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Simple Summary: Glioma is the most common primary malignant tumor of the adult central nervous
system. Despite aggressive multimodal treatment, its prognosis remains poor. During follow-up,
it remains challenging to distinguish treatment-related changes from tumor progression in treated
patients with gliomas due to both share clinical symptoms and morphological imaging characteristics
(with new and/or increasing enhancing mass lesions). The early effective identification of tumor
progression and treatment-related changes is of great significance for the prognosis and treatment of
gliomas. We believe that advanced neuroimaging techniques can provide additional information for
distinguishing both at an early stage. In this article, we focus on the research of magnetic resonance
imaging technology and artificial intelligence in tumor progression and treatment-related changes.
Finally, it provides new ideas and insights for clinical diagnosis.

Abstract: As the most common neuro-epithelial tumors of the central nervous system in adults,
gliomas are highly malignant and easy to recurrence, with a dismal prognosis. Imaging studies
are indispensable for tracking tumor progression (TP) or treatment-related changes (TRCs). During
follow-up, distinguishing TRCs from TP in treated patients with gliomas remains challenging as
both share similar clinical symptoms and morphological imaging characteristics (with new and/or
increasing enhancing mass lesions) and fulfill criteria for progression. Thus, the early identification of
TP and TRCs is of great significance for determining the prognosis and treatment. Histopathological
biopsy is currently the gold standard for TP and TRC diagnosis. However, the invasive nature of
this technique limits its clinical application. Advanced imaging methods (e.g., diffusion magnetic
resonance imaging (MRI), perfusion MRI, magnetic resonance spectroscopy (MRS), positron emission
tomography (PET), amide proton transfer (APT) and artificial intelligence (AI)) provide a non-invasive
and feasible technical means for identifying of TP and TRCs at an early stage, which have recently
become research hotspots. This paper reviews the current research on using the abovementioned
advanced imaging methods to identify TP and TRCs of gliomas. First, the review focuses on the
pathological changes of the two entities to establish a theoretical basis for imaging identification. Then,
it elaborates on the application of different imaging techniques and AI in identifying the two entities.
Finally, the current challenges and future prospects of these techniques and methods are discussed.

Keywords: glioma; treatment-related changes; tumor progression; magnetic resonance imaging;
positron emission tomography; artificial intelligence
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1. Introduction

Gliomas are the most common primary malignant brain tumors in adults and are
associated with a dismal prognosis. The median overall survival (OS) for glioblastoma
(GBM) ranges from 14 to 18 months [1,2]. In clinics, the standard of care for high-grade
glioma (HGG) consists of surgical resection, followed by concurrent radiotherapy and
adjuvant temozolomide (TMZ) chemotherapy. For low-grade glioma (LGG), molecular
subtyping plays an important role in patient prognosis and selection of treatment, including
surgical resection, radiotherapy, or radiotherapy followed by PCV (procarbazine, lomustine
and vincristine) or temozolomide chemoradiotherapy. Moreover, the use cycle of TMZ
and molecular typing jointly affect the prognosis and survival of patients [3]. During
follow-up, the appearance of new and/or increasing enhancing lesions on conventional
MRI after the completion of chemoradiation therapy has become a major challenge because
it may represent tumor progression (TP) or treatment-related changes (TRCs). TRCs
are histopathologically characterized by fibrinoid necrosis of blood vessel walls, blood–
brain barrier(BBB)disruption, oligodendroglial injury and cellular hypoxia, leading to
increased vessel permeability and edema [4,5]. The pathological features of TP include
neovascularization, tumor cell proliferation and neoplastic BBB disruption. Because of the
difference in pathological basis, the clinical management strategies of these two entities
may be completely different. Patients with TP may require reoperation or a change of
their treatment plan, while those diagnosed with TRCs need to be closely monitored
through short-interval MRI scans to support the continuation of currently effective therapy
for better clinical outcomes. An incorrect diagnosis of TP may lead to the erroneous
termination of effective treatment and has a negative impact on survival. In addition to
affecting individual patient care, these changes also have an impact on the results of clinical
trials of new therapies. Thus, precisely detecting TRCs and TP is critical for ensuring
effectiveness of a treatment. Although histopathological biopsy is the “gold standard” for
diagnosing TP and TRCs, its accuracy depends on the biopsy site, resection type, and lesion
heterogeneity. Additionally, its invasiveness limits its clinical application. To overcome
these challenges, non-invasive advanced imaging methods have been developed, which has
made distinguishing TRCs from TP at the early stage possible. Thus, these methods play
an essential role in clinical decision-making regarding treatment choice and management
of patients.

As we all know, the phenomenon of conventional MRI enhancement highlights that
enhancement does not measure the tumor activity, but only reflects the disturbed BBB.
Considering the different pathological mechanisms of the two entities, numerous innovative
imaging modalities focusing on cell proliferation (apparent diffusion coefficient parameters
from diffusion techniques), neoangiogenesis and cerebral blood flow (from perfusion
techniques) or metabolism (from MRS, APT, or PET) are valuable diagnostic tools. These
methods are valuable in both the baseline and follow-up evaluations of brain tumors., As
an emerging field, MRI-based AI can reflect tumors heterogeneity and occupies crucial
position in the evaluation of the tumor microenvironment after treatment. These methods
allow considerably deeper and non-invasive insight into the interpretation of brain lesions,
thereby improving the accuracy of diagnosis.

Here, we discuss the potential value of imaging techniques in distinguishing between
TP and TRCs of gliomas. First, we outline the pathological features of the two entities to
provide a theoretical basis for the subsequent imaging identification. Then, we focus on the
main application of different imaging techniques and MRI-based AI in tracking TP and
TRCs. Furthermore, we present the post-processing diagrams to distinguish between the
two entities using different technologies and workflow (Figure 1). Non-invasive in vivo
imaging may be promising in clinical decision-making. Finally, we propose the current
challenges and future prospect of these techniques and AI.
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2. Characteristics of TRCs
2.1. Pseudoprogression (PsP)

Based on the timing and degree of injury, TRCs may be clinically categorized into early
pseudoprogression (PsP) and late radiation necrosis (RN) [6]. PsP is predominantly a suba-
cute treatment-related reaction that may or may not involve neurological deterioration [4].
Radiologically, PsP can be described as new or enlarging areas of contrast enhancement
on follow-up MRI within the first 3–6 months of the completion of chemoradiotherapy
following surgical resection, which subsides or stabilizes without further intervention
treatments, and some studies suggest that PsP may have a relatively good prognosis [7,8].
Various reports have defined the time of PsP occurrence differently, which is likely to
affect the incidence. Previous studies have shown that the incidence rate of PsP after
chemoradiotherapy ranges from 21 to 47% in GBM patients treated with TMZ [4,8–10]. The
O6-methylguanine-DNA methyltransferase (MGMT) status [9], isocitrate dehydrogenase
(IDH) gene status [11], Ki67 expression [12], and p53 status [13] were all associated with
PsP occurrence. Tumors with a methylated MGMT promoter and IDH mutation show PsP
more frequently and have better median OS [7,9], and a study found a 91.3% probability of
PsP in patients with methylated MGMT promoter tumors [9]. These biomarkers clearly
affect PsP incidence and prognosis. The PsP pathophysiology remains unclear. At the histo-
logical and mechanistic level, early PsP and RN may represent different pathophysiological
processes, where some patients with early PsP continue to develop trueRN, whereas others
may show improvement [1]. PsP may constitute an over-response to effective therapy
and is likely associated with endothelial damage, BBB disruption, oligodendroglial injury,
cellular hypoxia and the upregulation of the vascular endothelial growth factor (VEGF),
leading to increased vessel permeability and edema or increased tumor enhancement;
another explanation is the increased capillary permeability induced by radiotherapy [4].
The exact pathophysiological features of PsP and the associated molecular changes need
further exploration.
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2.2. Radiation Necrosis (RN)

