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Simple Summary: The rapid development of technology has enabled numerous applications of ar-

tificial intelligence (AI), especially in medical science. Histopathological assessment of tissues re-

mains the gold standard for diagnosis of gastrointestinal (GI) cancers for subsequent management. 

In a traditional anatomical pathology (AP) laboratory, histopathologists are required to manually 

assess, quantify and classify diseases under a microscope in a semiquantitative or qualitative man-

ner. The conversion of analogue-to-digital pathology is on the rise, conforming with trends toward 

digitalization. The rapid adoption of digital pathology (DP) is driven by factors such as the world-

wide shortage of pathologists and medical technologists, the increasing incidence of cancer and the 

critical need to improve laboratory efficiency. In this review, we aim to provide a comprehensive 

summary of algorithms for AI detection and classification of GI cancer. We will also provide critical 

insight into the application of algorithms for routine care in clinical practice. 

Abstract: The implementation of DP will revolutionize current practice by providing pathologists 

with additional tools and algorithms to improve workflow. Furthermore, DP will open up oppor-

tunities for development of AI-based tools for more precise and reproducible diagnosis through 

computational pathology. One of the key features of AI is its capability to generate perceptions and 

recognize patterns beyond the human senses. Thus, the incorporation of AI into DP can reveal ad-

ditional morphological features and information. At the current rate of AI development and adop-

tion of DP, the interest in computational pathology is expected to rise in tandem. There have already 

been promising developments related to AI-based solutions in prostate cancer detection; however, 

in the GI tract, development of more sophisticated algorithms is required to facilitate histological 

assessment of GI specimens for early and accurate diagnosis. In this review, we aim to provide an 

overview of the current histological practices in AP laboratories with respect to challenges faced in 

image preprocessing, present the existing AI-based algorithms, discuss their limitations and present 

clinical insight with respect to the application of AI in early detection and diagnosis of GI cancer. 
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1. Introduction 

GI cancer is a collective term encompassing various cancers related to the GI system, 

which comprises the organs from the oral cavity down to the anal canal. Malignancy can 

develop in any part of the GI tract, as it is constantly and directly exposed to carcinogens 

in the environment through the ingestion of food. Given the numerous hotspots for ma-

lignant transformation and the constant exposure to carcinogens, GI cancer accounts for 

26% of global cancer incidence and 35% of global cancer-related mortality [1]. The recent 

surge in incidence and mortality are linked to the increasing prevalence of modifiable risk 

factors, such as sedentary lifestyle, obesity, unhealthy diet and other metabolic abnormal-

ities [2]. Recent analysis revealed a significant increase in GI cancer incidence in young 

adults aged 25–49 years, alerting the public to emerging medical burdens [3]. The five 

major GI cancers causing considerable global burdens are oesophageal squamous cell car-

cinoma, gastric adenocarcinoma, colorectal cancer (CRC), hepatocellular carcinoma and 

pancreatic cancer. In order to identify and classify GI cancers, histopathological analysis 

of endoscopic biopsies or resected tumour specimens remains the gold standard for dis-

ease diagnosis. Unfortunately, early diagnosis of GI-related cancers is often missed due to 

a lack of specific symptoms. Medical attention is often sought only when non-specific 

symptoms become unbearable [4]. 

In addition to the existing lack of medical professionals, there are various reasons for 

the growing demand for histopathological diagnosis, including an increase in morbidity 

within the aging population, the increasing incidence of malignancies among young 

adults and the increase in cancer screening programs, resulting in an increased number of 

annual laboratory cases [5–8]. Furthermore, the complexity of cases, as well arduous cri-

teria for case reporting, constitute burdens to histopathologists and may prolong the turn-

around time (TAT) associated with generating reports in AP laboratories [9]. Standardi-

zation among AP laboratories is crucial for pathologists to make precise diagnoses. Med-

ical laboratory technologists are not only responsible for preparing tissue samples for di-

agnoses but also for ensuring that the laboratory performance is satisfactory through qual-

ity assurance programs while operating in compliance with laboratory accreditation 

[10,11]. With the lack of manpower and restricted laboratory budget, the adoption of more 

advanced technology is imminent with respect to addressing the overwhelming workload 

in an AP laboratory. 

Whole-slide imaging (WSI) refers to the digitization of traditional glass slides into a 

digital image. Technological advancement has led to the development of high-throughput 

WSI scanners, which allow for large amounts of slides to be digitized in a short period of 

time. The digitized image of stained histological specimens can be used for a variety of 

purposes. Digital pathology (DP) is a term that incorporates the acquisition, management 

and interpretation of pathology information [12]. Currently, DP is used in both academic 

and clinical settings for teaching, diagnostic and archival purposes [13–16]. More im-

portantly, the worldwide adoption of DP is a trend that could help AP laboratories im-

prove productivity and reduce costs while improving patient care. The establishment of 

DP workflow in an AP laboratory opens opportunities for computational pathology; im-

age analysis techniques, such as quantification and measurement; and the application of 

AI in computer-aided diagnosis [17]. The potential of AI in a DP workflow may alleviate 

burdens faced by histopathologists by reducing the time spent on tedious activities, such 

as counting cells and measuring tumour parameters, and, likewise, aid in standardizing 

immunohistochemical (IHC) staining for companion diagnostic testing [18–20]. AI-as-

sisted endoscopy can also facilitate the detection and characterization of suspicious 

polyps, as well as the use of skin surface microscopy to classify skin diseases [21], which 

may allow for early identification and intervention in cancer. The adoption of AI will be 

of mutual benefit to healthcare institutes, medical practitioners and patients by increasing 

laboratory throughput, shortening TAT and reducing operating and patient costs. 

The potential of AI in DP and GI-related malignancy is encouraging. However, the 

process from algorithm development to clinical application is complicated by various 
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obstacles. An example of such a problem is the preprocessing of specimen for WSI gener-

ation. This could create variability within datasets [22,23], thus increasing the difficulty 

and cost of model training in a hospital setting. Machine learning [24–27] and deep learn-

ing [28–40] are common methods adopted for image analysis and both have unique ad-

vantages and disadvantages. Currently, there is a variety of existing models that can be 

selected and applied easily. Using existing models is convenient but may not be suitable 

for specific tasks, leading to poor performance. The design and features of models should 

be carefully considered during algorithm design to complete specific tasks to minimize 

unnecessary computational time while maintaining high output performance. Models 

with high performance, as measured by area under the receiver operating characteristic 

(AUROC), may not necessary be clinically applicable [16,22]. It is important to understand 

the clinical needs and current acceptability of AI as part of the clinical workflow. As the 

end users of these algorithm are medical professionals, it is vital to discuss and develop a 

model specific to their needs and workflow, while also balancing with generalizability for 

use in other hospital or clinical settings [16,41]. There is a real challenge associated with 

developing clinically applicable AI-based tools to facilitate pathologists in their workflow. 

In this regard, we will critically review the processes from preparation of tissue samples 

to current challenges in applying AI in diagnosis of GI cancers. We will also explore how 

the development and implementation of AI in DP may improve existing practice in 

screening and diagnosis of GI malignancies. 

2. Current Histopathology Practices and Opportunities in Digital Pathology 

In modern clinical practice, the advancement of technology enables the development 

of highly efficient, high-throughput and high-resolution (up to 0.23–0.25 μm/pixel) WSI 

devices that can digitize traditional glass slides into whole-slide images (WSIs) that can 

be remotely viewed on a display monitor for remote diagnosis of cases [42,43]. This digital 

process is termed “digital pathology” and has additional benefits compared to traditional 

pathology, including the ease of quickly and securely sharing pathology WSIs worldwide 

with other pathologists for second opinions , as well as providing a better view of the 

tissue with additional annotation and measurement tools while allowing for rapid access 

to archived cases without loss of quality [44]. Previous literature reports support the safe 

transition to digital pathology, showing high concordance of diagnosis using digital pa-

thology with WSIs as compared to traditional slides with light microscopy [45–49]. The 

quality of WSIs is a major factor that affects concordance rates and diagnostic accuracy. In 

order for high-quality WSIs to be generated, specific tasks must be performed by medical 

laboratory technologists. The tissues of interest extracted from esophagogastroduodenos-

copy or surgery must be preserved in fixatives, such as 10% neutral buffered formalin, to 

prevent autolysis of biological tissue while maintaining tissue structure and integrity. The 

tissue is then embedded, sectioned, stained and mounted onto a glass slide, ensuring the 

quality of the tissue and glass slide will. This includes checking for artefacts on the tissue, 

including possible scores, tears, floating contamination, thick and thin sections and ensur-

ing that the glass slide is intact and free from dust before and after digitization [50,51] 

(Figure 1). 
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Figure 1. Tissues obtained by endoscopic biopsies are fixed in 10% neutral buffered formalin for 12–

24 h. The fixed tissue undergoes dehydration, clearing and impregnation with molten paraffin wax 

by automatic tissue processors. The tissue is subsequently embedded in a paraffin wax block with 

proper orientation so tissue sections (3–5 µm thick) can be cut with a microtome. The tissue section 

is manoeuvred onto a glass slide, stained and mounted with a coverslip to protect and preserve the 

section. The glass slide is digitized using high-throughput WSI scanners to create a virtual slide to 

allow for remote diagnosis and large-scale computational pathology. 

