical model (row 4)
achieved lower results than using the mpMRI for the ensemble. The mpMRI and clinical
ensemble (row 5) received the best results and was thus selected as the final model. The
final model achieved an AUC of 0.75 (95% CI: 0.70, 0.80) on both cross-validation and
holdout test.

Figure 3 compares the ROC curves of the mpMRI, clinical, and final ensemble models
in cross-validation and in holdout independent test. The ROC curves exhibit significant
trends regarding specificity at several sensitivity operation points. In both cross-validation
and holdout, the mpMRI model shows promise in predicting recurrence with good speci-
ficity at 0.9 sensitivity operation points. The clinical model demonstrates the capacity to
predict recurrence with high specificity around the 0.6 sensitivity operation point, but lower
specificity in the high-sensitivity operation points. The ensemble of mpMRI and clinical
data leveraged both modalities and improved the AUC and overall specificity at various
operation points.
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To further evaluate and compare the models, we selected several high-sensitivity
operation points and calculated specificity, F1-score, balanced accuracy, PPV, and NPV
at these points. High-sensitivity operation points are deployed in clinical practice and
thus are of special interest. Choosing a high-sensitivity operation point in our problem
setting means that almost all patients that suffered recurrence are correctly classified by
our model. Early accurate prediction of these patients can enable their treatment options to
be reassessed in advance, reducing the risks of ineffective or unnecessary treatment.

Table 3 summarizes the results at sensitivity operation points 0.87, 0.90, and 0.93. Once
again, the ensemble model performs better than the individual models in all metrics at
high-sensitivity operation points. We obtained the same metrics’ values for a sensitivity of
0.87 and sensitivity of 0.90 in the holdout test due to the limited size of the holdout set.

Table 3. Cross-validation and holdout test of the per-modality models and the ensemble model at
sensitivity operation points 0.87, 0.90, and 0.93.

Cross-Validation

Metric mpMRI
Sens = 0.87, 0.90, 0.93

Clinical
Sens = 0.87, 0.90, 0.93

Ensemble
Sens = 0.87, 0.90, 0.93

Specificity 0.31, 0.18, 0.15 0.26, 0.16, 0.14 0.39, 0.35, 0.24

F1-score 0.42, 0.39, 0.39 0.40, 0.39, 0.39 0.45, 0.45, 0.42

Balanced accuracy 0.59, 0.54, 0.54 0.56, 0.53, 0.53 0.63, 0.63, 0.59

PPV 0.28, 0.25, 0.25 0.26, 0.25, 0.25 0.30, 0.30, 0.27

NPV 0.88, 0.86, 0.88 0.86, 0.85, 0.87 0.91, 0.92, 0.92

Holdout Test

Metric mpMRI
Sens = 0.87, 0.90, 0.93

Clinical
Sens = 0.87, 0.90, 0.93

Ensemble
Sens = 0.87, 0.90, 0.93

Specificity 0.26, 0.26, 0.20 0.46, 0.46, 0.17 0.57, 0.57, 0.48

F1-score 0.44, 0.44, 0.44 0.51, 0.51, 0.44 0.56, 0.56, 0.55

Balanced accuracy 0.57, 0.57, 0.57 0.67, 0.67, 0.56 0.72, 0.72, 0.71

PPV 0.29, 0.29, 0.29 0.36, 0.36, 0.28 0.41, 0.41, 0.39

NPV 0.86, 0.86, 0.90 0.91, 0.91, 0.89 0.93, 0.93, 0.96

We also used the McNemar test [12] to calculate the p-value when comparing the
predicted labels of the individual models with those of the ensemble model at the selected
operation points. On the McNemar test p-value, we applied Bonferroni correction for
multiple hypotheses (α = 0.05, 12 tests, significance observed when p-value < 0.0042). The
results are that in cross-validation, all comparisons in all the three sensitivity operation
points are statistically significant, except when comparing mpMRI and the ensemble models
at a sensitivity operation point of 0.87. For the holdout test, due to its limited number of
patients, the only comparison that was statistically significant was the comparison of the
clinical and ensemble models at a sensitivity operation point of 0.93.

