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Simple Summary: The role of RNA-binding proteins (RBPs) in bladder cancer (BC) remains unclear.
Therefore, we analyzed the clinical information and RNA sequencing data from patients with BC and
identified RBPs that may be promising predictors of BC.

Abstract: RBPs in the development and progression of BC remains unclear. Here, we elucidated the
role of RBPs in predicting the survival of patients with BC. Clinical information and RNA sequencing
data of the training and validation cohorts were downloaded from the Cancer Genome Atlas and
Gene Expression Omnibus databases, respectively. Survival-related differentially expressed RBPs
were identified using Cox regression analyses. A total of 113 upregulated and 54 downregulated
RBPs were observed, with six showing prognostic values (AHNAK, MAP1B, LAMA2, P4HB, FASN,
and GSDMB). In both the GSE32548 and GSE31684 datasets, patients with low-risk scores in survival-
related six RBPs-based prognostic model showed longer overall survival than those with high-risk
scores. AHNAK, MAP1B, P4HB, and FASN expression were significantly upregulated in both BC
tissues and cell lines. BC tissues from high-risk group showed higher proportions of naive CD4+
T cells, M0 and M2 macrophages, and neutrophils and lower proportions of plasma cells, CD8+ T
cells, and T-cell follicular helper compared to low-risk group. AHNAK knockdown significantly
inhibited the proliferation, invasion, and migration of BC cells in vitro and inhibited the growth of
subcutaneous tumors in vivo. We thus developed and functionally validated a novel six RBPs-based
prognostic model for BC.

Keywords: bladder cancer; RNA-binding protein; survival; prognosis; tumor microenvironment

1. Introduction

BC is among the ten leading causes of cancer-related deaths worldwide [1] and account
for 3% of new cancer cases worldwide in 2020 [2]. The main therapeutic approaches for BC
include chemotherapy and surgery; even with radical surgery, the five-year overall survival
(OS) rate is 70%. Cystoscopy, computed tomography, and urine cytology remain the
dominant diagnostic and prognostic screening methods for BC; however, these methods are
invasive, expensive, and low-sensitive. Recently, researchers have been trying to identify
new prognostic markers for BC, which may improve the early diagnosis, progression
monitoring, risk prediction, and therapy optimization of BC.

RNA-binding proteins (RBPs) form an essential class of cellular proteins that recognize
specific RNA-binding structural domains and interact with RNA and are thereby involved
in post-transcriptional regulation, including RNA sequence editing, transport, translation
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control, shearing, and intracellular localization. More than 1500 RBPs have been found in
human genome [3], and increasing evidence suggests that RBPs play major roles in human
diseases [4,5]. Mutations and alterations in RBPs have been observed in many tumor tissues
and are involved in RNA coding to form ribonucleoprotein complexes [6–10]. RBPs interact
with microRNAs [11] and circular RNAs to affect tumor progression and contribute to
tumor initiation and growth [12]. Through bioinformatics analysis, Okholm et al. [13] iden-
tified nine RBPs that are closely related to the oncogenesis, progression, and metastasis of
BC. Wu et al. [14] identified six RBPs via weighted correlation network analysis (WGCNA)
and found that HSPG2 acted as an antiangiogenic peptide that inhibited endothelial cell
migration and collagen-induced endothelial tube morphogenesis. Furthermore, 12 prognos-
tic RBP signatures have been explored, including CTIF, CTU1, DARS2, ENOX1, IGF2BP2,
LIN28A, MTG1, NOVA1, PPARGC1B, RBMS3, TDRD1, and ZNF106. Studies found that
MTG1, CTU1, and PPARGC1B gene expressions were related to optimistic prognoses in
patients with BC, whereas high RBMS3, DARS2, ENOX1, IGF2BP2, ZNF106, CTIF, and
NOVA1 gene expressions were related to pessimistic prognoses [15]. However, the ex-
act and functional role of RBPs in the development and prognosis of BC remain unclear.
Additionally, increasing number of studies have revealed the role of the tumor microen-
vironment (TME) in tumor formation and progression [16]. Tumor-infiltrating immune
cells (TIC) in the TME contribute directly or indirectly to carcinogenesis and response to
chemotherapy or immunotherapy [17,18]. Unfortunately, few studies have been performed
on the relationship between RBPs and immune cell infiltration in the TME.