Considering the forthcoming transition from traditional pathology to digital pathol-

ogy, there is a demand for the development of new tools to facilitate the reporting process 

for pathologists. In recent years, powerful WSI analysis software tools that are user-

friendly yet packed with clinically relevant tools have been developed. The majority of 

such software applications are open-source and freely available; these include ImageJ 

1.53s (Madison, United States), QuPath 0.3.0 (Belfast, United Kingdom), SlideRunner 2.2.0 

(Erlangen, Germany) and Cytomine (Liège, Belgium) [52–54]. Such software applications 

are capable of handling large WSIs and metadata generated from different hardware 

brands and contain interactive drawing tools for annotation. They also include features 

that can perform cellular detection and feature extraction. Furthermore, to complement 

software development, the cost of hardware required for high-performance computation, 

including high-speed network infrastructure and data storage, has become increasingly 

affordable. This has led to increased adoption of digital pathology in major hospitals 

worldwide. However, more investment is required to expand the roles of digital pathol-

ogy in most hospitals [12]. With an increasing number of digital pathology centres, the 

generation of large and high-quality WSI databases will slowly emerge [17,47,55,56]. This 

growth increases the feasibility of obtaining large datasets and designing algorithms for 

analysis of WSIs using computer software through a broad range of methods for the study 

of diseases. This concept is termed computational pathology [57]. The combination of 

computational pathology with digital pathology opens new opportunities for case diag-

nosis. Algorithms developed for the early detection of cancer are important to improve 

patients’ chance of survival [58]. Automated screening of a large number of specimens 

may provide improved accessibility and make diagnosis and treatment more affordable 

[59]. Furthermore, the escalating amount of cancer specimens with increasingly complex 

classification and the urgent need for shorter TAT have resulted in an upsurge in work-

load in diagnostic pathology services [60]. With these challenges in mind, more research 

has been focused on the use of AI to perform diagnostic tasks for histopathological exam-

ination. Some models have been proposed to use computational methods to triage pa-

tients and present urgent cases to pathologists with prioritizations. Despite the excellent 
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results and potential application in histopathological diagnosis prediction using AI [61–

63], there are still significant challenges to overcome prior to the implementation of these 

AI-based tools and algorithms. In the following section, we will explore the critical areas 

that hinder the current development and deployment of AI-based tools in clinical practice. 

3. Current Challenges of Algorithm Development in Computational Pathology 

AI has become a popular tool in the field of medical image processing and analysis 

[64]. AI is capable of extracting meaningful information from images that cannot be ob-

tained with the naked eye. Machine learning is a subset of AI that utilizes algorithms de-

veloped to process these data and perform tasks without explicit programming. Deep 

learning is a subset of machine learning that uses highly complex structures of algorithms 

based on the neural network of the human brain [65] (Figure 2). In recent years, AI has 

become increasingly popular in histological imaging analysis, with clinical applications 

that include primary tumour detection, grading and subtyping [66–68]. Several well-

known research challenge competitions, such as CAMELYON16 and CAMELYON17, en-

courage the development of novel and automated solutions that are clinically applicable 

to improve diagnostic accuracy and efficiency [69,70]. This is achieved through various 

combinations of machine learning and deep learning techniques, which will be discussed 

further. Large annotated datasets are also indispensable for the development of successful 

deep learning algorithms. Through the adoption of digital pathology for diagnosis, it is 

possible for pathologists to annotate regions of interest during the case reporting process, 

which may indirectly facilitate the generation of such valuable datasets for future algo-

rithm development [16]. 

 

Figure 2. Overview of AI techniques and algorithm development in computational pathology for 

GI cancers. AI is a concept that mimics human intelligence with respect to learning and problem 

solving. Deep learning is a subset of machine learning; both are techniques used for the develop-

ment of AI to study the patterns or relationships in WSIs. Deep learning-based techniques are capa-

ble of automatic feature extraction, whereas machine-learning-based techniques require manually 

designed features. Existing software, algorithms and network architectures discussed in this study 

are summarized in the figure. 
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Furthermore, the inevitable integration of these AI tools is necessary due to the aging 

population worldwide and the shortage of pathologists [71]. The training of new 

pathologists requires a long period of time in order to ensure competency [72]. Thus, there 

is an urgent need to develop clinically applicable AI-based tools to relieve the high work-

load of pathologists, producing more precise and reproducible diagnoses while reducing 

the TAT of cases. However, there remain obstacles and challenges that are hinder the de-

velopment process, which will be discussed below. 

3.1. Colour Normalization 

For routine histopathological diagnosis, haematoxylin and eosin (H&E) staining is 

the most preferred method for visualizing cellular morphology and tissue structure. Hae-

matoxylin stains cell nuclei a purplish-blue, whereas eosin stains the extracellular matrix 

and cytoplasm pink. The patterns of coloration play a central role in the differentiation 

between cells and structures. Colour and staining variations can be affected by, but are 

not limited to, the thickness of the specimen, non-standardized staining protocols and 

slide scanner variations [73]. It is important to perform colour normalization to ensure 

consistency across WSI databases, as it can affect the robustness of deep learning models. 

Common methods for colour normalization include histogram matching [74,75], colour 

transfer [76–78] and spectral matching [79–81]. However, these methods of colour normal-

ization heavily rely on the expertise of pathologists, which makes WSI colour normaliza-

tion difficult for general researchers with limited knowledge of the colour profile of his-

tological staining. Moreover, this process of manually assessing and adjusting each WSI 

is impractical. Several algorithms have been proposed by researchers that are capable of 

performing colour normalization by deep learning using a template glass slide image for 

reference, such as StainGAN [82] and SA-GAN [83]. These models have shown promising 

results with respect to ensuring consistent representation of colour and texture [84–86]. 

Nevertheless, future work is needed to explore the clinical performance of AI-based tools 

developed using such colour normalization systems. 

3.2. Pathologist Interpretation for Model Training 

For histopathologists, understanding normal histology is essential for investigating 

abnormal cells and tissue. Final interpretation comprises several processes, including vis-

ualization, spatial awareness, perception and empirical experience. When developing 

new algorithms for the classification of diseases, the wide variation in the interpretation 

or classification of diseases cannot be categorized or easily represented in a cardinal man-

ner. If so, the classification task is oversimplified, leading to a lack of detail. Physiologi-

cally, cancers are characterized by an increase in cellular proliferation, invasive growth, 

evasion of apoptosis, and altered genome and expression [87]. With H&E staining, histo-

pathologists can identify the changes in cellular characteristics by several broad features 

of malignant cells, which include anaplasia, loss of polarity, hyperchromatism, nuclear 

pleomorphism and irregularity, abnormal distribution of chromatin, prominent nucleoli 

and atypical mitotic figures. Diagnostic reports are often used as the ground truth to label 

datasets. However, pathologists may use descriptive terminology to explain pathology 

concepts that are difficult to interpret and categorize [88]. Hence, it is important for re-

searchers to obtain diagnostic reports with standardized reporting, including the speci-

men type, site, histologic type, grading and staging, in accordance with the American Joint 

Committee on Cancer, which represents different categories of histopathological 

knowledge under fuzzy ontology [89], and streamline the process of algorithm develop-

ment to generate more accurate disease classifications [90]. 
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3.3. Model Transparency and Interpretability for Deployment of AI-Based Tools in Clinical 

Practice 

The incorporation of digital pathology, let alone computational pathology, in the 

clinical workflow requires solid validation of WSI analysis. However, various studies 

have reported that there is high discordance between diagnoses made using WSI and 

those made with light microscopy in GI malignancies [46,91–93]. More evidence is re-

quired to demonstrate that diagnoses made through digital pathology are as performant 

as conventional light microscopy diagnoses to ensure reliable and safe application in dig-

ital pathology practice [91]. According to practical recommendations by the Royal College 

of Pathologists regarding the implementation of digital pathology [94], validation and 

verification processes should be performed in the image analysis system to demonstrate 

its clinical utility before integrating into clinical workflows. Thus, it is also of considerable 

importance for AI-based tools to be transparent and interpretable in order to address pos-

sible moral and fairness biases by providing evidence in making a specific decision [95]. 

However, there is a dilemma when designing new algorithms, as most algorithm devel-

opments focus on using sophisticated deep learning and ensemble methods—so-called 

“black-box” models—to tackle multidimensional problems. On the other hand, much sim-

pler methods, such as linear regression or decision-tree-based algorithms, may not be so-

phisticated and powerful enough to achieve the desired outcome [96–99]. Nonetheless, 

the demand for more explainable AI is on the rise [100]. Developers of new AI-based tools 

targeting applications in digital pathology should continuously assess the model explain-

ability of their tool to meet the expectations of various stakeholders. They should also 

consider the ethical concerns and possible regulatory barriers imposed by governments 

and professional bodies regulating practice [101,102]. 