In patients with malignant gliomas, RN is a severe local tissue reaction to radiotherapy.
Classical RN represents a variant of post-treatment effects, which is different from PsP
in terms of the time of onset and degree of severity. RN is usually an undesirable but
inevitable effect of radiotherapy. It generally occurs 6–24 months after radiotherapy but
can occur up to several years or even decades after [14,15]. RN commonly presents as
a space occupying necrotic mass provoking neurological deficit. Because of differences
in the radiation dose and fractionation, target lesion volume, and the time of reporting
RNfrom radiotherapy, the incidence of RN ranges from 5 to 40% [16,17]. The pathological
features of RN include endothelial cell damage, vascular dilation and telangiectasias, wall
thickening and vessels hyalinization, fibrinoid necrosis of blood vessel walls, and adjacent
perivascular parenchymal coagulative necrosis [4,5]. Radiation therapy also damages
astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells [17]. Vasogenic edema
and hypoxia cause the up-regulation and release of hypoxia-inducible factor-1a (HIF-1a),
tumor necrosis factor-alpha (TNF-α) and VEGF, which can induce apoptosis of endothelial
cells and increase the permeability of small vessels and BBB [18]. A complete understanding
of the pathophysiology and molecular pathways of RN is useful for comprehending and
interpreting conventional and advanced imaging findings.

2.3. Pseudoresponse

Anti-VEGF agents (such as bevacizumab) have recently been used for HGG treatment
trials, which produce “normalization” of the BBB. This is a direct effect on blood vessel
permeability, rather than a true anti-tumor reduction [2]. Anti-VEGF agents result in a
marked pattern of change on MRI. A rapid decrease in contrast enhancement and a decrease
in the surrounding edema are observed on fluid-attenuated inversion recovery (FLAIR) [5].
This radiological response should be interpreted with caution, as it lasts just a few days
or weeks, and therefore is termed “pseudoresponse”. In clinics, this response can relieve
symptoms, reduce steroid dependence and improve the quality of life for patients [14].
However, it was pointed out that this normalization of blood vessels is reversible, with
rebound enhancement and edema, and may affect the prognosis of patients.

TP is characterized by the presence of tumor cells, increased cellularity, and vascular
proliferation, leading to BBB disruption, whereas the pathological features of TRCs include
vascular endothelial cell damage, BBB disruption, and cellular hypoxia, leading to edema
and increased vascular permeability. Because of the difference in pathological changes
between TP and TRCs, it provides a theoretical basis for imaging identification. Thus,
we describe the diagnostic value of different imaging modalities for predicting the TP
and TRCs.

3. Diagnostic Imaging Modalities
3.1. Conventional MRI

At present, MRI plain scan and enhanced scan are the most crucial imaging indicators
for evaluating the efficacy and recurrence of gliomas. In 1990, the Macdonald criteria [19]
were the most widely used guidelines for assessing response to therapy in patients with
HGG. TP is considered to have occurred only when the perpendicular diameters of the
largest area of contrast enhancement lesion increased to >25%, any new tumor appeared on
computed tomography (CT) or MRI, or clinical deterioration occurred. The development
of MRI technology and the observation of number of clinical cases have clarified that
the size of MRI contrast enhancement lesions can no longer accurately determine the
tumor recurrence basis. Because the size of the enhanced lesions only reflect the extent
of permeability enhancement after BBB destruction, but do not represent the of tumor
volume size. Increased enhancement can be induced by various non-tumoral processes,
such as treatment-related inflammation, ischemia, subacute radiation effects, and RN [14].
Subsequently, in 2010, a more comprehensive Response Assessment in Neuro-Oncology
(RANO) guideline for evaluating the glioma treatment efficacy was proposed [20]. The
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disease progression was determined according to MRI characteristics and the time after
chemotherapy (less than 12 weeks and >12 weeks). The enhancement outside the radiation
field, the increase of 25% or more of the sum of the vertical diameter product between the
first radiotherapy scan and the scan after 12 weeks, or clinical deterioration are considered
to be important factors for TP. For patients receiving antiangiogenic therapy, a significant
increase in T2-FLAIR non-enhancing lesion may be considered to indicate progressive
disease [20]. The modified RANO criteria were published in 2017; according to these
criteria, TP was defined based on at least two sequential scans separated by ≥4 weeks, both
exhibiting a ≥ 25% increase in the sum of products of perpendicular diameters, a ≥ 40%
increase in the total volume of the enhancing lesions or clear clinical deterioration. Given
the existence of PsP, a repeat study needs to be conducted 4 weeks later to confirm any new
measurable (>10 mm × 10 mm) enhancing lesion r [21]. In fact, within the first 12 weeks
after treatment, the new lesions with enhancement seen within the radiation field can never
be definitively diagnosed as progression versus PsP.

Studies have shown that the enhancement mode, enhancement location, and enhance-
ment size of lesions can help to identify TP and TRCs. For instance, the typical appearance
of RN on contrast-enhanced T1 MRI is the so-called Swiss cheese or soap bubble [22].
Another study demonstrated that 85% of patients with TP confirmed by histopathology
observed focal solid nodular enhancement and solid uniform enhancement with distinct
margins, while patients with RN could see a hazy mesh-like diffuse enhancement and
rim enhancement with feathery indistinct margins [23]. In some retrospective studies,
distant subependymal enhancement [24,25], corpus callosum combination with multiple
enhancing lesions and crossing of the midline [26] can provide clues for early TP diagno-
sis. A study showed that larger sizes of T2-FLAIR signal abnormality and the enhancing
component of the lesion may favor TP, likely reflecting greater disruption of the BBB [27].
Although enhancing T1 and FLAIR can show subtle changes in the lesion, its sensitivity
and specificity for TP detection are relatively lower.

Differentiating TP from TRCs based on a two-dimensional (2D) measurement of the
enhancing area and the limited information obtained through conventional MRI is currently
challenging. Compared with conventional MRI, advanced imaging techniques provide
a plethora of additional parameters, which might result in higher levels of diagnostic
performance for TP and TRCs. The integration of additional information from advanced
neuroimaging techniques may further improve the diagnostic accuracy of conventional MRI.
Next, we discuss the application value of advanced imaging techniques in distinguishing
the two entities and elaborate on the advantages and disadvantages of each technique.
Table 1 provides a summary of current techniques and their advantages and limitations.

Table 1. Cut off values of PET tracers for the detection of TP and TRCs.