Therefore, we aimed to analyze the differentially expressed RBPs (DERBPs), including
AHNAK, MAP1B (microtubule-associated protein 1B), LAMA2 (laminin subunit alpha-
2), P4HB (prolyl 4-hydroxylase subunit beta), FASN (fatty acid synthase), and GSDMB
(gasdermin B) in BC and explore their prognostic values. A survival-related six RBPs-based
prognostic model was established and validated. The close relationship between RBPs
and immune cell infiltration was identified. Functionally, genetic knockdown of AHNAK
significantly inhibited the proliferation, invasion, and migration of both BC T24 and SW780
cells in vitro and inhibited the formation and growth of subcutaneous tumors in vivo.

2. Materials and Methods
2.1. Datasets and Patient Information

For the training cohort, clinical information and RNA sequencing data of patients with
BC were acquired from the Cancer Genome Atlas (TCGA) [19], which included detailed
clinical information regarding OS and complete RNA sequencing data. In total, 414 patients
with BC (414 BC tissues and 19 normal bladder tissues) were reflected in the present study.
For the validation cohort, the mRNA expression profiles and clinical information for the
GSE32548 dataset (146 patients with BC) and GSE31684 dataset (93 patients with BC) were
obtained from the Gene Expression Omnibus (GEO) database [20]. Detailed information
on patients with BC from the TCGA and GEO databases is listed in Table 1. In addition,
data on RBPs were gathered from previously published literature [21]. The present study
was approved by the Medical Ethics Committee of Xi’an Jiaotong University (Med-Eth-Re
[2021] G-140). No permission was required to use any repository data involved in the
present study.
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Table 1. Detailed information on patients with BC from the Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) databases.

Characteristic TCGA GEO
(GSE32548)

GEO
(GSE31684)

Age <60 88 32 19
>60 324 114 74

Sex
Female 108 34 25
Male 304 112 68

Stage

Ta 0 49 8
T1 11 53 19
Tis 0 1 55
Tx 6 1 10
≥T2 395 42 1

0 0 1 0

Grade
G1 3 19 0
G2 23 46 6
G3 386 80 87

Survival status
dead 112 119 65
living 217 26 28

unknown 83 1 0

2.2. Construction of an Individualized Prognostic Index Based on RBPs

The Linear Models for Microarray Data (LIMMA) package was used to identify the
DERBPs in BC, with cut-off values of log2 fold change (FC) greater than 1 and p < 0.05.
Univariate Cox regression analyses were conducted to select the DERBPs significantly
associated with OS in patients with BC. Genes with p < 0.05 were utilized for the most
minor absolute shrinkage and selection operator. Subsequently, these survival-related
genes were tested using multivariate Cox regression analyses. Following multivariate
analyses, we established an RBP-based signature to predict the survival of patients with
BC. The risk score for each patient was calculated as follows:

Risk Score = (β1 × expression of RBP1) + (β2 × expression of RBP2) + (β3 ×
expression of RBP3) + . . . + (βn × expression of RBPn)

(1)

All patients from the TCGA and GEO datasets were assigned to the high- or low-risk
group based on the median risk score. The Kaplan–Meier technique was used to generate
a survival curve. The log-rank test was employed to assess differences in survival rates
between the low- and high-risk groups.

2.3. Gene Set Enrichment Analysis (GSEA)

To identify the biological processes and pathways correlated with the high- and low-
risk groups from the TCGA cohort, GSEA was performed using the clusterProfiler package.
Kyoto Encyclopedia of Genes and Genomes (KEGG) [22] and Gene Ontology (GO) gene
sets were downloaded from the Molecular Signatures Database [23]. Gene set permutations
were run 1000 times for each study to provide a normalized enrichment score (NES), which
was used to select pathways enriched in each phenotype. Finally, at p < 0.05, the gene set
was determined for further research.