4. Machine Learning in GI Cancer Diagnosis 

Machine learning algorithms constitute a method that requires the input of large da-

tasets to study patterns or relationships to predict outcomes. The most common machine 

learning algorithms include artificial neural networks, decision tree algorithms, support 

vector machine, regression analysis, Bayesian networks, etc. In computational pathology, 

due to the large image size of each WSI (>3 billion pixels, >1 GB), the majority of these 

algorithms are designed based on manually extracted or handcrafted features from WSIs 

to improve their performance and minimise the computational time [103]. Such algorithm 

design processes can be summarised as feature engineering and can be divided in a two-

step process. First, the regions of interest related to a specific clinical problem are identi-

fied in images. Then, the images are translated into numerical or categorical values using 

several predictor variables to create an accurate machine learning algorithm [104]. In dig-

ital pathology, there are two kinds of hand-crafted features, namely domain-inspired and 

domain-agnostic features. Domain-inspired features require the intrinsic domain 

knowledge of pathologists and oncologists, whereas domain-agnostic features include the 

general computational features used in the machine learning algorithms [15]. In practice, 

the generation of handcrafted features is often achieved by software, such as wndchrm, 

which was developed by Shamir et al. [105], and QuPath by Bankhead et al. [53]. These 

handcrafted, feature-based machine learning algorithms have demonstrated GI cancer 

classification, detection and prognostication abilities. The main researches related to ma-

chine learning models and algorithms in GI cancer diagnosis are presented in Table 1. 

Yoshida et al. [24] pioneers in the application of machine learning algorithms to clas-

sify the different grades of gastric cancer (GC) using “e-Pathologist” software. Their sys-

tem performance showed high sensitivity (>89%) and low specificity (<51%). The authors 

demonstrated that their software, “e-Pathologist”, is not sensitive enough to detect gastric 

carcinoma using clinical samples. Similar work has been done by Yasuda et al. [25], with 

“wndchrm” software; their system exhibited improved performance relative to “e-

Pathologist” and showed a superior AUC of >0.98. However, with a limited validation 
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dataset used (<100 WSIs), a larger dataset is required to verify the clinical applicability of 

wndchrm. Furthermore, Cosatto et al. reported the use of a machine learning algorithm 

integrated with a multi-instance learning framework to identify the presence of GC [26]. 

Their framework achieved promising performance (AUC: 0.96), and their validation using 

a large dataset (4168 patients) illustrates the effectiveness of integration of machine learn-

ing with a multi-instance learning architecture. Support vector machine is one of the most 

popular algorithms in machine learning used for classification and prognostication for 

cancer research. Jiang et al. [106] used support vector machine to predict the prognosis of 

GC patients and identify patients who might benefit from adjuvant chemotherapy. 

Sharma et al. [107] also used support vector machine for detection of gastric tumour ne-

crosis. The use of support vector machine will likely remain popular. Its adoption in com-

putational pathology should be further explored. 

To achieve shorter computational time and higher accuracy, machine learning is 

commonly synergised with deep learning in the field of computational pathology [27,108]. 

Jiang et al. proposed the combination of the InceptionResNetV2 deep learning model and 

a gradient-boosting decision tree machine classifier for prognosis prediction of stage III 

colon cancer. The hybrid model calculated a hazard ratio of 10.273 in the prediction of 

high-risk or low-risk recurrence and a hazard ratio of 5.033 for patients with poor and 

good prognoses. [27] 

Machine learning algorithms are also capable of performing tasks related to the col-

our of histology images, as the colour of biomarkers is important for colour normalization 

of various histology images, as well as disease prediction. Kothari et al. [74] used a four-

class linear discriminant classifier to develop a new colour segmentation algorithm for 

standardization of WSI colour to improve machine learning model accuracy in classifying 

different colour components from histological cancer images. Furthermore, as aggressive 

tumour progression is associated with high cell proliferation rates, immunostaining of 

tumour nuclei is performed by pathologists for estimation of tumour growth. Rokshana 

et al. [109] proposed the use of an IHC colour histogram to perform colour separation for 

the quantification of the Ki67 proliferation index for breast cancer. Such a colour-thresh-

olding algorithm can assist pathologists in obtaining automatic and robust prognosis pre-

dictions for cancer patients. 

Table 1. Histopathologically related machine learning models used for clinical applications in GI 

cancers. Machine learning algorithms and models are grouped according to their specific computa-

tional task and GI cancer type to compare their performance and clinical application. The sources of 

the datasets and sample sizes are also summarized. 

Author Task Cancer Type 
Type of 

WSI 
Dataset Algorithm/Model Performance 

Clinical  

Application 

Yoshida et al. 

[24] 

Classifica-

tion 

Gastric can-

cer 
H&E 

Training and testing: 

3062 WSIs 
e-Pathologist 

Positive for carcinoma or 

suspicion of carcinoma vs. 

caution for adenoma or 

suspicion of a neoplastic 

lesion vs. negative for a ne-

oplastic lesion 

Overall concordance rate: 

55.6% 

Kappa coefficient: 0.28 

(95% CI: 0.26–0.30) 

Negative vs. non-negative 

Sensitivity: 89.5% (95% CI: 

87.5–91.4%) 

Specificity: 50.7% (95% CI: 

48.5–52.9%) 

Positive predictive value: 

47.7% (95% CI: 45.4–49.9%) 

Negative predictive value: 

90.6% (95% CI, 88.8–92.2%) 

Differentiation and di-

agnosis gastric cancer 

grade 
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Yasuda et al. [25] 
Classifica-

tion  

Gastric can-

cer 
H&E 

Training and testing: 

66 WSIs  
wndchrm 

Noncancer vs. well-differ-

entiated gastric cancer 

AUC: 0.99 

Noncancer vs. moderately 

differentiated gastric can-

cer 

AUC: 0.98 

Noncancer vs. poorly dif-

ferentiated gastric cancer 

AUC: 0.99 

Differentiation and di-

agnosis gastric cancer 

grade 

Jiang et al. [106] 

Classifica-

tion and 

prognosis 

Gastric can-

cer 
H&E 

Training: 251 patients 

Internal validation: 

248 patients 

External validation: 

287 patients 

Support vector ma-

chine 

Patients might benefit 

more from postoperative 

adjuvant chemotherapy vs. 

patient might not postop-

erative adjuvant chemo-

therapy 

training cohort: 

5-year overall survival 

AUC: 0.796 

5-year disease-free sur-

vival AUC: 0.805 

Internal validation cohort: 

5-year overall survival 

AUC: 0.809 

5-year disease-free sur-

vival AUC: 0.813 

External validation cohort: 

5-year overall survival 

AUC: 0.834 

5-year disease-free sur-

vival AUC: 0.828 

Prognosis of gastric 

cancer patients and 

identification of pa-

tients who might bene-

fit from adjuvant 

chemotherapy 

Cosatto et al. [26] Detection 
Gastric can-

cer 
H&E 

Training set: 8558 pa-

tients  

Test set: 4168 patients 

Semi-supervised 

multi-instance learn-

ing framework 

Positive vs. negative 

AUC: 0.96 

Detection of gastric 

cancer 

Jiang et al. [27] 
Classifica-

tion 
Colon cancer H&E 

Training: 101 patients  

Internal validation: 67 

patients 

External validation: 47 

patients 

InceptionResNetV2 

+ gradient-boosting 

decision tree ma-

chine classifier 

High-risk recurrence vs. 

low-risk recurrence 

Internal validation hazard 

ratio: 8.9766 (95% CI: 

2.824–28.528) 

External validation hazard 

ratio: 10.273 (95% CI: 

2.177–48.472) 

Poor vs. good prognosis 

groups:  

Internal validation hazard 

ratio: 10.687 (95% CI: 

2.908–39.272) 

External validation hazard 

ratio: 5.033 (95% CI: 1.792–

14.132) 

Prognosis of stage III 

colon cancer 

WSI = whole-slide imaging; H&E = haematoxylin and eosin; CI= confidence interval; AUC = area 

under the curve; wndchrm = weighted neighbour distance using compound hierarchy of algorithms 

representing morphology. 

5. Deep Learning in GI Cancer Diagnosis 

Deep learning is a subcategory of machine learning and is used to directly study im-

age patterns. It has also gained popularity in the world of computational pathology. Con-

volution neural network (CNN) is a widely used deep learning algorithm applied in 

pathological image analysis. It is a specific type of neural network that uses a convolution 

operation to process each pixel’s data for image recognition and processing through im-

age processing with different convolution and pooling layers [110]. CNN is able to com-

press and extract problem-specific information directly from images to train algorithms 
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for the classification, segmentation, detection and prognosis of cancers. Prior to model 

training, image preprocessing is vital, as most WSIs are excessively large (approx. 40,000 

× 50,000 pixels), and the input requirement of CNN allows for small images only (≤512 × 

512 pixels). Hence, it is normal practice to tile WSIs prior to algorithm training and devel-

opment. Herein, we will review a selection of deep learning algorithms developed for GI 

cancer diagnosis. The main researches related to deep learning models and algorithms in 

GI cancer diagnosis are presented in Table 2. 

5.1. Fully Supervised Approach 

Fully supervised learning is defined by its use of labelled data to predict outcomes. 

Computational pathology-related research requires large amounts of pathologist-labelled 

data with pixel-wise annotation for each WSI for accurate model training. 