3.2. Explainability

Figure 4 provides an explanation of the clinical model via the SHAP algorithm. SHAP
considers all possible combinations of features with and without a specific feature to evalu-
ate its contribution to the prediction. It reveals each feature’s importance and demonstrates
how each feature of each patient affects the predictive model results. The figure depicts the
top 10 clinical features in descending order that had the most influence on the five-year
recurrence prediction. A positive SHAP value means a positive impact on the prediction,
while a negative value leads the model to predict ‘recurrence-free’. The point’s color rep-
resents the values that each feature can take, including red for high values, blue for low
values, and purple for values that are close to the average value.



Cancers 2022, 14, 3848 10 of 20

Cancers 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

prediction, while a negative value leads the model to predict ‘recurrence-free’. The point’s 
color represents the values that each feature can take, including red for high values, blue 
for low values, and purple for values that are close to the average value. 

The categorial clinical features in the data can take the following values: HER2: 0—
HER2 negative, 1—HER2 positive; histological type: 1—NST, 2—lobular, 3—medullary, 
4—other; progesterone status: 0—progesterone negative, 1—progesterone positive; mi-
totic index: number of mitoses; and cancer subtype: 1—TNBC, 2—LuminalA, 3—Lu-
minalB, 4—HER2+. 

 
Figure 4. Clinical feature contributions. A summary plot of the SHAP values of top features in the 
clinical model. Each point represents a single patient. The x-axis indicates the effect (either positive 
or negative) of the feature on the predicted score for the patient. The point’s color represents the 
value of the features (red = high value, blue = low value, purple = close to the average value). 

Interestingly, BMI and age at diagnosis are ranked highest in terms of association 
with the outcome. In particular, lower values of BMI as well as younger age at diagnosis 
tend to have higher risk of five-year recurrence. To further analyze the robustness of these 
results and assess if the above feature ranking persists when we exclude patients with 
missing values, we checked the SHAP explanation on various subsets of the patients’ co-
horts. Appendix C shows that training with subsets of the data, i.e., excluding patients 
with missing values, exhibits very similar SHAP rankings as the original clinical model 
trained on the entire Clinical cohort. These results are discussed in Section 5. 

3.3. Subgroup Analysis 
We divided each of our cohorts into prognostic subgroups following the clinicians’ 

guidance regarding features that characterize patients expected to have similar outcomes. 
We chose to define the different groups by leveraging the following five features: (1) age 
(≤50, 50–60, ≥60); (2) cancer subtype (luminal, TNBC, HER2+); (3) histological type (inva-
sive carcinoma of no special type (NST), other); (4) tumor grade (I or II, III); and (5) Ki67 
(below 15%, above 15%). In addition, each feature could have a missing value (no value). 
That is, we considered 432 (4 × 4 × 3 × 3 × 3) subgroups, and of those candidates, we only 
analyzed subgroups that contained at least 10 different patients with positive and nega-
tive outcomes within the subgroup. In the MRI+Clinical cohort, we analyzed 11 such sub-
groups, and in the Clinical cohort, we analyzed 26 such subgroups. 

The analysis utilized the scores of the final ensemble model of the uncensored pa-
tients. For each subgroup, we computed the AUC with 95% CI via bootstrapping. Table 4, 

Figure 4. Clinical feature contributions. A summary plot of the SHAP values of top features in the
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The categorial clinical features in the data can take the following values: HER2:
0—HER2 negative, 1—HER2 positive; histological type: 1—NST, 2—lobular, 3—medullary,
4—other; progesterone status: 0—progesterone negative, 1—progesterone positive; mitotic
index: number of mitoses; and cancer subtype: 1—TNBC, 2—LuminalA, 3—LuminalB,
4—HER2+.