2.4. Establishment and Assessment of the Nomogram

Univariate and multivariate Cox regression analyses were performed to explore the
feasibility of utilizing RBPs-based risk scores as independent predictors of OS in patients
with BC in the TCGA cohort. Covariates included age, sex, TNM stage, smoking history,
risk score, histological grades, and pathological stages, which were recorded as continuous
variables. The nomogram combining the RBPs-based risk score with clinicopathological
characteristics, which was correlated with OS, was plotted to predict the 1- and 3-year OS of
patients with BC using the ‘rms’ package. The performance of the nomogram was assessed
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by generating calibration plots. The protein expression of six RBPs was detected using
the Human Protein Atlas online database [24]. The prognostic value of the six RBPs in BC
was verified using the Kaplan–Meier plotter online tool [25]. Furthermore, the immune
microenvironment between the two risk groups of the TCGA cohort was compared. The
immune microenvironment was assessed using TIMER2.0 [26], a public database, and
seven immune infiltration lymphocyte estimations were obtained.

2.5. Cell Culture and Reagents

Human bladder normal epithelial cells (SV-HUC-1) and human BC cell lines (T24 and
SW780) were purchased from ATCC (ATCC, Manassas, VA, USA). The T24 cells were grown
in McCoy’s 5A (Modified) Medium (Procell Life Science & Technology Co., Ltd., Wuhan,
China), and SW780 cells were cultured with Dulbecco’s Modified Eagle Medium (DMEM;
Gibco Company, Grand Island, NE, USA) with 10% BI fetal bovine serum (FBS; Biological
Industries, Israel) and 1% penicillin/streptomycin (NCM Biotech, Suzhou, China) in 37 ◦C
with 5% CO2.

2.5.1. Plasmid Transfection

The target plasmids with Lentivirus packaging were as follows: sh-NC, shAHNAK-
A1(TRCN0000123211:5′-CCGGGACCAGAACAAACAGA-AGGAACTCGAGTTCCTTC-
TGTTTGTTCTGGTCTTTTTG-3′, shAHNAK-A2(TRCN00-0012321:5′-CCGGCAGCTCT
GAAGTGGTTCTGACTCGAGTCAGAACCACTTCAGAGCTGCTTTTTG-3′), shAHNA K-
A3(TRCN0000123213:5′-CCGGCCCGTGAAGTCT-TCAGCTCCTCTCGAGAGAGCT GAA
GACTTCAC-GGGTTTTTG-3′) (BIOKEEPER Co., Ltd., Xi’an, China). The packaging plas-
mid psAX2 and envelope plasmid PMD2G were transfected into 293T cells using a PEI-
Transfer infection kit (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instruc-
tions. After 48 h, the virus was directly introduced into the cells in a 6-well plate for 24 h.
Subsequently, the cell protein was collected after 48 h to measure the infection efficiency.

2.5.2. Cell Viability and 5-Ethynyl-20-Deoxyuridine (EdU) Assays

A CCK-8 assay (TargetMol, Boston, MA, USA) was conducted to measure the cell
viability and growth according to the manufacturer’s instructions. Briefly, cells were
seeded in 96-well plates at 5 × 103 cells per well. Then, 20 µL of CCK-8 (5 mg/mL)
was added to 180 µL of complete medium and incubated for 4 h. The OD reading at
a wavelength of 450 nm was measured using an ELISA reader (Bio-Tek, Santa Clara,
CA, USA) after shaking for 10 min. For the EdU assay, cells were seeded into confocal
plates with a density of 105 cells per well. Subsequently, the cells were incubated with
an EdU assay kit (Beyotime Biotechnology, Shanghai, China) at 37 ◦C for 2 h, fixed with
4% formaldehyde, and permeabilized with 0.1% Triton X-100 following staining of nuclei
with Hoechst33342. The results were visualized using a fluorescence microscope. The
experiments were performed in triplicate.