Study TP TRCs Modality Tracer Parameter Cutoff Sensitivity Specificity Accuracy

Galldiks et al. [28] 11 11 PET 18F-FET TBRmax, 2.3 100% 91% 96%
Galldiks et al. [29] 121 11 PET/MRI 18F-FET TBRmean 2.0 93% 100% 93%

Kebir et al. [30] 19 7 PET 18F-FET TBRmax 1.9 84% 86% 85%

Jena et al. [31] 25 10 PET/MRI 18F-FDG
TBRmax

TBRmean
1.579
1.179

93.3%
90.0%

72.7%
81.8%

87.8%
87.8%

Deuschl et al. [32] 35 15 PET/MRI 11C–MET
TBRmax

TBRmean
1.83
1.33 97.14% 93.33% 96%

Park et al. [33] 38 5 PET/MRI 11C–MET TBRmax 1.40 82.1% 66.7% -

Werner et al. [34] 38 10 PET/MRI 18F-FET
TBRmax

TBRmean 1.95 100% 79% 83%

Maurer et al. [35] 94 33 PET 18F-FET TBRmax 1.95 70% 71% 70%

Pellerin et al. [36] 34 24 PET/MRI 18F-DOPA
Tumor isocontour
maps and T-maps - 100% 94.1% -
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3.2. Diffusion MRI
3.2.1. Diffusion-Weighted Imaging

Diffusion-weighted imaging (DWI), reflecting the microscopic movement of water
molecules in tissues, has been widely used for evaluating tumor grading and treatment
response or disease progression. Apparent diffusion coefficient (ADC), as a very accessible
parameter of DWI, reflects microscopic water diffusivity in the presence of factors that
limit diffusion in tissues [37]. In HGGs, as cellularity is increased, the tissue is detected as
restriction diffusion and the ADC value decreases. Several studies have shown that the
ADC value is s useful for differentiating TRCs from TP in treated HGGs [38–42]. Through
qualitative analysis, Lee et al. [41] found that the occurrence rate of homogeneous or multi-
focal high signal intensity of TP on DWI is higher than that of PSP, and a mean ADC value
lower than 1200 × 10−6 mm2/s was more common in TP than in PsP. In addition to mean
ADC value quantitative and qualitative analyses, cumulative histogram analysis [25,43,44]
and parametric response maps [45] were novel approaches for differentiating TP and PsP.
Although diffusion MRI with an ADC value is the most commonly used advanced technol-
ogy at present, several meta-analyses have demonstrated that diffusion MRI is not suitable
for differentiating TP from RN when used alone, and its diagnostic accuracy is the lowest
among all advanced MRI techniques [46,47]. Due to the spatial and genetic heterogeneity of
HGG and the complex pathology of the surgical area after radiotherapy, it will have a large
impact on ADC values, leading to large deviations in research results [16,48]. Moreover,
ADC values may be affected by the IDH status, with the ADC value of IDH wild-type
gliomas being lower than that of IDH mutant gliomas [48]. Another limitation is that
perfusion can interfere with accurate diffusion measurements due to incoherent movement
of blood.

3.2.2. Intravoxel Incoherent Motion

To overcome the limitations of DWI, intravoxel incoherent motion (IVIM) based
on DWI is proposed. The IVIM technology can obtain tissue diffusion and perfusion
characteristics simultaneously and uses a biexponential model for diffusion calculation [49].
AM Paschoal et al. [50] opined that IVIM could help in distinguishing between the diffusion
of water molecules and micro-circulation perfusion in tissues. The IVIM model involves two
diffusion coefficients. The slow diffusion coefficient (D) is related to molecular diffusion
restriction, whereas the fast diffusion coefficient (D*) is related to blood movement in
the micro-vascular system. The perfusion fraction (f), the third parameter, describes the
fraction of incoherent signals generated from the vascular compartment in each voxel.
Several studies have used IVIM to evaluate the grade [51], prognosis [52,53] and treatment
response [49] of gliomas. Kim et al. investigated 51 patients with pathologically confirmed
glioma progression (31 cases) and TRCs (20 cases) by using IVIM-DWI scans and found that
the mean 90th percentile for perfusion was significantly higher in the recurrent tumor group
than in the TRC group [49]. A prospective study investigated the combination of IVIM and
arterial spin labeling (ASL) for differentiating TP from PsP [54]. IVIM perfusion imaging
has several theoretical advantages. It can provide diffusion and perfusion information
simultaneously without the need of intravenous contrast agents. IVIM is in valuable
for some patients with renal failure or allergic reactions. At the same time, IVIM can
be easily scanned repeatedly because the number of b-values collected is small and the
total collection time is short, which is well-accepted by both patients and clinicians. Most
studies have used 13–16 b-values to acquire IVIM images, and the average scan time has
been reported to vary from 3 to 5 min [49,52–54]. Various factors may affect the quality of
IVIM brain perfusion imaging, including the selection of b value [49], low signal to noise
ratio at the high b value, partial-volume contamination from the cerebrospinal fluid, large-
vessel partial, necrotic areas, and susceptibility artifacts [53]. Thus, the exact relationship
between IVIM perfusion parameters and dynamic susceptibility contrast (DSC) perfusion
parameters should be investigated further.
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3.2.3. Diffusion Tensor Imaging

Based on the Gaussian diffusion model, diffusion tensor imaging (DTI) can measure
the directional variation of water diffusivity and predict the structural properties of tis-
sues [55]. DTI is often used to track the integrity of white matter fiber bundles and assess
the degree of white matter damage and recovery after chemoradiotherapy. Fractional
anisotropy (FA), relative anisotropy (RA) and mean diffusivity (MD) are the commonly
used parameters in DTI [55]. Because brain white matter fiber bundles are extensively
damaged, with almost no normal fibers and cell structures, after radiation injury, the FA
value of PsP or RN is considerably much lower than that of TP. A study reported that higher
MD values and lower FA metrics in both enhanced lesion and related edema of TRCs were
significantly different compared with those of TP [56]. Several studies have also pointed
out that the FA ratio in RN or PsP was lower than that in TP [57,58]. However, another
retrospective study showed that DTI metrics were unavailable in differentiating TP and PsP
compared with morphologic MRI features. They thought that DTI indicators were affected
by several factors, such as extracellular volume, tumor cell density and direction [27]. Tech-
nically, the result of DTI also depends on the choice of b value and direction number. To
achieve a more accurate diffusion tensor, the number of DTI acquisition directions is usually
increased. The common number of directions ranges from 15 to 64, and the acquisition
time is 5~30 min; this will increase the impact of patient motion artifacts [55]. Additionally,
because of the long collection time, the feasibility of using DTI in clinical practice is poor.
Thus, compared with DWI and IVIM, DTI is less commonly used in clinical research to
evaluate treatment response.

3.2.4. Diffusion Kurtosis Imaging

In a complex biological tissue microenvironment, the actual diffusion of water molecules
shows different degrees of non-Gaussianity. Diffusion kurtosis imaging (DKI) is a straight-
forward extension of DWI that captures the non-Gaussian water molecule diffusion be-
havior as a reflective marker for tissue heterogeneity [59]. DKI parameters have recently
been used as potential imaging biomarkers to grade gliomas [60], predict its genotype [61]
and distinguish HGG and solitary brain metastasis [62]. Recent studies have shown that
DKI may be a reliable tool in differentiating TP from TRCs. Research shows that relative
MK (rMK) was significantly higher in the TP group than in the PsP group (the AUC was
0.914 for rMK, with an 85% diagnostic accuracy), and rMK appeared to be the best inde-
pendent predictor [63]. In addition, DKI combined with DSC MRI can improve diagnostic
performance in assessing treatment response compared with either technique alone and
the diagnostic accuracy to 88.24% [64]. However, DKI is a multi-b value multi-directional
collection, and the collection time is longer than DTI. No standard process exists for the
selection of b value and direction setting of DKI.