5.1.1. Classification of GI Cancer 

Several deep learning models have been proposed to differentiate between benign 

and malignant tissue for GI cancer classification. Staging of cancers is also an important 

parameter that affects the patient’s treatment strategy and prognosis. Recently, research 

has been focused on the development of high-performance deep learning models to clas-

sify normal and cancerous cases with grading. For instance, a ResNet-18 model was re-

ported by Su et al., with an F1 score of >0.86 in terms of distinguishing between poorly 

differentiated adenocarcinoma and well-differentiated adenocarcinoma [28]. DeepLab is 

another type of CNN architecture utilized by Song et al. to classify different types of GI 

cancers and showed promising performance [29,30]. In an earlier publication, Song et al. 

reported that DeepLab v2 achieved a high AUC (0.92) in recognizing different types of 

colorectal adenomas (tubular, villous, tubulovillous, etc.) [29]. Later, they utilized an up-

dated DeepLab v3 model for diagnosis of GC with clinical applicability. Their model 

showed outstanding performance, with an AUC > 0.99 on multiple large external valida-

tion datasets, including various difficult cases [30]. 

Despite research reporting a reasonably reliable model, there is a demand for higher 

accuracy in differentiating between grades of GI cancer. Alternative novel network struc-

tures applied in other types of cancer classification can act as a reference for future model 

training for GI cancers. Graph transformer network is an example that has demonstrated 

a high accuracy of 0.97 in the grading of lung carcinoma [111]. Moreover, as WSIs are 

characterized by high morphological heterogeneity in the shape and scale of tissues, sim-

ple tiling of the WSI may compromise spatial information, which may be of benefit in 

accurately predicting outcomes. A deformable conditional random field (DCRF) model 

was developed to study the interrelationship by obtaining offsets and weights of neigh-

bouring tiled images. Integration with well-established models, such as ResNet-18, Res-

Net34 and DenseNet, resulted in improvements in classification accuracy of gastric ade-

nocarcinoma and CRC [112]. 

Moreover, during the peer-review process of this research, the issue of missed diag-

nosis by pathologists was identified and discussed. We found that two cases of malig-

nancy were initially missed by pathologists in the initial diagnostic report. However, re-

assessment by a trained DeepLab v3 AI assistance system identified the malignancy and 

successfully flagged the tumour regions. This demonstrates that diagnoses by 

pathologists are not 100% accurate, are subject to interobserver variability and are prone 

to error when pathologists are facing large workloads and stress. Given the compromised 

accuracy of diagnoses made solely by pathologists, concerns have been raised about the 

reliability of using pathologists to train deep learning systems. Interestingly, several stud-

ies have shown that deep learning algorithms trained by pathologists exceeded the aver-

age performance of pathologists [30,113]. This means that AI systems can analyse and in-

tegrate training sets with satisfactory performance, even if all of the annotations by 

pathologists designated for training might not be fully accurate. 
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DL-based algorithms are also used for the differentiation of molecular subtypes. Si-

rinukunwattana et al. [114] developed a deep learning model (imCMS) for the differenti-

ation of four consensus molecular subtype groups with distinct clinical behaviours and 

underpinning biology from standard H&E-stained WSIs. A similar concept was imple-

mented by Popovici et al. for the classification of low-risk subtypes and high-risk subtypes 

[115]. 

The recognition of different types of colorectal polyps (hyperplastic, sessile serrated, 

traditional serrated adenoma, etc.), cancer-associated tissues (lymphocytes, cancer-asso-

ciated stroma, colorectal adenocarcinoma epithelium, etc.) and normal tissues is critical to 

determine the risk of CRC and future rates of surveillance for patients. This has been 

demonstrated by various research groups using ResNet-152 [116], VGG19 [117] and the 

ensembled ResNet [118]. Among these models, VGG19 [117] showed the highest model 

accuracy of 0.943, followed by ResNet-152 (0.93) [116] and ensembled ResNet [118] (0.87). 

VGG19 (143 million parameters) had a much larger network size than that of ResNet-152 

(60 million parameters). It is clear that larger and more complex models with more pa-

rameters play an important role in boosting model performance. As a comparable exam-

ple, the Inception V3 model used by Popovici et al. [115] obtained an average accuracy of 

0.72, whereas the VGG-F model used by Sirinukunwattana et al. [114] achieved a greater 

accuracy of 0.84. This can be explained by the fact that VGG-F (61 million parameters) is 

more complex than Inception V3 (23 million parameters) with respect to model enhance-

ment. Moreover, a large dataset for model training is also essential for improved predic-

tion results. For example, Gupta et al. [119] used the Inception-ResNet-v2 model to obtain 

superior performance (F-Score, 0.99; AUC, 0.99) in classifying and locating abnormal and 

normal tissue regions based on a model trained with more than 1,000,000 WSI patches. 

Despite the relatively low network complexity of the Inception-ResNet-v2 model (56 mil-

lion parameters), network performance can be compensated with the support of a large 

amount of training data. 

5.1.2. Segmentation in GI Cancer 

Determining the spatial location of cancerous regions in WSI is an important step for 

accurate diagnosis by pathologists using digital pathology. Various networks have been 

applied to delineate malignant and benign regions, such as adversarial CAC-UNet [31], 

U-Net-16 [32] and CoUNet [33]. Remarkably, these networks are trained (750 WSIs) and 

tested (250 WSIs) with the same DigestPath dataset for detection of the location of gastric 

cancerous lesions. The adversarial CAC-UNet [31] achieved the highest segmentation per-

formance, with a Dice coefficient score of 0.8749 as compared with U-Net-16 [32], with a 

Dice coefficient score of 0.7789, and CoUNet [33], with a Dice coefficient score of 0.746. U-

Net-16 and CoUNet sequentially classified the corresponding colorectal malignant and 

benign regions successfully (AUC: 1.00 vs. 0.980), demonstrating that pipelines following 

segmentation and subsequent classification can potentially achieve high performance in 

the classification of specific histopathological regions. Ensembling different networks to-

gether is another method for performing segmentation tasks in CRC. One such example 

was reported by Mahendra et al. [120], who developed a general framework combining 

DenseNet-121, Inception-ResNet-V2 and DeeplabV3Plus models to specifically segment 

malignant and benign regions. 

5.1.3. Detection of Prognostic Markers and Prognosis in GI Cancer 

Detecting and identifying prognostic markers is important for the development of 

the most suitable treatment plan for patients. However, histology WSIs, by nature, contain 

highly heterogenous cell types, inevitably increasing the dataset difficulty and hindering 

the model development process of new algorithms to predict outcomes with high prog-

nostic value. Despite these challenges, several models have been proposed to aid in the 

early detection of prognostic markers that may influence disease progression. The pres-

ence of goblet cells with overexpression of TFF3 is a key feature of Barrett’s oesophagus. 
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The identification and quantification of these cells may be indicative of intestinal meta-

plasia of Barrett’s oesophagus. The VGG16 model showed strong adaptability, with an 

AUC = 0.88 with respect to detection of patients with Barrett’s oesophagus in TFF3-stained 

biopsies. Moreover, this approach allowed biopsies to be defined into eight classes with 

varying priority for pathologists to review. This method can be applied to prioritize im-

portant cases for early case review in a busy AP laboratory [34]. 

Infection with H. pylori can lead to chronic inflammation, which is a risk factor for 

GC. However, H. pylori is not easily identified, as the H&E section requires examination 

under high magnification. This significantly increases the cost and TAT of diagnosis. 

Hence, early identification of H. pylori is a valuable prognostic marker that allows for early 

and cost-effective treatment to eradicate H. pylori and prevent progression to GC. Several 

DL-based algorithms were tested by combining DenseNet-121 and ResNet-18 models [35]. 

Overall, this ensemble method achieved satisfactory performance, with accuracy >0.90 in 

detecting H. pylori in human gastric WSIs. 

Similarly, identifying microsatellite instability (MSI) in patients with CRC can affect 

the treatment strategy. However, not all laboratories have the resources to perform MSI 

testing for each patient. The development of algorithms to directly predict MSI from H&E-

stained slides may allow for prediction of MSI status without additional genetic or IHC 

tests. Shufflenet [36] and ResNet18 with a single dataset [121] and ResNet18 [122] with 

multiple source datasets were trained and tested for their performance. The models were 

trained with 6406, 429 and 1230 WSIs, achieving AUCs of 0.92, 0.8848 and 0.69–0.84, re-

spectively. Overall, Shufflenet demonstrated higher performance than the ResNet18 mod-

els. Despite the higher WSI number of ResNet18 with multiple source data, its perfor-

mance was lower than that of ResNet18 trained with a smaller and single database. Over-

all, the intention of developing a deep-learning-based algorithm is to predict MSI status, 

with the aim of providing immunotherapy to more patients without the additional cost of 

MSI testing. It is worth noting that large and reliable WSI databases are essential for the 

development of highly accurate and performant algorisms. 

Similar tactics have been applied to identify MSI in GC. Su et al. reported the use of 

ResNet-18 to detect MSI status in GC [28]. Their model performance showed poor accu-

racy of 0.7727 in reporting patient-level MSI status. This is limited by the lack of well-

defined regions of MSI status at the tile level. Thus, their study reveals the necessity to 

obtain accurate pixel-level annotated MSI labels from tumour tissue regions for better al-

gorithm development for improved MSI detection. 