2.5.3. Transwell Migration and Invasion Assay

A Transwell chamber (Millipore, Darmstadt, Germany) was used to study cell migra-
tion and invasion. Matrigel (Corning, New York, NY, USA) was mixed with serum-free
medium at a 1:9 dilution. The cells were resuspended at a density of 106/mL after transfec-
tion. The resuspension was then infused into the top chamber at 200 µL. The cells in each
chamber were counted under an inverted fluorescent microscope (200× magnification)
after 24 h incubation. The cells attached to the top membrane were removed, fixed, stained,
and counted again. The experiment was performed in triplicate.

2.5.4. Wound-Healing Assay

AHNAK-knockdown cell lines were tested for migration after they attained a density
of 100% in a wound-healing experiment. The distance was marked using a 200 µL pipette
tip. Every 24 h until the incision had fully closed, a microscope (200×magnification) was
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used to take images. The experiment was performed in triplicate to ensure consistent
results. To gauge the cells’ potential to migrate, ImageJ software was used to estimate the
wound-to-wound distance.

2.5.5. RNA Extraction and Reverse Transcription-Quantitative Polymerase Chain
Reaction (RT-qPCR)

Total RNA was extracted from frozen tissues, plasma, and cell cultures using TRIzol
reagent (Invitrogen, Carlsbad, CA, USA). RT-qPCR was performed using a previously
described method [27]. Briefly, RT-qPCR was performed using TB Green assays (Takara Bio
Inc., HeianKyo, Japan) on an ABI 7500 real-time PCR system (Bio-Rad, Hercules, CA, USA),
with 18s rRNA as the loading control. The primer sequences (Beijing Tsingke Biotech Co.,
Ltd., Beijing, China) are listed in Table 2.

Table 2. Primers used in the present study.

Primer Name Sequence 5′–3′

AHNAK
Forward CTCGTCGCCGCCAGTAG
Reverse TCTTTGCAGGATTCCGCTCA

MAP1B
Forward AATTCCTGGGCAAACTGGTCT
Reverse AGAGCCGGACTGGAGAATGA

LAMA2
Forward GGCTTCCGTTGTCAGCAATC
Reverse CAAGTTTCTCAGCGTTGGCA

P4HB
Forward TCATCGCCAAGATGGACTCG
Reverse CCACCGCTCTCCAGGAATTT

FASN
Forward ACCTCCGTGCAGTTCTTGAG
Reverse GTTCAGGATGGTGGCGTACA

GSDMB
Forward AGACGATGAGAAAGTCTTTGGGT
Reverse TAGCTCCCCGGAAATCAGGA

2.5.6. Western Blotting Assay

Western blotting assay was performed as described previously [27]. Briefly, the blots
were stripped and reprobed to verify equal loading with a specific antibody recognizing
β-Actin (ABclonal Technology Co., Ltd., Wuhan, China), Vinculin (Abmart Shanghai Co.,
Ltd., Shanghai, China). Antibodies against AHNAK, MAP1B, and LAMA2 were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA, USA), and antibodies against P4HB,
FASN, and GSDMB were obtained from Abcam (Cambridge, UK).

2.5.7. In Vivo Experiments

Six-week-old athymic male BALB/c nude mice were acquired from Beijing Vital
River Laboratory Animal Technology Co., Ltd. (Beijing, China). Briefly, mice were di-
vided into four groups (sh-NC, sh-A1, sh-A2, and sh-A3; n = 6). T24 cells that had been
successfully transfected were resuspended in serum-free medium at a concentration of
5 × 106 cells/0.2 mL and subcutaneously injected in a single side of the posterior flank of
mice. Every 2 d, tumor growth and body weight were measured as follows:

volume = 0.5 × length × width2 (2)

The use of mice was permitted by the ethics council of Xi’an Jiaotong University
(Permission Number: 2021-674).