Interestingly, BMI and age at diagnosis are ranked highest in terms of association
with the outcome. In particular, lower values of BMI as well as younger age at diagnosis
tend to have higher risk of five-year recurrence. To further analyze the robustness of
these results and assess if the above feature ranking persists when we exclude patients
with missing values, we checked the SHAP explanation on various subsets of the patients’
cohorts. Appendix C shows that training with subsets of the data, i.e., excluding patients
with missing values, exhibits very similar SHAP rankings as the original clinical model
trained on the entire Clinical cohort. These results are discussed in Section 5.

3.3. Subgroup Analysis

We divided each of our cohorts into prognostic subgroups following the clinicians’
guidance regarding features that characterize patients expected to have similar outcomes.
We chose to define the different groups by leveraging the following five features: (1) age
(≤50, 50–60, ≥60); (2) cancer subtype (luminal, TNBC, HER2+); (3) histological type
(invasive carcinoma of no special type (NST), other); (4) tumor grade (I or II, III); and
(5) Ki67 (below 15%, above 15%). In addition, each feature could have a missing value (no
value). That is, we considered 432 (4 × 4 × 3 × 3 × 3) subgroups, and of those candidates,
we only analyzed subgroups that contained at least 10 different patients with positive and
negative outcomes within the subgroup. In the MRI+Clinical cohort, we analyzed 11 such
subgroups, and in the Clinical cohort, we analyzed 26 such subgroups.

The analysis utilized the scores of the final ensemble model of the uncensored patients.
For each subgroup, we computed the AUC with 95% CI via bootstrapping. Table 4,
which is organized by the AUC scores, summarizes the subgroup analysis results for
selected subgroups in which the AUC was above 0.85. Rows 1–2 outline the analysis of
the MRI+Clinical cohort, in which patients have both clinical and MRI data. Rows 3–4
summarize the analysis of the Clinical cohort, in which patients have clinical data but only
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optionally have MRI data. We note that in some subgroups, the ensemble model can help
differentiate patients that are in the same prognostic subgroup but have different outcomes.
Our models can provide accurate prognosis (AUC > 0.89) for specific groups of young
women with poor prognoses. Specifically, the subgroup with nonunanimous outcomes
of women under 50 years of age that have luminal cancer, NST histological type, grade
III tumor, and Ki67 above 15% is accurately predicted by our model in both cohorts, with
increased accuracy from AUC 0.89 to AUC 0.94 when imaging is utilized.

Table 4. Subgroup analysis for both cohorts, the MRI+Clinical cohort and the Clinical cohort.

MRI+Clinical Cohort

# Positives
# Negatives Age Cancer

Subtype
Histological

Type
Tumor
Grade Ki67 AUC

1 2 pos, 9 neg ≤50 Luminal NST III Above 15% 0.94 [0.75, 1]

2 3 pos, 20 neg ≤50 No value NST III Above 15% 0.92 [0.70, 1]

Clinical Cohort

# Positives
# Negatives Age Cancer

Subtype
Histological

Type
Tumor
Grade Ki67 AUC

3 2 pos, 10 neg ≥60 No value NST III Above 15% 0.90 [0.67, 1]

4 10 pos, 16 neg ≤50 Luminal NST III Above 15% 0.89 [0.74, 1]

4. Related Work

Our work focuses on the capacity to predict the recurrence of breast cancer based on
MRI and clinical data. In this section, we review previous work that leveraged clinical his-
tory, MRI images themselves, or human interpretations of MRI images to predict recurrence
within five years or a similar outcome.

Chen et al. [13] achieved impressive results with a multi-classifier multi-objective
(MCMO) model outperforming various single classifiers by a clear margin. The model was
applied to a cohort of 114 patients and recurrence within 36 months was predicted. The
MCMO model is based on non-imaging features such as demography and histopathology.
In a study by Tseng et al. [14], prediction of a three-month prognosis for metastasis is
introduced. They used a random-forest-based model together with serum biomarkers and
clinicopathological data from 144 patients, but no imaging data were used directly in the
model. Note that in both papers, the outcomes are defined using a shorter time span than
the one we used in our analysis. Naturally, that enables more accurate results.