Additionally, deep learning algorithms are capable of predicting prognosis in GI can-

cer by estimating patient survival outcome. Bychkov et al. used the VGG16 model trained 

with H&E slides only to predict the 5-year disease-specific survival of patients with CRC 

into either low- or high-risk groups [123]. Their results demonstrated the superior perfor-

mance of DL-based algorithms compared to manual visual inspection in the stratification 

of low- and high-risk patients, with a hazard ratio of 2.3 (95% CI: 1.79–3.03). Moreover, 

the use of different IHC markers to assess the risk for cancer-specific death was demon-

strated by Meier et al. Tissue slides were stained with a panel of markers, including Ki67, 

CD8, CD20 and CD68, and were used as input to train GoogLeNet. Their results showed 

that a combination of these markers can support the prediction of 5-year survival classifi-

cation in patients (Ki67 and CD20 vs. CD20 and CD68; hazard ratio: 1.47 vs. 1.33). These 

works demonstrate the potential of using DL-based algorithms in a clinical setting by add-

ing value to field-of-precision oncology [124]. 

5.2. Weakly Supervised Learning 

Weakly supervised learning refers to the use of data labelled with a noisy or impre-

cise source to predict outcome. Due to increasing challenges associated with algorithm 

development in computational pathology, such conditions will continue to increase the 

burden of production and access to larger datasets with time-consuming annotation for 

model training. To maximize algorithm learning ability from data from limited 
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annotations, multi-instance learning strategies are widely adopted in weakly supervised 

learning algorithms, especially in the field of computation pathology [125]. The general 

assumption of a multi-instance learning strategy is that the same histopathological infor-

mation exists between a WSI and all its patch images. For instance, in a WSI with MSI, all 

generated tiled images are labelled as “with MSI” [126]. 

By implying such a straightforward assumption, considerable success has been 

achieved with a variety of techniques, such as recalibrated multi-instance learning [127] 

for classification of cancer and dysplasia in GC, graph convolutional network-based 

multi-instance learning [37] for identification of the presence of tumours in gastric biop-

sies, S3TA multi-instance learning method [38] for prediction of the presence of epithelial 

cell nuclei in CRC and GastroMIL [39] for GC diagnosis and risk prediction. Other than 

GI cancer, multi-instance learning also shows its strong adaptability for cancer tissue clas-

sification, such as dual-stream multiple instance learning network [40] and TransMIL 

[128] for recognition of tumours in lung or breast cancer and cluster-to-conquer [129] for 

identification of celiac cancer. It is anticipated that multi-instance learning will remain 

popular for the classification of GI cancer. Beyond the widely used multi-instance learning 

strategy, other novel learning strategies, network structures and loss function are pro-

posed to perform classification tasks in GI cancer. Klein et al. [130] proposed the use of a 

VGG architectural active learning network to detect patients with H. pylori and obtained 

an outstanding AUC (>0.80). Li et al. [131] proposed a definition of a new hybrid super-

vised learning method combining pixel-level and image-level annotations and achieved 

exceptional performance (sensitivity, 1.0000; AUC, 0.9906) for the recognition of GC using 

the ResNet-34 and Otsu methods. Kwabena et al. [132] proposed the use of dual horizontal 

squash capsule networks for the identification of malignant and benign regions in CRC 

and obtained a high AUC (0.998). Chen et al. [133] proposed a new loss function, namely 

rectified cross-entropy and upper transition loss for the prediction of CRC tumour grade 

and obtained an average accuracy of 0.76. The study showed that the new learning strat-

egy and network structure were more effective than the optimization of loss function in 

weakly supervised learning. Furthermore, reduced performance would occur when ap-

plying the trained model to multiple datasets, especially for weakly supervised learning 

algorithms. To overcome such challenges, colour normalization and adversarial learning 

[134] can be applied to train weakly supervised algorithms from different datasets for 

cancer grading. 

Table 2. Histopathologically related deep learning models used for clinical applications in GI can-

cers. Deep learning algorithm and models are grouped according to their specific computational 

task and GI cancer type to compare their performance and clinical applications. The sources of the 

datasets and sample sizes are also summarized. 

Author 
Degree of  

Supervision 
Task 

Cancer 

Type 

Type of 

WSI 
Dataset Algorithm/Model Performance 

Clinical  

Application 

Shen et al. 

[112] 

Fully  

supervised 

Classifica-

tion 

Gastric can-

cer 
H&E 

Training, validation 

and testing: 432 WSIs 

(TCGA-STAD co-

hort) + 460 WSIs 

(TCGA-COAD)  

+ 171 WSIs (TCGA-

READ) + 400 WSIs 

(Camelyon16) 

DenseNet + De-

formable Condi-

tional  

Random Field 

model 

Accuracy: 

0.9398 (TCGA-

STAD), 0.9337 

(TCGA-

COAD), 0.9294 

(TCGA-

READ), 0.9468 

(Camelyon16) 

Identification 

of suspected 

cancer area  

from histolog-

ical imaging 

Song et al. 

[30] 

Fully  

supervised 

Classifica-

tion  

Gastric can-

cer 
H&E 

Training: 2123 WSIs 

Validation: 300 WSIs 

Internal testing: 100 

WSIs 

External validation: 

3212 WSIs (daily gas-

tric dataset) + 595 

DeepLab v3 

Malignant vs. 

benign 

training AUC: 

0.923 

Internal testing 

AUC: 0.931 

AUC: 0.995 

Diagnosis of 

gastric cancer 
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WSIs (PUMCH) + 

987 WSIs (CHCAMS 

and Peking Union 

Medical College) 

(daily gastric 

dataset) 

AUC: 0.990 

(PUMCH) 

AUC: 0.996 

(CHCAMS and 

Peking Union 

Medical Col-

lege) 

Su et al. [28] 
Fully  

supervised 

Classifica-

tion and 

detection 

Gastric can-

cer 
H&E 

Training: 348 WSIs  

Testing: 88 WSIs  

External Validation: 

31 WSIs 

ResNet-18 

Poorly differ-

entiated adeno-

carcinoma vs. 

well-differenti-

ated adenocar-

cinoma and 

other normal 

tissue  

F1 score: 0.8615  

Well-differenti-

ated adenocar-

cinoma vs. 

poorly differ-

entiated adeno-

carcinoma and 

other normal 

tissue  

F1 score: 0.8977  

Patients with 

MSI vs. with-

out MSI  

Accuracy: 

0.7727 (95% CI 

0.6857–0.8636) 

Differentia-

tion of cancer 

grade and di-

agnosis of 

MSI 

Song et al. 

[29] 

Fully  

supervised 

Classifica-

tion 

Colorectal 

cancer 
H&E 

Training: 177 WSIs  

Validation: 40 WSIs  

Internal test: 194 

WSIs  

External validation: 

168 WSIs  

Deep Lab v2 with 

ResNet34 

Adenomatous 

vs. normal  

AUC: 0.92  

Accuracy: 

0.904 

Diagnosis of 

colorectal ad-

enomas 

Sirinukun-

wattana et 

al. [114] 

Fully  

supervised 

Classifica-

tion 

Colorectal 

cancer 
H&E 

Training: 510 WSIs  

External validation: 

431 WSIs (TCGA co-

hort) + 265 WSIs 

(GRAMPIAN cohort) 

Inception V3 

Colorectal can-

cer consensus 

molecular sub-

types 1 vs. 2 vs. 

3 vs. 4  

Training aver-

age accuracy: 

70%  

Training AUC: 

0.9  

External vali-

dation accu-

racy: 0.64 

(TCGA cohort) 

+ 0.72 (GRAM-

PIAN cohort) 

External vali-

dation AUC:  

Prediction of 

colorectal 

cancer  

molecular 

subtype  
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0.84 (TCGA co-

hort) + 0.85 

(GRAMPIAN 

cohort) 

Popovici et 

al. [115] 

Fully  

supervised 

Classifica-

tion 

Colorectal 

cancer 
H&E 

Training: 100 WSIs  

Test: 200 WSIs 
VGG-F 

Molecular sub-

type A vs. B vs. 

C vs. D vs. E 

Overall accu-

racy: 0.84 (95% 

CI: 0.79−0.88) 

Overall recall: 

0.85 (95% CI: 

0.80−0.89) 

Overall preci-

sion: 0.84 (95% 

CI: 0.80−0.88) 

Prediction of 

colorectal 

cancer  

molecular 

subtype  

Korbar et al. 

[116] 

Fully  

supervised 

Classifica-

tion 

Colorectal 

cancer 
H&E 

Training: 458 WSIs  

Testing: 239 WSIs 
ResNet-152 

Hyperplastic 

polyp vs. ses-

sile serrated 

polyp vs.  

traditional ser-

rated adenoma 

vs. tubular ad-

enoma vs. tu-

bulovillous/vil-

lous adenoma 

vs. normal  

Accuracy: 

0.930 (95% CI: 

0.890−0.959)  

Precision: 0.897 

(95% CI: 

0.852−0.932)  

Recall: 0.883 

(95% CI: 

0.836−0.921)  

F1 score: 0.888 

(95% CI: 

0.841−0.925) 

Characteriza-

tion of colo-

rectal polyps 

Wei et al. 