In general, the clinical application of each diffusion technology is not exactly the
same. Several factors will affect the measurement of DWI-ADC value. As a single imaging
measurement, DWI seems to have sufficient sensitivity but perhaps inadequate specificity.
IVIM can provide information of tumor tissue diffusion and perfusion at the same time. DTI
has high sensitivity and specificity in showing the structural integrity of white matter. It is a
method for detecting invasive tumors. DKI can well characterize and reflect the complexity
and heterogeneity of tumor tissue microenvironment, and MK is the most meaningful
parameter. Thus, we noticed that compared with DWI and DTI, IVIM and DKI technology
may have more potential added value for identifying TP and TRCs and can provide
useful structural information of microcirculation perfusion and tumor microenvironment.
Although promising, we believe that the diagnostic performance of DKI and IVIM needs
further research before DKI and IVIM technology is incorporated into the routine clinical
workflow of neuro-tumor application.
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3.3. Perfusion MRI

Glioma is a highly vascular tumor characterized by endovascular proliferation and
angiogenesis. Perfusion MRI is one of the most widely used imaging techniques to evaluate
treatment response and has higher diagnostic accuracy. Due to their different patholog-
ical basis, TP and TRCs exhibit different perfusion characteristics. The most frequently
used perfusion MRI techniques include DSC imaging, dynamic contrast-enhanced (DCE)
imaging and ASL.

3.3.1. Dynamic Susceptibility Contrast (DSC)

DSC is a T2*-weighted magnetic sensitive dynamic contrast enhanced MR perfusion
imaging with fast acquisition speed and simple post-processing compared with other
perfusion techniques. DSC utilizes the T2* effect of the paramagnetic contrast agent that
causes a transient decrease in signal intensity during the initial pass through the vasculature
by creating a local magnetic field distortion around the vessels. Commonly used indicators
are relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) and
mean transit time (MTT) [65]. Two meta-analyses on perfusion MRI for evaluating glioma
treatment response revealed that DSC is the most commonly applied perfusion method in
clinical practice [66,67].

Many DSC studies have shown that mean rCBV [68] and maximum rCBV [58] were
lower in areas of RN or PsP than in those of TP. In addition to the aforementioned parame-
ters, rCBV histogram analysis [69] and the percentage change of skewness and kurtosis
of normalized rCBV [70] have been proposed to be useful for differentiating TP from
TRCs. Each study generates a different threshold to identify the two entities. A recent
meta-analysis showed that the threshold range of CBV was wide, with a mean rCBV ra-
tio of 0.90–2.15 and a maximum rCBV ratio of 1.49–3.10 [66]. Due to the complexity of
pathological tissue components and the lack of standardization of post-processing of MR
perfusion imaging, differences are observed in the reported cut-off values. Subsequently,
many studies have used the change trend of rCBV before and after treatment for differential
diagnosis. A study analyzing the baseline rCBV and the rCBV maps of gliomas with
concurrent chemoradiotherapy reported that changes in rCBV over time were predictive;
that is, PsP had an overall negative linear trend in rCBV and TP had a positive slope [71].
DSC-MRI has been widely applied for the preoperative classification of gliomas and the
differential diagnosis of intracranial tumors because of its fast acquisition speed and simple
post-processing. However, DSC has a poorer spatial resolution and is easily affected by
susceptibility artifacts of large blood vessels and bones [72,73]. The local inflammatory
response of lymphocyte and macrophage infiltration may increase rCBV [74]. The DSC
analysis assumes that the contrast material remains in the blood vessel (i.e., the BBB is
intact). In fact, the tumor-induced destruction of the BBB causes the leakage of the contrast
agent, thereby making the DSC quantitative results inaccurate. Thus, the leakage of contrast
media must be considered.

3.3.2. Dynamic Contrast-Enhanced

DCE T1-weighted perfusion MRI is capable of obtaining quantitative pharmacoki-
netic parameters of the tumor microcirculation structure and function. Tissue blood per-
fusion and neovascular permeability can be more accurately assessed by fitting a two-
compartment hemodynamic model. DCE images can calculate quantitative parameters,
including Ktrans (the volume transfer coefficient from the plasma to extracellular space),
Ve (also known as the leakage space) and VP (the plasma space volume per unit tissue
volume) [75]. The semi-quantitative parameter is the area under the initial curve (IAUC),
which represents the amount of change in signal intensity with time when the contrast
agent enters and stays in blood vessels and tissues and reflects the tissue blood volume.
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Model-based pharmacokinetic DCE parameters can be used to measure real phys-
iological mechanisms, such as blood flow and endothelial permeability [76]. Several
retrospective [77] and prospective [78] studies have confirmed that Ktrans and Vp were
significantly different between TP and PsP. For example, Yun et al. and Thomas et al. [77,79]
performed DCE-MRI in patients with GBM and found that the mean Ktrans, Vp and Ve
were higher in TP than in PsP. However, the results of another study are inconsistent with
those of the previous research. They confirmed that patients with PsP had significantly
higher Ktrans values than patients with TP [75]. Different pharmacokinetic models and
study sample sizes lead to different of Ktrans measurement results. The pharmacokinetic
model is affected by many factors, including parameter coupling, arterial input function,
water exchange, and model fitting instability. Model-free semi-quantitative parameters
(IACU) can overcome the aforementioned limitations and evaluate the treatment response.
One study suggested that the bimodal histogram parameters of the mean area under the
time signal–intensity curves ratio at a higher curve (mAUCRH) is the best predictor of PsP,
with higher sensitivity and specificity [76]. DCE-MRI is considerably less susceptible to
artifacts, and its high spatial resolution allows accurate characterization of the vascular
microenvironment of lesions [73,77]. Longer scanning time, reduced temporal resolution,
complex post-processing and quantification of images are the disadvantages of DCE. Be-
cause of the lack of uniformity in data acquisition and the complexity of pharmacokinetic
models, DCE imaging cannot be widely used in clinics [76]. This technology needs to be
further optimized.

3.3.3. Arterial Spin Labeling (ASL)

ASL is a noninvasive perfusion MRI technique wherein inflowing blood is labeled
magnetically and does not dependent on exogenous contrast agents. At present, the main
implementation methods of ASL are pulse labeling and pseudo-continuous labeling [80].
The CBF is the most frequently generated parameter. Studies focusing on PsP or RN
specifically using ASL are scarce. In a 21-patient retrospective study, Ye et al. [81] con-
firmed that the normalized ASL-CBF ratio and DSC-rCBV ratio were significantly higher
in TP than in radiation injury. ASL-derived CBF values were well-correlated with rCBV
values obtained through DSC perfusion imaging. Choi et al. [82] showed that ASL and
DSC perfusion imaging in combination are advantageous in diagnosing PsP and early TP
compared with DSC alone. Another study suggested that ASL is superior to DSC and
fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET) in distin-
guishing TP from RN or PsP [83]. Three-dimensional pseudocontinuous ASL (3D-pCASL),
as a newly developed ASL sequence, combines the advantages of pulsed and continuous
labeling and 3D data acquisition, which have been used to distinguish TRCs from TP in
glioma patients [54,84]. Contrast-free 3D-pCASL is a suitable alternative to DSC-MRI and
can be used for long-term follow-up of postoperative radiotherapy patients with gliomas.
Compared with other perfusion techniques, a major advantage of ASL is the avoidance
of leakage effects with BBB disruption, which allows for more accurate quantification
of CBF [80]. ASL is a good choice for patients with kidney damage and contrast agent
allergy. However, ASL has a lower signal-to-noise ratio than DSC and DCE [85]. Moreover,
and the scanning time of ASL is longer than that of DCS, and thus is associated with the
consequential risk of movement artifacts [86].