There have been some approaches to utilizing MRI images to predict the recurrence of
cancer. For example, tumor volume approximation [15,16] and texture features have been
shown to have a clear connection to recurrence [17,18]. In another study [19], both morpho-
logical (rim enhancement, etc.) and quantitative parameters (entropy, kurtosis, etc.) were
extracted from perfusion T1 MRI data using a semi-automatic approach, and a significant
connection from some of these features to the prognosis was identified. Phenomena such
as tumor rim enhancement [20], peritumoral edema [21], and background parenchymal
enhancement [22] have also been identified to be related to a patient’s future outcome in
previous studies and could be automatically extracted from MRI images.

Deep learning and convolutional neural networks have been shown to be effective in
breast cancer studies when predicting pathological complete response (pCR) using MRI
data. Liu et al. [23] successfully used a standard CNN model with manually segmented
MRI data to distinguish 131 patients as pCR and non-pCR. Duanmu et al. [24] used a deep
learning model without the need for segmentation and achieved good accuracy in the
prediction of pCR on a curated subset of 112 patients from an I-SPY1 trial. The fusion of
deep learning MRI features and clinical information was found very effective in predicting
pCR in a study by Joo et al. [25]. In a study by Peng et al. [26], pCR was predicted, and
the main finding was that the deep learning model clearly outperformed classical linear
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discriminant analysis. This motivated us to consider that recurrence could also be predicted
better using neural networks.

Multiparametric MRI has been used before in breast cancer studies, for example, to
classify pre-segmented lesions into benign and malignant [27]. In that study, T2 and DCE
MRI data were used as input and all the features were generated with a CNN model.
The work in [28] used multiparametric MRI, T2, and DCE to predict pathologic complete
response to neoadjuvant chemotherapy. Similar to our approach, Comes et al. [29] predicted
three-year breast cancer recurrence using CNN-generated imaging features combined with
some clinical features. Instead of Dixon MRI used in our work, they based their analysis
only on DCE-MRI data. Moreover, they also used imaging acquired after treatment start,
while our work uses pre-treatment imaging only. To the best of our knowledge, there are no
multiparametric MRI models for predicting recurrence. Moreover, the Dixon MRI sequence
has rarely been used in breast cancer AI models.

Perhaps the closest counterpart in the literature to our study is the method known
as RESONATE [30], where deep learning classification was combined successfully with
numerical features extracted from the segmented tumor region. Whereas in that study
only DCE volume was used, we use Dixon sequences and ADC volume computed from
a diffusion-weighted MRI to calculate the volumetric features. Some of the features used
in RESONATE are very similar to what we use in our work, and some of our features are
novel. Our approach also includes an automatic segmentation method that detects the
tumor region from other breast tissue.

Several online calculators give estimations for such outcomes as survival and recur-
rence probability. Perhaps the most relevant calculator is PredictBreast [31], but it applies
only to patients who have already had a surgery, whereas our point of prediction is prior
to surgery. Another good candidate is the CancerMath outcome calculator [32], but the
outcome time span is incompatible with the survival data recorded in our dataset (15 years
vs. 5 years). The same problem applies to the CTS5 calculator [33]. The Neoadjuvant Ther-
apy Outcomes Calculator [34] calculates the anticipated five-year distant metastasis-free
survival, but it requires a post-treatment pathologic stage, whereas our point of prediction
is before treatment. Overall, we did not find an online outcome calculator that could be
used in our research settings. Interestingly, all calculators except the latter use age as one
of the features for their prediction, and age is also used in our model. However, none
of the calculators use the BMI feature, which was found to be a prognostic biomarker in
our model.