[118]  

Fully  

supervised 

Classifica-

tion  

Colorectal 

cancer 
H&E 

Training: 326 WSIs 

Validation: 25 WSIs 

Internet test: 157 

WSIs 

External validation: 

238 WSIs 

Ensemble Res-

Net×5 

Hyperplastic 

polyp vs. ses-

sile serrated 

adenoma vs. 

tubular ade-

noma vs. tubu-

lovillous or vil-

lous adenoma. 

Internal test 

mean accuracy: 

0.935 (95% CI: 

0.896–0.974)  

External vali-

dation mean 

accuracy: 0.870 

(95% CI: 0.827–

0.913) 

Colorectal 

polyp classifi-

cation 
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Gupta et al. 

[119] 

Fully  

supervised 

Classifica-

tion 

Colorectal 

cancer 
H&E 

Training and testing: 

303,012 normal WSI 

patches  

and approximately 

1,000,000 abnormal 

WSI patches  

Customized  

Inception-ResNet-

v2  

Type 5 (IR-v2 

Type 5) model. 

Abnormal re-

gion vs. nor-

mal region 

F-score: 0.99  

AUC: 0.99 

Identification 

of suspected 

cancer area  

from histolog-

ical imaging 

Kather et al. 

[117] 

Fully  

supervised 

Classifica-

tion and 

prognosis 

Colorectal 

cancer 
H&E 

Training: 86 WSIs 

Testing: 25 WSIs  

External validation: 

862 WSIs (TCGA co-

hort) + 409 WSIs 

(DACHS cohort)  

VGG19 

Adipose tissue 

vs. background 

vs. lympho-

cytes vs. mu-

cus vs. smooth 

muscle vs. nor-

mal colon mu-

cosa vs. cancer-

associated 

stroma vs. col-

orectal adeno-

carcinoma epi-

thelium 

Internal testing 

Overall Accu-

racy: 0.99 

External test-

ing Overall ac-

curacy: 0.943 

High deep 

stroma score 

predicts 

shorter sur-

vival 

Hazard ratio: 

1.99 (95% CI: 

1.27–3.12) 

Colorectal 

cancer detec-

tion and 

 prediction of 

patient sur-

vival outcome 

Zhu et al. 

[31] 

Fully  

supervised 

Classifica-

tion and 

segmenta-

tion 

Gastric and 

colorectal 

cancer 

H&E 
Training: 750 WSIs 

Testing: 250 WSIs  

Adversarial CAC-

UNet 

Malignant re-

gion vs. benign 

region 

DSC: 0.8749  

Recall: 0.9362 

Precision: 

0.9027 

Accuracy: 

0.8935 

Identification 

of suspected 

cancer area  

from histolog-

ical imaging 

Xu et al. [33] 
Fully  

supervised 

Segmenta-

tion 

Colorectal 

cancer 
H&E 

Training: 750 WSIs  

Testing: 250 WSIs 
CoUNet 

Malignant re-

gion vs. benign 

region  

Dice: 0.746  

AUC: 0.980 

Identification 

of suspected 

cancer area  

from histolog-

ical imaging 

Feng et al. 

[32] 

Fully  

supervised 

Segmenta-

tion 

Colorectal 

cancer 
H&E 

Training: 750 WSIs  

Testing: 250 WSIs 
U-Net-16 

Malignant re-

gion vs. benign 

region  

DSC: 0.7789  

AUC:1 

Identification 

of suspected 

cancer area  

from histolog-

ical imaging 

Mahendra et 

al. [120] 

Fully  

supervised 

Segmenta-

tion 

Colorectal 

cancer 
H&E 

Training: 270 WSIs 

(CAMELYON16)  

+ 500 WSIs 

(CAMELYON17)  

 + 660 WSIs 

DenseNet-121 + 

Inception-ResNet-

V2 + 

DeeplabV3Plus 

Malignant re-

gion vs. benign 

region  

Cohen kappa 

score: 0.9090 

Identification 

of suspected 

cancer area  

from histolog-

ical imaging 
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(DigestPath) 

 + 50 WSIs (PAIP)  

Testing: 129 WSIs 

(CAMELYON16)  

+ 500 WSIs 

(CAMELYON17)  

+ 212 WSIs (Di-

gestPath)  

+ 40 WSIs (PAIP) 

(CAMELYON1

7) 

DSC: 0.782 (Di-

gestPath) 

Gehrung et 

al. [34] 

Fully  

supervised 
Detection 

Oesopha-

geal cancer 

H&E and 

TFF3 pa-

thology 

slides 

Training: 100 + 187 

patients  

Validation: 187 pa-

tients  

External validation: 

1519 patients 

VGG-16 

Patients with 

Barrett’s oe-

sophagus vs. 

no Barrett’s oe-

sophagus  

AUC: 0.88 

(95% CI: 0.85–

0.91)  

Sensitivity: 

0.7262 (95% CI: 

0.6742–0.7821)  

Specificity: 

0.9313 (95% CI: 

0.9004–0.9613)  

Simulated real-

istic cohort 

workload re-

duction: 57%  

External vali-

dation cohort 

reduction: 

57.41% 

Detection of  

Barrett’s oe-

sophagus 

Kather et al. 

[122] 

Fully  

supervised 
Detection 

Gastric and 

colorectal 

cancer 

H&E 

Training:  

81 patients (UMM 

and NCT tissue 

bank) + 216 patients 

(TCGA-STAD) + 278 

patients (TCGA-

CRC-KR) + 260 pa-

tients (TCGA-CRC-

DX) + 382 patients 

(UCEC)  

External validation: 

99 patients (TCGA-

STAD) + 109 patients 

(TCGA-CRC-KR) 

+100 patients 

(TCGA-CRC-DX) 

+110 patients (UCEC) 

+ 185 patients 

(KCCH) 

Resnet18 

Patients with 

MSI vs. no MSI 

Training AUC: 

>0.99 (UMM 

and NCT tissue 

bank) 

AUC: 0.81 (CI: 

0.69–0.90) 

(TCGA-STAD) 

AUC: 0.84 (CI: 

0.73–0.91) 

(TCGA-CRC-

KR) 

AUC: 0.77 (CI: 

0.62–0.87) 

(TCGA-CRC-

DX) 

AUC: 0.75 (CI: 

0.63–0.83) 

(UCEC) 

AUC: 0.69 (CI: 

0.52–0.82) 

(KCCH) 

Detection of  

MSI 

Echle et al. 

[36] 

Fully  

supervised 
Detection 

Colorectal 

cancer 
H&E 

Training: 6406 WSIs 

External validation: 

771 WSIs 

Shufflenet 

Colorectal tu-

mour sample 

with dMMR or 

Detection of  

MSI 
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MSI vs. no 

dMMR or MSI 

Mean AUC: 

0.92 

AUPRC: 0.93 

Specificity: 0.67 

Sensitivity: 

0.95 

External vali-

dation AUC 

without colour 

normalisation: 

0.95 

External vali-

dation AUC 

with colour 

normalisation: 

0.96 

Cao et al. 

[121] 

Fully  

supervised 
Detection 

Colorectal 

cancer 
H&E 

Training: 429 WSIs 

External validation: 

785 WSIs 

ResNet-18 

Colorectal can-

cer patients 

with MSI vs. 

no MSI 

AUC: 0.8848 

(95% CI: 

0.8185–0.9512) 

External vali-

dation AUC: 

0.8504 (95% CI: 

0.7591–0.9323) 

Detection of  

MSI 

Meier et al. 

[124] 

Fully  

supervised 
Prognosis 

Gastric can-

cer 

H&E  

IHC 

staining, 

includ-

ing CD8, 

CD20, 

CD68 

and Ki67  

Training and testing: 

248 patients 
GoogLeNet 

Risk of the 

presence of 

Ki67&CD20 

Hazard ratio = 

1.47 (95% CI: 

1.15–1.89) 

Risk of the 

presence of 

CD20&CD68 

Hazard ratio = 

1.33 (95% CI: 

1.07–1.67) 

Cancer prog-

nosis based 

on various 

IHC markers 

to predict pa-

tient survival 

outcome 

Bychkov et 

al. [123] 

Fully  

supervised 
Prognosis 

Colorectal 

cancer 
H&E 

Training: 220 WSIs  

Validation: 60 WSIs  

Testing: 140 WSIs 

VGG-16 

High-risk pa-

tients vs. low-

risk patients  

Prediction with 

small tissue 

hazard ratio: 

2.3 (95% CI: 

1.79–3.03) 

Survival anal-

ysis  

of colorectal 

cancer  

Wang et al. 

[127] 

Weakly su-

pervised 

Classifica-

tion 

Gastric can-

cer 
H&E 

Training: 408 WSIs  

Testing: 200 WSIs 

recalibrated multi-

instance  

deep learning 

Cancer vs. dys-

plasia vs. nor-

mal 

Accuracy: 

0.865 

Diagnosis of 

gastric cancer 

Xu et al. [37] 
Weakly su-

pervised 

Classifica-

tion 

Gastric can-

cer 
H&E 

Training, validation 

and testing:  

185 WSIs (SRS 

multiple instance 

classification  

framework based 

Tumour vs. 

normal  

Recall: 0.904 

Diagnosis of 

gastric cancer 
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dataset) + 2032 WSIs 

(Mars dataset) 

on  

 graph convolu-

tional networks 

(SRS dataset), 

0.9824 (Mars 

dataset)  

Precision: 

0.9116 (SRS da-

taset), 0.9826 

(Mars dataset)  

F1-score: 

0.9075 (SRS da-

taset), 0.9824 

(Mars dataset) 

Huang et al. 