In conclusion, PWI provides multiple additional parameters to overcome the intrinsic
limitations of conventional MRI. We can determine the blood volume and blood flow and
the components of leakage through PWI so as to obtain further information about the tumor
vascular system. Perfusion MRI may become a very useful auxiliary means for evaluating
glioma after treatment. However, each perfusion technique has its unique advantages and
inevitable defects. In clinical work, we need to formulate a reasonable scanning protocol
according to the location, size and complexity of the lesion. Considering the long-term
follow-up of glioma patients and the toxic and side effects of gadolinium contrast agent,
ASL technology may be a good choice. In addition, with the rapid development of nano
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medicine, a new specific magnetic nano contrast agent was constructed to overcome the
shortcomings of gadolinium contrast agent, such as fast clearance rate, leakage, toxic and
side effects, and further improve the image resolution of DSC and DCE. We believe that
the development of new high-performance contrast agents is also a research hotspot in
the future.

3.4. Magnetic Resonance Spectroscopy (MRS)

Magnetic resonance spectroscopy (MRS) can complement the anatomical informa-
tion from conventional MRI to reflect tissue metabolism and biochemical changes at the
molecular level. The most crucial and common MRS metabolites include N-acetylaspartate
(NAA), a marker of neuronal density and viability and generally decreases in gliomas; total
choline (tCho), a marker of cell membrane turnover/cellular proliferation; total creatine
(tCr), suggesting altered energy metabolism; lactate (Lac), a product of anaerobic glycolytic
metabolism; and lipid (Lip), a marker of necrosis. Typically, TP is characterized by an
elevation in Cho and a decrease in NAA. However, RN is characterized by a variable
decrease in NAA, lack of significant increase in Cho and the presence of Lip peak. Cho peak
and NAA peak may be the most important parameters in distinguishing TP and TRCs.

The utility of single voxel or single slice multi-voxel proton MRS (1H-MRS) may lead
to incomplete sampling of the neoplasm. Multi-voxel techniques more realistically depict
mixed lesions and can help identify surgical targets. Several studies have achieved a good
distinction between TP and RN on the basis of Cho/NAA and Cho/Cr ratios. In previous
prospective studies, Bulik et al. [87] and Kazda et al. [42] demonstrated that tCho/tNAA
is a meaningful parameter, with a sensitivity and specificity of >90% for distinguishing
TP and PsP. A meta-analysis reported that MRS is the most promising advanced MRI
technique for the treatment response assessment in HGG patients compared with diffusion
and perfusion weighted imaging, with a pooled sensitivity and specificity of 91% and
95%, respectively [47]. The latest technology, three-dimensional echo planar spectroscopic
imaging (3D-EPSI), can provide metabolite maps with better spatial resolution and lower
partial volume effects. In 3D-EPSI, the incorporation of Cho/Cr in the tumor enhancement
area and Cho/NAA in the tumor and peritumor area provided a higher accuracy of 93%
in distinguishing TP from PsP [88]. Moreover, 3D-EPSI can provide surgeons with more
accurate tumor margins, assist in radiation planning, or be used for personalized treatment
planning. MRS has a few limitations. Due to partial volume effects, detecting smaller
lesions on MRS is challenging. MRS requires a relatively long acquisition time to detect
tissue metabolites in the brain tumor. Factors such as scalp and ventricle could contaminate
the MRS signal [47]. Additionally, metabolic overlap between RN and TP has been found,
identifying the two entities using MRS alone remains difficult. MRS should be combined
with other advanced imaging technologies to improve diagnostic accuracy [89].

Through a review of previous studies, we found that the NAA peak, Cho peak, Cr
peak and Cho/NAA or Cho/Cr ratio were the most meaningful parameters for identifying
TP and TRCs in MRS technology. Additionally, a new 3D-EPSI technology can obtain
high-resolution metabolic maps and find other markers that reflect tumor proliferation and
tumor metabolism, such as glycine (Gly), glutamic acid (Glu) and glutamine (Gln). Another
special metabolite is 2-hydroxyglutarate (2HG), which can provide potential value for MRS
to predict IDH status. Therefore, we need to focus on these makers in clinical work and
further discover their potential role in evaluating treatment response.
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3.5. Amide Proton Transfer Imaging

Based on the chemical exchange saturation transfer mechanism, the amide proton
transfer imaging (APT) imaging can generate image contrast using endogenous mobile
proteins and peptides in tissues, reflecting tumor metabolism [90]. APT asymmetry values
are clinically associated with cell proliferation levels. Therefore, APT is widely used as a
molecular marker for predicting cellular proliferation and response after tumor treatment.
A study reported that among grade II gliomas, IDH wild-type gliomas have higher APT
signal strength than IDH mutant gliomas, demonstrating APT as a potential tool for
predicting the tumor gene mutations [91].

Many studies have confirmed the ability of APT to distinguish TP and TRCs of
gliomas [92–95]. A few preclinical studies in rat have clearly shown that active glioma
and RN exhibit opposite APT signals [92]. Regions with RN generated hypointense or
isointense APT signals, while tumors exhibited hyperintense APT signals in the most
actively growing tumor areas, which can be readily distinguished. Ma et al. [93] performed
a 3D APT sequence scan on patients with clinically suspected TP after chemotherapy and
found that the mean APT signal intensity of TP was significantly higher than that of PsP.
Another study showed that the APT conversion rate in the lesion area was positively
correlated with the Cho/Cr value, both can reflect the cell proliferation state. However,
the accuracy of APT in diagnosing TP is 72%, while that of MRS is only 37%. This may
be because APT can better reflect the heterogeneity and microenvironment of the entire
tumor tissue than MRS, and the reproducibility of ROI selection is low; the selected ROI
cannot represent the entire tumor tissue [95]. Both APT imaging and 14C-MET-PET reflect
endogenous protein metabolism; however, a study found that the diagnostic performance
of APT for TP is higher than that of 11C-MET PET, as RN and BBB disruption may induce
nonspecific MET accumulation [33]. Compared with CE-T1WI and perfusion MRI, Park
et al. [94] reported that adding APT imaging to conventional and perfusion MRI improves
the diagnostic performance of distinguishing TP and TRCs. Multi-technology integration
can improve diagnostic performance. The higher APT signal intensity in TP may be due
to the hypercellularity and abundant cytoplasm in tumor cells, whereas the lower APT
signal intensity in PsP is probably related to the absence of mobile cytosolic proteins and
peptides owing to the cytoplasm loss. In addition to the assessment of post-treated gliomas,
APT allows the indirect identification of most active parts of tumors; it can be used to
guide stereotactic biopsy [96]. Thus, APT imaging could provide a potential biomarker
for brain tumors, increase the accuracy of pathology, and provide more accurate local
therapies. However, several challenging technical issues are associated with the use of
APT imaging. The APT signals are considered to be affected by many factors, including
tissue water content, temperature and tissue acid–base balance [97]. Differences in APT
pulse sequences and data processing strategies may complicate the reproducibility and
comparison of results between different hospitals [98]. At present, on 3T MR equipment,
the APT signal is very weak, which is 2–4% of the water signal. Thus, acquisition and
analysis approaches need to be further optimized. This technology has recently become
a research hotspot in postoperative treatment evaluation and intraoperative stereotactic
biopsy for tumors.