The 3D volumetric features use an approach similar to that of Thakran et al. [35],
but instead of T1, T2, and PD-weighted DCE-MRI images, we used water- and fat-only
contrasts from the Dixon series and ADC volume from the breast diffusion MRI series.
Thakran et al. used data from 30 subjects and were able to achieve a good match between
manual and automatic breast segmentation. MRI texture and morphological features were
also used in [36] to predict recurrence, although Eun et al. used MRI sequences different
from ours.

To summarize, different related studies focused on the clinical modality or the imaging
modality, or a combination that is limited to very few clinical modalities. The closest lines
of work that generate prediction algorithms based on clinical data and medical images,
while combining state-of-the-art deep learning technologies with XGBoost, random forest,
and logistic regression applied to clinical data, are the studies aimed at identifying cancer in
breast screening exams [37–39]. The analysis in those studies is different from our work in
three ways: the algorithm task is different (detecting cancer in screening versus predicting
five-year breast cancer recurrence), the images are X-ray-based versus magnetic resonance
images, and the previous studies did not leverage classic image processing algorithms.

5. Discussion

In this paper, we explore the prediction of future cancer recurrence in women with
locally advanced breast cancer who are treated with NAC. We introduce a multimodal
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prediction model that is based on clinical data and breast mpMRI images taken prior
to NAC treatment. Our results demonstrate the ability to predict recurrence prior to
NAC treatment initiation using each modality alone, but the multimodal model offers
better results. We used deep learning and image processing algorithms to analyze our
mpMRI data and classical machine learning algorithms to analyze the clinical data. Using
two branches enabled us to use the best method per modality and utilize the maximum
available data for each data type. Furthermore, we note that comparing the results on the
holdout independent unseen cohort with the results on the cross-validation shows that the
performance is similar. This holds the promise that our models may be able to generalize
to unseen but similar datasets.

High sensitivity is important in our problem setting, as treatment of patients with
likely recurrence is different and more aggressive compared to those who are not likely
to encounter recurrence. We showed that at high-sensitivity operation points, the model
performance is improved when adding the MRI modality. However, the model suffers
from the usual limitations with nonzero false negative cases where the model’s prediction
is that the treatment is effective for the patient, while in fact, it is ineffective, and the patient
encountered post-treatment cancer recurrence within five years.

We also analyzed associations in the data and corroborated risk factors known to be
associated with prognosis. The ranked list, which was automatically generated from the
data, includes at the top known prognosis biomarkers/factors such as BMI, age at diagnosis,
and HER2 expression. Note that BMI and age at diagnosis remained top features even
when we trained the models with subsets of the data after excluding patients with missing
values. The age at diagnosis SHAP explanation shows that younger women tend to have a
greater risk of five-year recurrence. This can be explained by the fact that younger women
tend to have triple-negative disease and high-grade tumors, which are known to be more
aggressive [40]. In addition, the SHAP explanation shows that lower BMI is associated
with greater risk of five-year recurrence. This counter-intuitive result has some evidence
in prior literature. While Jiralerspong and Goodwin [41] show that obesity is associated
with increased risk of recurrence, they also find that this association is not valid in some
cancer subtypes, e.g., ER-negative and TNBC. Moreover, Modi et al. [42] studied the obesity
paradox and found that in advanced breast cancer, higher BMI is significantly associated
with improved overall survival. Assi et al. [43] also found that low BMI is associated with
increased risk of premenopausal breast cancer. Our study indicates that BMI might serve
as a predictor for recurrence in groups of women that are similar to our study setting,
i.e., women that are offered NAC treatment and who are typically young women with
locally advanced breast cancer that prefer breast-conserving surgery.

The HER2 biomarker was the third-ranked factor in the SHAP explanation. This
ranking indicates that the HER2-negative population, which includes the triple-negative
patients, is mostly associated with increased risk for five-year recurrence. It also shows
that patients with HER2-positive expression before neoadjuvant therapy have a better
prognosis, which is consistent with findings in prior publications [44,45]. One possible
explanation for this is the anti-HER2 targeted therapy that became part of the standard of
care in recent years [46].