[39] 

Weakly su-

pervised 

Classifica-

tion 

Gastric can-

cer 
H&E 

Training and testing: 

2333 WSIs  

External validation: 

175 WSIs 

GastroMIL 

Gastric cancer 

vs. normal  

External vali-

dation accu-

racy: 0.92  

GastroMIL risk 

score associ-

ated with pa-

tient overall 

survival  

Hazard ratio: 

2.414  

Diagnosis of 

gastric cancer  

and predic-

tion of patient 

survival out-

come 

Li et al. [131] 
Weakly su-

pervised 

Classifica-

tion 

Gastric can-

cer 
H&E 

Training and testing: 

10,894 WSIs 

DLA34 + Otsu’s 

method 

Tumour vs. 

normal  

Sensitivity: 

1.0000 

Specificity: 

0.8932 

AUC: 0.9906 

Diagnosis of 

gastric cancer 

Chen et al. 

[133] 

Weakly su-

pervised 

Classifica-

tion 

Colorectal 

cancer 
H&E 

Training and testing: 

400 WSIs 
CNN classifier 

Normal (in-

cluding hyper-

plastic polyp) 

vs. adenoma 

vs.  

adenocarci-

noma vs. mu-

cinous adeno-

carcinoma vs. 

signet ring cell 

carcinoma  

Overall accu-

racy: 0.76 

Prediction of 

colorectal  

cancer tu-

mour grade 

Ye et al. [38] 
Weakly su-

pervised 

Classifica-

tion 

Colorectal 

cancer 
H&E 

Training and testing: 

100 WSIs 

Multiple-instance 

CNN 

With epithelial 

cell nuclei vs. 

no epithelial 

cell nuclei  

Accuracy: 

0.936  

Precision: 0.922  

Recall: 0.960 

Detection of 

colon cancer 

Sharma et al. 

[129] 

Weakly su-

pervised 

Classifica-

tion 

Gastroin-

testinal 

cancer 

H&E 
Training and testing: 

413 WSIs 

Cluster-to-Con-

quer  

framework 

Celiac cancer 

vs. normal  

Accuracy: 

0.862  

Precision: 0.855  

Detection of  

 gastrointesti-

nal cancer 
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Recall: 0.922  

F1-score: 0.887 

Klein et al. 

[130] 

Weakly su-

pervised 
Detection 

Gastric can-

cer 

H&E + 

Giemsa 

staining 

Training: 191 H&E 

WSIs and 286 

Giemsa-stained WSIs 

Validation: 71 H&E 

WSIs and 87 Giemsa-

stained WSIs 

External validation: 

364 H&E WSIs and 

347 Giemsa-stained 

WSIs 

VGG+ + active 

learning 

H. pylori vs. no 

H. pylori  

External vali-

dation AUC: 

0.81 (H&E) + 

0.92 (Giemsa-

stained) 

Detection of 

H. pylori 

WSI = whole-slide imaging; H&E = haematoxylin and eosin; AUC= area under the curve; CI = con-

fidence interval; TCGA = The Cancer Genome Atlas; STAD = stomach adenocarcinoma; DACHS = 

Darmkrebs: Chancen der Verhu¨tung durch Screening; MSI = microsatellite instability; dMMR = 

deficient mismatch repair; TFF3 = trefoil factor 3; DSC = Dice similarity coefficient; UMM = Univer-

sity Medical Centre Mannheim, Heidelberg University; NCT = National Centre for Tumour Dis-

eases; CRC = colorectal cancer; PUMCH = Peking Union Medical College Hospital; CHCAMS = Chi-

nese Academy of Medical Sciences; H. pylori = Helicobacter pylori; IHC = immunohistochemistry; 

CNN = convolutional neural network. 

6. Clinical Insight for Selected AI Applications in Early Diagnosis and Monitoring of 

the Progression of GI Cancer 

The application of AI in GI cancer is an important and rapidly growing area of re-

search. Early diagnosis and monitoring of GI cancer can minimize cancer incidence, lower 

mortality rates and reduce the cost of care. Effective clinical management is a prerequisite 

to achieve these goals, and the incorporation of AI in healthcare systems is indispensable. 

Many AI-based software applications and algorithms have been developed to assist in the 

detection of GI premalignant lesions. In addition, several investigations have shown im-

pact through advanced AI algorithms for tumour subtyping by providing valuable infor-

mation that may affect subsequent treatment planning and prediction of patient out-

comes. Finally, promising results have been demonstrated by various intelligential WSI 

analytical neural networks for the screening of GI cancer, ranging from AI monitoring to 

providing rapid analysis and diagnosis of GI cancer, optimizing the workflow in an AP 

laboratory. Based on these promising results, the possible practical applications of AI for 

histopathological analysis will also be highlighted below. 

6.1. Detection of Early GI Premalignant Lesions 

Early detection of precancerous lesions is crucial to identify certain GI cancers, espe-

cially in GC and CRC [135], which are associated with high incidence and mortality. As 

chronic H. pylori infection (Figure 3A) is a major risk factor for GC, evaluation of H. pylori 

is critical in gastric biopsies. Identification of these organisms requires examination of the 

slide under high magnification (400×). Although this bacterium can be easily identified in 

H&E-stained samples if present in large quantities, identifying cases with scanty numbers 

of H. pylori can be extremely time-consuming. Although ancillary staining (e.g., Warthin–

Starry staining, IHC) is possible, these methods require extra cost and time for diagnosis. 

Deep learning assistance [35,130] can further speed up GC diagnosis and provide alterna-

tive solutions to low-resource settings, where ancillary stains are not readily available. 

Klein et al. [130] designed VGG-based algorithms under an active learning scheme. By 

utilizing algorithms that are able to proactively learn and train from standard GC histol-

ogy images with H. pylori, the required amount of pixelwise labelling annotation by 

pathologists can be significantly reduced, eliminating the need for large, annotated image 

datasets established by pathologists. Therefore, only a small portion of manual annotation 

will be required to develop AI applications for detection of H. pylori in order to self-gen-

erate annotation of regions with H. pylori. 
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Figure 3. Representative H&E-stained sections of different pathologies along the GI tract. (A) Heli-

cobacter-pylori-associated gastritis. Abundant curved rods lining the surface epithelium with un-

derlying mixed inflammatory infiltrate. (B) Moderate number of plasma cells (green arrow), indi-

cating chronic inflammation, and neutrophils (yellow arrow), indicating active inflammation. (C) 

Gastric adenocarcinoma. Irregular angulated glands lined by tumour cells with enlarged hyperchro-

matic nuclei, moderate nuclear pleomorphism and frequent mitotic figures. The background stroma 

is inflamed and desmoplastic. (D) Normal oesophageal squamous epithelium with normal surface 

maturation. (E) Oesophageal squamous epithelium with high-grade dysplasia involving full thick-

ness of the epithelium. The dysplastic cells exhibit enlarged hyperchromatic nuclei, marked nuclear 

pleomorphism, loss of polarity and lack of surface maturation. No stromal invasion is observed. (F) 

Oesophageal squamous cell carcinoma. Irregular nests of tumour cells infiltrating in desmoplastic 

stroma. The tumour cells exhibit enlarged hyperchromatic nuclei, marked nuclear pleomorphism 

and frequent mitotic figures. Squamous pearls (yellow arrow) are observed. (G) Oesophageal squa-

mous epithelium with high-grade dysplasia involving full thickness of the epithelium. The 
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dysplastic cells exhibit enlarged hyperchromatic nuclei, marked nuclear pleomorphism, loss of po-

larity and lack of surface maturation. No stromal invasion is observed. (H) Oesophageal adenocar-

cinoma. Complex cribriform glands lined by tumour cells with enlarged hyperchromatic nuclei, 

moderate nuclear pleomorphism and frequent mitotic figures. (I) Oesophageal adenocarcinoma. 

Poorly differentiated areas with predominantly solid nests observed. (J) Colonic tubular adenoma. 

Crowded colonic crypts with low-grade dysplasia. The dysplastic cells exhibit pseudostratified, 

elongated hyperchromatic nuclei. (K) Colon adenocarcinoma. Signet ring cells (arrow) with intra-

cellular mucin that displaces the nucleus to the side. (L) Colon adenocarcinoma. Cribriform glands 

with extensive tumour necrosis (arrow). 