The significance of APTw imaging is that endogenous cellular protein information
is obtained indirectly through the bulk water signal used in MRI, thus expanding the
range of molecular MRI techniques to the protein level. Currently, in addition to finding
suspected recurrent lesions, another major advantage of APT is to guide clinical biopsy
and radiotherapy planning. In the long term, this could potentially reduce the necessity for
repeated biopsies, and avoiding the associated risks of complications.
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3.6. Positron Emission Tomography

PET tracer technology can reflect the metabolic information of lesions from different
angles and utilize the tissue uptake rate of radioactive materials to identify the TP and
TRCs of gliomas. 18F-FDG is the most widely available PET tracer. It is based on glycolytic
metabolism and has been used to detect the TP and RN in patients with gliomas. Jena et al.
studied 35 glioma-treated patients including 41 enhancing lesions with 18F-FDG PET/MRI.
The accuracy of parameters, such as rCBVmean ADCmean, Cho/Cr, maximun tumor-to-brain
ratio (TBRmax), and mean TBR(TBRmean) in detecting glioma recurrence were 77.5%, 78%,
90.9% 87.8% and 87.8%, respectively. On multivariate ROC analysis, the maximum AUC
was 0.935 ± 0.046 when ADCmean, Cho/Cr and TBRmean were combined [31]. However,
18F-FDG is limited by its ability to highly accumulate in normal brain tissue, resulting in
low contrast between the tumor and normal brain tissue and thus misleading the diagnosis
to a certain extent. Numerous promising biomarkers are currently being investigated, such
as an amino acid PET tracer O-(2-(18)F-fluoroethyl)-L-tyrosine (18F-FET), 11C-methyl-L-
methionine (11C-MET) and18F-fluoro-3.4-dihydroxy-L-phenylalanine (18F-DOPA).

18F-FET, as a promising tracer, is widely used to evaluate the treatment response to
gliomas. A study showed that 18F-FET PET could identify PsP with 96% accuracy, and
ROC analysis showed that the best TBRmax cutoff value for identifying PsP was 2.3. In
addition, TBRmax < 2.3 predicted a significantly longer OS [28]. Other studies have shown
that 18F-FET could provide valuable information for differentiating TP and TRCs; however,
the accuracy of different studies varies widely [30,35,99]. A study used static and dynamic
18F-FET uptake parameters to differentiate TP from TRCs of gliomas. Compared with
conventional MRI (85%), a higher accuracy (93%) was achieved with 18F-FET PET when
TBRmean was ≥2.0 and time to peak (TTP) was <45 min was present [29]. In another
study, consistent with the previous study, static and dynamic 18F-FET PET parameters
achieved higher accuracy (93%) than ADC values (69%). With the addition of the static
parameter to the ADC value, the diagnostic accuracy of the ADC value increased to
89% [34]. Disadvantages of 18F-FET include slower renal elimination, resulting in increased
levels of the residual tracer in the blood pool. In a study of 50 patients, the accuracy of
hybrid 11C-MET PET/MRI in distinguishing TRC and TP in gliomas was significantly
higher than that of conventional MRI (96% versus 82%) and 11C-MET PET (96% versus
88%) alone, and a TBRmax of 1.83 and TBRmean of 1.5 were found to be the optimal cutoff
values for distinguishing these two entities [32]. For distinguishing TP in post-treatment
HGG patients, APTmax and APT90 had a similar to better diagnostic performance than
TBRmax and TBR90 [33]. In a well-designed prospective study that compared 11C-MET
with 18F-FET, both tracers showed the same sensitivity (91%) and specificity (100%) in
differentiating TP from TRCs [100]. Similarly, another promising PET radiopharmaceutical
is the 18F-FDOPA, which may be highly sensitive and specific for TP detection. Combined
analysis of CBF-ASL and 18F-DOPA-PET uptake showed the highest specificity (100%) and
sensitivity (94.1%) in differentiating TP and PsP in treating gliomas [36]. Amino acid PET
is a promising molecular neuroimaging technique that can provide information on tumor
metabolism. Table 1 summarizes representative PET studies for detecting TP and TRCs. In
the future, the development of glioma specific PET imaging agents and molecular probes
will be a research hotspot. In addition, the integration of PET and MRI technology and
the integration of tumor molecular metabolism and structural and functional information
can further improve the accuracy of distinguishing the TP and TRCs and address crucial
clinical problem.

3.7. Multi-Model Imaging Modality

Multi-model MRI may be used as a potential surrogate endpoint for TRC and TP
assessment. Because each parameter can show different aspects of tumor biology, using
a combination of parameters for measurement may have an additional value compared
with single-parameter measurement. A meta-analysis [89] showed that for a combination
of DWI, PWI and MRS, the pooled sensitivity and specificity in determination of TRCs and
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TP were 84% (95% CI: 74–91) and 95% (95% CI: 83–99), respectively. With the combination
of MR perfusion and diffusion parameters, Nael et al. [101] found that rCBV outperforms
ADC and Ktrans when using a single imaging classifier to predict the two entities, and
rCBV and Ktrans may be used in combination to improve the overall diagnostic accuracy.
Some studies have also used the volume-weighted voxel-based multi-parametric clustering
(VVMC) method to process MR imaging, and the results showed that VVMC has the
highest consistency among observers. Compared with single-parameter measurement,
VVMC is a superior and more reproducible imaging biomarker for differentiating PsP
and TP in patients with HGGs [102,103]. The addition of MRS to the three perfusion
techniques can result in a diagnostic accuracy of 90.0% for evaluating TRCs and TP [73].
Table 2 summarizes the performance of a single technique and a combination of multiple
techniques for diagnosing TP and TRCs in recent years. Although studies have shown
that multimodal MRI practically improves the diagnostic accuracy of TRCs and TP, most
studies, so far, had a samples size and had heterogeneity between lesions. Many studies
were retrospective, and the research methods lacked a standardized process. Through the
harmonization of collection and post-processing, computer-aided technology and detailed
evaluation of clinical and pathological data, diagnostic accuracy may be improved in the
future. Table 3 lists the current MRI techniques and their advantages and limitations for
differentiating TP and TRCs of gliomas.

Table 2. The diagnostic performance of various technologies for TP and TRCs, and related
parameter thresholds.

Study TP TRCs Modality
Imaging Parameter Cut-off for TP Sensitivity Specificity Accuracy

Lee et al. [41] 10 12 DWI Mean ADC 1200 × 10−6

mm2/s 80.0% 83.3% 81.2%

Yoo et al. [25] 24 18 DWI The 5th percentile of ADC
(b = 1000)

915 × 10−6

mm2/s 83% 67% -

Chu et al. [43] 15 15 DWI The 5th percentile of ADC
(b = 3000)

645 × 10−6

mm2/s 93.33% 100% 88.9%

Kim et al. [49] 31 20 IVIM

Mean 90th percentile for
perfusion (f)

Mean 90th percentile for
nCBV

0.056
2.892

87.1%
83.9%

95.0%
95.0%

-
-

Kong et al. [68] 33 26 DSC Mean rCBV 1.47 81.5% 77.8% -

Baek et al. [70] 42 37 DSC Skewness and kurtosis of
normalized CBV 1.27 85.7% 89.2% -

Yun et al. [79] 17 16 DCE Mean Ktrans/mean Ve 0.347/0.570 59%/88% 94%/56% -
Yoo et al. [75] 16 8 DCE Mean Ve 0.873 100% 63% 88%

Thomas et al. [77] 24 13 DCE
Vp90%/mean Vp/mean

Ktrans 3.9/3.7/3.6 92%/85%/69% 85%/79%/79% -

Bisdas et al. [78] 12 6 DCE Ktrans/IAUC 0.91/15.35 100%/75% 83%/67% -
Suh et al. [76] 43 36 DCE mAUCRH/50thAUCR 0.31/0.19 90.1%/87.2% 82.9%/83.1% -

Chung et al. [72] 32 25 DCE mAUCRH/90thAUCR 0.23/0.32 93.8%/90.6% 88%/88% -
-

Ma et al. [93] 20 12 APT APTmean/APTmax 2.42/2.54 85.0%/95% 100%/91.7% -
Choi et al. [82] 34 28 ASL/DSC CBF/normalized rCBV - 94.1% 82.1% 88.7%
Nael et al. [101] 34 12 DWI/DSC/DCE rCBV/Ktrans 2.2/0.08 94.1 91.6 92.8
Razek et al. [56] 24 18 ASL/DTI CBF/FA/MD - 93.8% 95.8% 95%