Because the data studied here were collected retrospectively from a health provider,
we acknowledge that it is biased and noisy. MRI has no standardized protocol for scan
acquisition and high variance of image resolution, voxel size, and image contrast dynamics,
resulting in extensive variety in the MRI data. We selected special MRI preprocessing and
neural networks to adjust for these limitations and improve the signal-to-noise ratio. This
preprocessing was essential for the major contribution of the MRI modality to the five-year
recurrence prediction.

Dixon sequence volumes were included in our study, as they have been reported as a
promising option for future breast imaging approaches [47,48]. The Dixon series also had
other benefits. First, Dixon volumes visualize different tissues on the breast very efficiently,
which eliminates the need for data annotation of these volumes. Second, the Dixon fat-only
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and water-only volumes do not need alignment as they are acquired in the same session.
The same reason also supports the selection of the ADC volumes, as they can also be used
without a significant alignment process with Dixon volumes due to the lower resolution of
ADC volumes. In comparison with DCE-MRI, these selected methods are also non-invasive
in nature, as they do not require the administration of contrast agent injections to patients.
DCE-MRI was also found to be more challenging on voxel-level 3D segmentation, as it
includes slight movements between 3D volumes in time due to the long measurement time
of the DCE-MRI session. Most interesting is the improvement achieved by leveraging the
Dixon sequence, which is rarely used in the literature, although its capability to separate
water and fat tissues is relevant to breast cancer studies. Additionally, the Dixon and ADC
volumes produced explainable features.

We stratified the data based on characteristics that are expected to define patients
with similar prognoses. We found that in some subgroups, our multimodal method can
help differentiate patients who are in the same prognostic subgroup but have different
outcomes. Specifically, the subgroup of women under 50 years of age with poor prognoses
is accurately predicted by our model in both cohorts, and the accuracy is increased when
imaging analysis is utilized. However, the small number of patients in each subgroup
created wide confidence intervals per group. Further validation of the method with a larger
number of patients and with additional independent cohorts is a direction for future work.

A version of the ensemble method reported in this paper was used in the international
BMMR2 challenge to predict pathologic complete response for patients treated with NAC.
In this competition, we retrospectively analyzed an independent dataset of 193 patients
collected in the I-SPY2 multicenter clinical trial [49]. The ensemble model we employed
analyzed multimodal breast mpMRI and clinical data using methods similar to those in
this paper, except that in the mpMRI component we extracted radiomics features instead
of deep learning features. This change was necessary as the I-SPY2 is a smaller dataset
and overfits when using high-level deep learning features but generalizes well when using
low-level radiomics features. Our method analyzed clinical data along with longitudinal
DCE-MRI and DW-MRI imaging using the open source FuseMedML [50], a PyTorch-based
deep learning framework for medical data. The model won second place (AUC 0.838), with
only a marginal difference from first place (AUC 0.840), and was a standout from the other
entries in the challenge.

6. Conclusions

Breast cancer is a dynamic disease, and making an accurate prognosis is challenging.
We focus on the question of early prediction of five-year cancer recurrence in women with
breast cancer who are treated with NAC. Accurately predicting the future outcome of a
patient based on data available prior to treatment initiation could impact the treatment
planning and selection. We have rich information collected from 1738 breast cancer patients.
The data include clinical information for all patients and medical images for some of the
patients. We introduce a multimodal prediction model that is based on clinical data and
breast mpMRI images taken prior to NAC treatment. We compared the performance of
models on different data elements and evaluated them by AUC as well as by specificity, F1-
score, balanced accuracy, PPV, and NPV at clinically important sensitivity operation points.
The results of cross-validation and unseen holdout test show that the multimodal ensemble
model that leverages both the mpMRI and the clinical models offers improved results over
the unimodal models. We then used interpretability methods to explain the model and
identify important clinical features for predicting recurrence. Finally, we stratified the data
based on characteristics that are expected to define patients with similar prognoses. We
found that in some subgroups, the ensemble model can help differentiate patients that are
in the same prognostic subgroup but have different outcomes.