Unlike GC, differentiating high-risk colorectal polyps from low-risk polyps (e.g., in-

nocuous hyperplastic polyps) is an important task in CRC screening (Figure 3J). As iden-

tifying high-risk polyps is based on characterization of specific types of polyps (e.g., ses-

sile serrated polyps) [136] and considerable interobserver variability exists among 

pathologists [137–139], accurate diagnosis of high-risk polyps is needed for effective and 

early detection of CRC. As all US adults aged 50–75 years old are recommended by the 

US Preventive Services Task Force [140] to screen for CRC yearly, AI applications 

[29,116,118] for classification of high-risk colorectal polyps could demonstrate its clinical 

utility in prioritising slides with higher likelihood of malignancy. Wei et al. [118] demon-

strated that their AI algorithms for colorectal polyp detection can further highlight regions 

of high-risk polyps on WSIs to provide effective, consistent and accurate diagnoses, 

demonstrating that AI systems, such as computer-aided diagnosis, can possibly be devel-

oped to assist pathologists in the interpretation of CRC WSIs. However, as polyp annota-

tions were provided by several pathologists for AI model training, similar errors were 

found in both pathologist and AI applications with respect to classifying high-risk polyps 

and low-risk polyps. This suggests that future AI systems for colorectal polyp detection 

may require additional development with extra manual annotations by different experi-

enced GI pathologists to reduce errors in classification. 

Currently, diagnostic procedures still rely heavily on pattern recognition by 

pathologists to identify regions of interests. Future AI algorithms will guide pathologist 

by identifying areas of interest by highlighting H. pylori and high-risk polyps for confir-

mation. Given the promising performance of AI algorithms in accurate delineation of 

premalignant lesion regions, pathologists might integrate computational pathology to 

adopt AI-based tools in clinical workflows with increased confidence. Eventually, this will 

reduce the time spent per case and allow for early detection and diagnosis of patients with 

GI premalignant lesions. 

6.2. Tumour Subtyping Characterization and Estimation of Patient Outcome 

In histopathology, the identification and classification of tumour subtypes is im-

portant for personalized medicine [141]. As certain gene mutations and molecular altera-

tions are associated with specific morphological changes [142], deep-learning-based im-

age analysis has the potential to uncover molecular tumour subtyping and build robust 

classifiers to enhance treatment response in cancer patients. MSI refers to DNA mismatch 

repair deficiency resulting in accumulation of mutations within short repetitive sequences 

of DNA (microsatellites). MSI testing is critical for treatment of GI cancer [143], as CRCs 

with high MSI are associated with poor response to conventional chemotherapy but im-

proved response to immunotherapy, [144,145] leading to improved median overall sur-

vival [146]. However, due to the high cost of PCR-based MSI testing [147], many studies 

have focused on developing deep learning methods based on H&E imaging to provide 

fast and accurate MSI detection for GC [28,122] and CRC [36,121,122] in countries with 

limited resources, especially in Latin America and the Caribbean [148]. Due to the lack of 

exact 3D quantitative MSI information, training deep learning models without accurate 

information may limit the prognostic performance in GI cancer patients with MSI. Despite 

imperfect specificity, the increasing amount of MSI related-AI research indicates that AI 

will be rapidly applied to screen for MSI in GI cancers to lower laboratory operation costs. 
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Assessment of survival outcomes in GI cancer is another ongoing research area using 

AI. Many studies have explored the question of whether deep learning applications can 

be used as prognostic tools for GC [124] (Figure 3C) and CRC [27,117,123] (Figure 3K,L) 

based on H&E-stained WSIs. Using deep learning, suspected GI tumour tissue (e.g., tissue 

microarrays [27,123,124] and stroma [117]) can be assessed quantitatively using H&E-

stained WSIs to assist pathologists in identifying patients at high risk of mortality for im-

mediate advanced treatment. Furthermore, some pioneering studies [114,115] have at-

tempted to explore the classification of consensus molecular subtype (CMS) classification 

of CRC and patient survival outcomes using deep learning. With the capacity to identify 

tumour subtypes and perform risk assessment of cancer patients, AI applications can pro-

vide a cost-effective and time-saving solution for clinical decision making. Guided by AI 

with high reproducibility and objectivity, more clinically relevant information can be gen-

erated from WSIs to allow for improved clinical management to enhance the survival of 

GI cancer patients. 

Performing supplementary laboratory tests, including PCR and IHC tests, remains 

the gold standard to determine the molecular tumour subtype profile of GI cancer. Ad-

vancements in AI algorithms allow for application in clinical settings with limited re-

sources to detect specific biomarkers, such as MSI, using commonly available H&E stain-

ing images, facilitating early personalized treatment. Additionally, AI application will al-

low for improved allocation of medical resource by shortening the time required to iden-

tify GI cancer patients at high risk of mortality for earlier treatment. 

6.3. Screening GI Cancer in Daily Clinical Operation 

As clinical follow up is essential to reduce cancer mortality [59], effective pathology 

service must start by providing early detection and accurate cancer diagnosis. The short-

age of pathologists continues to worsen globally, resulting in delayed cancer diagnosis 

and treatment, especially during the recent COVID-19 pandemic health crisis [149–151]. 

The pressure to provide fast and accurate diagnoses, with overloaded histopathology 

workforces, has forced the transformation of practice from conventional light microscopy 

to digital pathology with AI analytical applications. Studies have focused on improving 

clinical workflow by diagnosing various GI cancers, including oesophageal cancer [34] 

(Figure 3E–H), GC [30,39] (Figure 3C,I), etc. Pertinently, Gehrung et al. [34] established an 

H&E-based trained deep learning system to identify and triage oesophageal cases with 

Barrett’s oesophagus (BO) for early detection of oesophageal adenocarcinoma. The AI ap-

plication resulted in a workload reduction of more than 55% of for BO identification after 

triage and further demonstrated that the developed AI system can improve operational 

efficiency and support clinical decision making in a realistic primary care setting. How-

ever, the deep learning system developed by Gehrung et al. [34] did not tackle the problem 

of successful training algorithms requiring large annotated WSI datasets established by 

pathologists [16]. Campanella et al. [152] demonstrated a weakly supervised system 

trained by diagnostic data that can be automatically retrieved from pathology reports to 

triage prostate, skin and breast cancer cases. A workload reduction of more than 65% [152] 

was observed. As weakly supervised algorithms have proven their value in cancer screen-

ing, efforts should be made to develop AI applications to triage and identify GI cancers 

for daily operation without further overloading the histopathology workforce. 

At present, histological cases are reviewed in chronological order in traditional AP 

laboratories. Clinical needs and the current acceptability of AI have not been well-studied 

and discussed. One of the ways to demonstrate the clinical usefulness of AI is to measure 

the potential workload reduction associated with automatic review of benign/disease-free 

cases. With the utilization of AI for case screening, cases susceptible to GI cancer can be 

flagged for rapid review, and cases with no potential indication of GI cancer can be semi-

automatically reviewed (Figure 3B,D). By measuring the change in pathologist workload 

in prospective trials [153], the clinical usefulness of AI can be assessed, enabling earlier 

and improved treatment planning. Furthermore, using slide-level diagnostics in a weakly 
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supervised setting is also recommended for AI algorithm development. This could also 

alleviate the overwhelming workload issue in AP laboratories by freeing pathologists 

from the generation of pixel-level annotation for future algorithmic development used in 

clinical settings. 

7. Conclusions 

In this review, we outlined the potential of AI for the histological diagnosis of GI 

cancers. The recent increase in demand and complexity of GI cancer diagnosis has 

prompted the incorporation of digital pathology into the diagnostic workflow. Digital pa-

thology allows pathology information to be acquired, managed and interpreted in a digi-

tal environment, opening up opportunities for computational analysis using AI. We pre-

sented the applications of the two major AI methodologies, i.e., machine learning and 

deep learning, for the diagnosis of GI cancers. Various machine learning algorithms show 

promising sensitivity and specificity in diagnosing GC. In particular, the most popular 

machine learning algorithm, support vector machine, demonstrates high robustness and 

generalization ability. Deep learning, which uses highly complex algorithms to simulate 

the human neural network, is also a powerful tool in digital pathology. We summarized 

the performance characteristics and limitations of fully supervised and weakly supervised 

approaches in terms of classification, segmentation, detection and prognostication of GI 

cancer. We also presented clinical insights with respect to how AI could facilitate the early 

detection of lesions, tumour subtyping and widespread screening for cancers. Despite the 

merits offered by AI, the major challenges of algorithm development, such as variation in 

histological image data, interpathologist variability with respect to interpretations, model 

transparency and interpretability in clinical settings, have to be overcome. Although there 

is an urgent need for AI development due to the overwhelming workload of pathologists, 

it requires pathologists to spend extra time to provide annotations. This dilemma is re-

mains unsolved. From a clinical perspective, solid external validation and quality controls 

with reference to a large dataset are important in ensuring acceptable standards of AI. 

This warrants continuous studies on model design by relying on patch/pixel-level anno-

tation, explainability and generalizability of AI algorithms with the inclusion of variability 

of the multiethnic populations. Through rigid comparison of the current AI model for GI 

cancer, our studies have highlighted the current challenges associated with developing AI 

for histological analysis, providing a detailed summary of current AI algorithms devel-

oped for GI cancer and spotlighting clinical insights for future development of GI cancer 

AI algorithms. As AI algorithms continue to advance, we believe that the transparency of 

such application will also improve. We also believed that the clinical usefulness of AI 

could be demonstrated though prospective trials. Thus, the adoption of such conceptual 

AI will be transformed into effective applications of computational pathology for clinical 

practice. 
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