Seeger et al. [73] 23 17 DSC/DCE/ASL/MRS normalized rCBV or rCBF
/Ktrans/rCBF/Cho/Crn

rCBV ≥ 3.9 or
rCBF ≥ 4.1,

Ktrans ≥ 0.08,
rCBF ≥ 2.5,

Cho/Crn ≥ 1.89

82.6% 100% 90%

Wang et al. [58] 21 20 DSC/DTI FA/CL/rCBVmax 0.55 76% 95% -

Prager et al. [6] 58 10 DWI/DSC ADC/normalized rCBV

ADC ≤ 1.49 ×
10−3

mm2/s/rCBV
≥1.27

51.2% 100% -

Park et al. [102] 45 63 DWI/DSC/DCE

10th percentileof
ADC (ADC10)/

90th percentile of
normalized rCBV

(nCBV90)/
90th percentile of
IAUC (IAUC90)

ADC10 < 1.14 ×
10 mm2/s/

nCBV90 of 3.19/
IAUC90 of 19.42/

total cluster
score of 5.91

91.1% 90.5% 90.7%
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Table 3. Summary of current techniques and their advantages and limitations for differentiating TP
and TRCs of gliomas.

Imaging
Method Parameters Pattern

Associated with TP Advantages Limitations References

Conventional MRI
and TI-CE No

Corpus callosum
involvement;

Subependymal
enhancement

Widely applied; Overlapping images [23,24]

DWI ADC Lower mean ADC
value

Characterize tissues and
pathologic processes at the

microscopic level;
reflect the high cellularity

Influenced by many factors,
such as inflammatory;
Ignore the effects of

perfusion

[16,48]

IVIM
D
D*
f

Higher f
and D*

Lower D

No contrast required;
repeatedly acquire images;
simultaneous acquisition of

diffusion and perfusion
parameters

Low cerebral perfusion
fraction;

susceptibility artifacts;
low signal to noise ratio

[49,52,53]

DTI FA
MD

Lower MD and
higher FA values

Measured directional
variation of water

diffusivity

Affected by many factors
Susceptibility artifacts

b value setting
long acquisition time

[27,58]

DSC
rCBV
rCBF
MTT

Higher rCBV or rCBF
value

Widely available;
fast acquisition speed and

simple post-processing

Poorer spatial resolution;
susceptibility artifacts;
contrast agent leakage

[73,74]

DCE
Ktrans

Ve Vp
IAUC

Higher Ktrans, Ve and
Vp value

Higher spatial resolution;
less susceptible to artifacts

Longer scan time;
decreased temporal

resolution;
complex pharmacokinetic

modeling

[72,76,77]

ASL rCBF Higher CBF values No contrast required;
less susceptibility artifacts

Low signal-to-noise ratio;
risk of movement artifacts [80,84,86]

MRS
Cho/NAA
NAA/Cr
Cho/Cr

Higher Cho/NAA
and Cho/Cr

and lower NAA/Cr

Reflects tissue metabolism;
higher diagnostic accuracy

Long scan times required;
voxel selection;

metabolic overlap
[47]

APT APTw Higher APTw signals Reflect cell proliferation;
guide biopsies

Signal weakness;
further optimized [97,98]

18F-FDG PET SUVTBR Higher TBR Widely available High background signal [5]

11C-MET PET SUVTBR
SUVs tend to be

higher
Lower background activity Short half-life;

requires an on-site
cyclotron

[32]

18F-FET PET SUVTBR Higher TBR High contrast longer
half-life efficient synthesis Requires more research [28,99]

4. Emerging Application of Artificial Intelligence

Artificial intelligence (AI), machine learning (ML), neural networks (NNs), deep learn-
ing (DL) and convolutional NNs (CNNs) are the main components of data science. They
have attracted considerable attention in neuro-oncology field by discovering hidden infor-
mation and reflecting the spatial and temporal heterogeneity of tumors [104]. Exploring
multi-omics information, including genomics, transcriptomics, epigenomics, proteomics,
metabolomics and metagenomics, has recently become the key to the realization of pre-
cision medicine. As an emerging field of medical imaging, radiomics extracts multiple
features by using AI methods and has been created to assist in glioma clinical decision
management, including to predict tumor grading, potential genetic mutations, survival
rates and molecular classification; to automate diagnosis from histopathological slides to
segment tissues for surgical planning; and to monitor patients after treatment [105].

4.1. Grading and Molecular Information Prediction

With the development of classical ML and DL, the clinical research of AI-based MRI
was initiated. Prediction glioma grades using the AI algorithm may have a significant role
in future practice, it can evaluate features that are difficult to observe by humans. The
distinction between LGG and HGG is crucial for treatment planning and prognosis. In
a study of 153 glioma patients, SVM models were established using 30 and 28 optimal
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features, respectively, to classify LGGs from HGGs and grade III gliomas from grade IV
gliomas. The accuracy of classifying LGGfrom HGG was 96.8% and that of classifying
grades III from grade IV was 98.1% [106]. By using DL algorithms and transfer learning,
a study could predict glioma grades. By including a total of 113 glioma patients, the
study found that the AUCs of GoogLeNet and AlexNet were 0.939 and 0.895, respectively.
Through transfer learning and fine-tuning, both AlexNet and GoogLeNet have achieved
improved performance [107]. In summary, AI algorithms based on imaging features can be
feasibly used to predict the glioma grade.

The 2021 WHO CNS classification of brain gliomas clearly defines the new integration
diagnostic criteria of multi-molecular classification and precisely describes the malignant
biological behavior, which is more conducive for formulating an individual diagnosis and
treatment plan [108]. Clinicians attempt to evaluate histopathological features and glioma
genomics from non-invasive imaging using AI. Radiomics based on multimodal MRI
can precisely differentiate among glioma molecular, including IDH [109], MGMT [110],
TERT [111] and H3 K27M [112]. A study established SVM models for detecting IDH
and TP53 mutations, and the detecting accuracies for IDH and TP53 mutations on the
development cohort were 84.9% and 92.0%, while that on the validation cohort were 80.0%
and 85.0%, respectively [113]. Another study showed that based on internal 5-fold cross-
validation radiomics of 18F-FET PET-MRI performed well in identifying HGGs and LGGs
and predicting IDH1, ATRX, 1p19q and MGMT, with AUCs of 88.7%, 85.1%, 97.8% and
75.7%, respectively [114]. Using an NN model, other researchers predicted IDH mutation
with an accuracy of 85.7% excluding the patients’ age; when age was incorporated into the
model at diagnosis, the accuracy increased to 89.1% [115]. More importantly, radiomics
based on the MRI model can help characterize core signaling pathways, thus determining
that may determine the type of targeted therapy [116]. AI algorithms are a promising
approach analyzing multi-molecular classification and predicting the histopathology of
GBM subtypes.