Future work may add additional modalities to our multimodal approach, such as
data of histopathology imaging and gene expression profiling. We also seek to use bigger
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cohorts from additional sites to increase our training data and have better generalization,
toward the large-scale validation of our models.
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Appendix A. Data Acquisition

We gathered a collection of data from a cohort of 1738 patients treated with NAC at
Institut Curie. All the data were previously anonymized complying with all the necessary
regulatory laws, making it impossible to identify the patients. Aside from the MRI images,
a group of clinicians and other experts carefully designed a list of relevant clinical features
to fully describe the state of the patient, the evolution of the cancer, and the outcome after
NAC treatment. This collection of data comes from a manually curated database, and it
includes the following items:

• Demographic data:

◦ Weight;
◦ Height;
◦ Age (in days) at time of diagnosis.

• Tumor data:

◦ Side of the tumor (right or left breast);
◦ Tumor number;
◦ Carcinoma in situ in the biopsy;
◦ Histological type (NST/ductal, lobular, medullary, other);
◦ Grade of the tumor on the Ellis–Elston (EE) scale;
◦ Ki67 percentage;
◦ Status of estrogen and progesterone receptors;
◦ Status of HER2;

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=50135447
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◦ Type of cancer (TNBC, luminal A/B, HER2+).

• Treatment outcome data:

◦ Response to treatment, RCB (Residual Cancer Burden) scale;
◦ Response to treatment, Chevalier scale;
◦ Response to treatment, Sataloff scale;
◦ Postsurgical pathological T and N;
◦ Last news status (alive, dead) (if dead, age at death in days);
◦ Last news age (in days);
◦ Presence/absence of local relapse (+ age in days);
◦ Presence/absence of metastasis (+ age in days);
◦ Whether the patient died within five years after treatment.

Some of the features have missing values, so they could not contribute much to
our models. Table A1 below describes the general characteristics of key features in the
study population.

Table A1. Key feature characteristics in the dataset.

Feature Total Patients with Value Missing %

Age at diagnosis 1504 13.46%

EE grade 1467 15.59%

Histological type 1437 17.32%

Progesterone status 1419 18.35%

Estrogen status 1416 18.53%

Weight 1215 30.09%

HER2 positive 1169 32.74%

Mitotic index 1080 37.86%

Ki67 percentage 1051 39.53%

Height 893 48.62%

Cancer subtype 797 53.82%

To comply with regulations such as GDPR, the data analysis was performed using
the model-to-data paradigm [51], where all the data remained within the Institut Curie
infrastructure. The algorithms were transferred to a strong GPU-enabled server residing
inside Institut Curie. The data analysis, training, and evaluation of the models were then
carried out on that server.

Appendix B. Dixon-ADC Segmentation

The Dixon-ADC component in the mpMRI is based on fuzzy c-means (FCM) clus-
tering for automatic image segmentation with two phases: breast segmentation and le-
sion segmentation, generating three 3D masks: bilateral breast tissue mask, tumor side
breast tissue mask, and lesion mask. The figure below (Figure A1) shows an example of
such segmentation.
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to the tumor side of the mask are again clustered with FCM using the same Dixon volumes, as well 
as diffusion ADC volume if it is available from the patient. The clusters with the biggest overlap on 
high-intensity areas on ADC and water volumes are selected as lesion regions. 
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Appendix C. Feature Explanations

The figure below (Figure A2) depicts SHAP explanations when excluding patients
with missing values. We examined training the clinical model with just the 1504 patients
who have age value or training with just the 797 patients who have the cancer subtype
value. The figure shows the SHAP explanations generated for the clinical model in each
case. We see that it exhibits the same important features and characteristics as the original
clinical model trained on the entire Clinical cohort with BMI and age at diagnosis as the
top features.
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