4.2. Post-Treatment Follow-Up and Outcome Prediction

Some studies have used AI algorithms to distinguish TP and TRCs. These analysis
methods can also be extended to treatment strategies. The SVM classifier has been trained
to diagnose PsP and TP in glioma patients undergoing surgery and chemotherapy. In a
study of 31 patients, the sensitivity and specificity of the classifier for PsP were 89.91%
and 93.72%, respectively, with an AUC of 0.94, and notably, the best predictor image
sequences were from DWI and PWI [117]. Another study also found that the SVM classifier
is more accurate than experts in identifying TP and RN, with an accuracy of 80% [118].
A multicenter study built a classifier using radiomic features obtained from both Ktrans

and rCBV pharmacokinetic maps coupled with SVM. The study achieved an accuracy of
90.82% in differentiating PsP from TP [119]. The SVM classifier based on the combination
of pre-and post-contrast subtraction T2 FLAIR and T1WI imaging also provides a novel
idea recognizing TRCs and TP, with an accuracy of 93.33% [120]. Chen et al. attempted to
predict PsP using gray-level co-occurrence matrix (GLCM) texture features of conventional
MRI and reported an accuracy of 86.4% [121]. Incorporating DWI and PWI, Kim et al.
indicated that the multiparametric radiomics model (AUC = 0.90) performed significantly
better than any single ADC (AUC = 0.78) or CBV (AUC = 0.80) parameter and than the
single radiomics model using conventional MRI (AUC = 0.76) in identifying PsP [122].
CNN, a branch of DL, offers new perspectives for image analysis. Currently, DL algorithms
have also been used to identify TP and PsP. A CNNs has been developed to distinguish TP
and PsP in patients with GBM status after resection and chemoradiotherapy; it exhibited
an acceptable performance and an AUC of 0.83 [123]. Many AI algorithms based on MRI
have recently been used to evaluate the therapeutic response of gliomas.

In addition, several studies have focused on using AI algorithms to predict the OS
and progression free survival (PFS) of patients with gliomas. By developing aCNN,
Lao et al. [124] predicted the survival rate of GBM patients with a C-index of 0.71, which
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subsequently improved with the inclusion of clinical data. C-index is equal to the AUC
and ranges from 0.5 to 1.0, values of >0.7 indicate a good test. Another study demonstrated
that a nomogram established using the radiomics signature and clinicopathologic risk
factors had high accuracy and good calibration for predicting PFS in both the training
(C-index = 0.684) and validation (C-index = 0.823) cohorts [125]. The radiomic signature
can stratify patients into low- and high-risk groups. A nomogram combining IDH and
age risk factors further improved the performance for predicting OS (C-index = 0.764 and
0.758 in training and test cohorts, respectively) [126]. AI algorithms can supplement the
existing diagnostic methods of clinicians through comprehensive and in-depth evaluation
of imaging data. In the future, AI can help in the integration of data from different fields
(clinical examination, imaging and pathology) to guide treatment and prognosis.

At present, many studies apply AI algorithms to the field of medical image process-
ing, through image preprocessing, image segmentation, feature extraction and model
construction, to achieve tumor grading, molecular typing prediction, and efficacy and
prognosis evaluation. In addition, AI algorithms also play an important role in surgical
navigation, radiotherapy planning and digital pathological grading. ML is a sub-type of AI
focused on developing algorithms that can identify patterns within data without explicit
specification. Supervised ML algorithms are trained on a human-labeled dataset, which
subsequently provide classification or regression on unlabeled data. SVM is one of the most
commonly used supervised ML algorithms, and SVM is particularly suitable for handling
classification problems. SVM models based on different image features can achieve a
variety of classification purposes, and the classification performance is better than other
classifiers. The NN is a more complex machine learning algorithm with many variations
that attempt to mimic the functionality of biological neural networks and is often used for
regression and classification problems. CNN is a typical artificial neural network in deep
learning. It has achieved the most advanced performance in image and video recognition
and segmentation and can automatically learn deeper and abstract image features in the
training process. When the data sets are large enough, the deep learning algorithms often
perform better compared to traditional algorithms. However, when it comes to medical
image analysis domain, the data sets are often inadequate to reach full potential of deep
learning. Transfer learning can solve the problem of insufficient training set caused by the
lack of medical image data. It uses natural image data sets or other medical image data
sets to pre-train the network, and then transfers the learned knowledge to the target task to
improve the network model performance. Therefore, we can choose the appropriate AI
algorithm according to different clinical problems and data set size, establish the optimal
model and achieve high diagnostic and prediction performance.

4.3. Future Challenges

AI has recently provided a new direction for the individual diagnosis and evaluation
of tumors. It not only helps radiologists with accurate diagnosis, but also provides useful
tools for oncologists in treatment planning and response evaluation. However, certain
challenges remain to be addressed in further studies. First, although multimodal images
provide comprehensive information on the structure and function of gliomas, the scanning
parameters vary across institutes and hospitals, and different scanning protocols may pro-
duce different analysis results. Obtaining standardized and large-scale image data to make
AI clinically applicable is difficult. Additionally, AI algorithms involve several critical steps.
At present, automated intelligent analysis methods that integrate data acquisition, seg-
mentation, feature extraction, modeling and prediction to comprehensively guide glioma
diagnosis and treatment are lacking. Especially, in most studies, the lesions were still man-
ually segmented, which is time-consuming, labor-intensive and more subjective. Finally,
some clinical experts often regard radiomics as a black box. Thus, the interpretability of
radiomics characteristics and AI models needs to be improved urgently. In conclusion,
clinically, a large amount of standardized data from multiple centers is required for model
testing and verification. Meanwhile, the stability, reproducibility and interpretability of
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radiomics features and AI models should be considered to make radiomics more acceptable
in clinics. More multicenter studies with larger samples are required for external validation
in the future.

5. Conclusions

Gliomas are the most common and fatal malignant brain tumors in adults. Diag-
nosis and treatment response evaluation in patients with gliomas are still highly depen-
dent on neuroimaging. Despite active multimodal treatment, the prognosis remains poor.
Histopathological examination is the “gold standard” for identifying TP and TRCs; how-
ever, it is invasive in nature, which limits its clinical application. The continuous develop-
ment of neuroimaging technology provides new insights into the potential tumor biology.
Dynamic MRI-enhanced scanning can help in effectively identifying TP and TRCs after
treatment over time, but it lacks timeliness, and it is difficult to diagnose accurately. Ad-
vanced MRI functional imaging techniques can reflect the changes of lesions from different
perspectives (cell proliferation, blood perfusion, brain metabolism, etc.). The combination
of multimodal MRI techniques can provide multidimensional information in distinguishing
two entities (e.g., for patients with good general condition, we try to adopt a variety of
MRI techniques to provide complete information of lesions, including diffusion, perfusion,
MRS, APT; on the contrary, for patients with poor general condition, we may recommend
some techniques with short scanning time, such as DWI and DSC). On this basis, we mine
the massive information of multimodal MRI images through radiomics and AI algorithms,
which may further improve the accuracy of early diagnosis. Our research group is currently
trying to identify TP and TRCs from different perspectives through different MRI tech-
niques and AI algorithms and has achieved certain results. We found that DKI technology
can be used as a non-invasive method to identify both, and the MK parameter is a good
predictor; at the same time, we also combined multiple MRI techniques to further improve
the accuracy of diagnosis. However, so far, there is no consensus between domestic and for-
eign countries on which MRI technology and AI algorithms to use to identify TP and TRCs.
In order to promote widespread clinical acceptance, standardization and harmonization of
methodology, guidelines have been provided for data acquisition and analysis, quality eval-
uation and data interpretation of MR diffusion [127], perfusion [128], spectroscopy [129]
and PET131 [130] technology. With the continuous development of 5G technology, AI
algorithms also need to be further updated and optimized. Additional improvement in this
field requires data sharing and multi-institutional large sample prospective clinical research
and validation studies. Finally, a database integrating clinical, pathological, imaging and
genetic information is established to achieve precision diagnosis and treatment. With ad-
vancement of personalized medicine, these emerging AI-driven neuroimaging technologies
may improve quality of life and overall outcomes of these patients.
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