2.5.8. Histology and Immunohistochemistry (IHC)

Tumor slices from nude mice xenografts were fixed in 4% paraformaldehyde. In
IHC, the primary antibodies were anti-Ki67 (CST, 1:100). Two experienced pathologists
evaluated the results based on the intensity of staining (0, 1+, 2+, and 3+) and the proportion
of positive cells (0 (0%), 1 (1–25%), 2 (26–50%), 3 (51–75%), and 4 (76–100%)). The staining
score was then computed and examined.
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2.6. Statistical Analysis

Forest plots, receiver operating characteristic (ROC) curves, multiple GSEAs, heat
maps, and calibration plots were generated using R Studio (version 3.5.2). A p < 0.05 was
considered statistically significant.

3. Results
3.1. Identification of DERBPs

In total, 1617 RBPs were evaluated, and 167 DERBPs met the cut-off (p < 0.05,
|log2FC| > 1.0). A total of 54 and 113 RBPs were downregulated and upregulated, respec-
tively. The distribution patterns of the RBPs were shown in the heat map in Figure S1.

3.2. Identification of DERBPs Associated with Survival in Patients with BC

Thirty-seven OS-associated genes among the DERBPs were screened using univari-
ate Cox regression (p < 0.05). Next, the least absolute shrinkage and selection operator
(LASSO) regression method was utilized to screen for prognostic RBPs, revealing six RBPs
(Figure 1a,b). Finally, the associations between the expression profiles of the six RBPs and
the survival of patients with BC were examined using multivariate Cox regression. Six
RBPs (AHNAK, MAP1B, LAMA2, P4HB, FASN, and GSDMB) were identified to construct a
prognostic signature. These RBPs were classified as risk RBPs (AHNAK, MAP1B, LAMA2,
P4HB, and FASN) with hazard ratios (HRs) > 1 or protective RBP (GSDMB) with HRs < 1
(Figure 2e; Table 3).

Table 3. Six RNA-binding proteins and their hazard ratios.

ID coef HR HR.95L HR.95H p Value

AHNAK 0.005486 1.005501 1.00313 1.007878 5.26 × 10−6

MAP1B 0.028034 1.028431 1.004654 1.05277 0.018821
LAMA2 0.053639 1.055104 0.983493 1.131929 0.134704

P4HB 0.002214 1.002217 1.000971 1.003465 0.000487
FASN 0.003685 1.003692 1.000466 1.006929 0.024866

GSDMB −0.05084 0.950431 0.926115 0.975385 0.000121

The survival risk of each patient was assessed by developing a prognostic model as
follows:

Risk score = (0.0055 × expression of AHNAK) + (0.0280 × expression of MAP1B) + (0.0536 × expression of
LAMA2) + (0.0022 × expression of P4HB) + (0.0037 × expression of FASN) + (0.0508 × expression of

GSDMB)
(3)

Using the six RBPs signatures, we classified patients with BC in the training cohort
into the high- or low-risk group according to the median value (Figure 1c). Figure 1e,g
depicted the distribution of risk scores and survival status for each patient.
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Figure 1. Predictor selection using the most minor absolute shrinkage and selection operator (LASSO). (a) Parameter (lambda) selec-
tion by the LASSO model adopted 10-fold cross-validation via minimum criteria; (b) LASSO coefficient profile plot of the six RNA-
binding protein (RBP) gene pairs against the log (lambda) sequence risk curve of training and test sets; (c) heat map of the six RBPs 
for the high- and low-risk groups in the training cohort; (d) heat map of the six RBPs for the high- and low-risk groups in the valida-
tion cohort; (e) risk score distribution for the training cohort; (f) risk score distribution for the validation cohort; (g) distribution of 
the survival status of the training cohort; (h) survival status distribution of the variation cohort. 

Using the six-RBP signature, we classified patients with BC in the training cohort into 
the high- or low-risk group according to the median value (Figure 1c). Figure 1e, g depicts 
the distribution of risk scores and survival status for each patient. 

3.3. Application of the Six-RBP Signature in the Validation Cohort 

Figure 1. Predictor selection using the most minor absolute shrinkage and selection operator (LASSO).
(a) Parameter (lambda) selection by the LASSO model adopted 10-fold cross-validation via minimum
criteria; (b) LASSO coefficient profile plot of the six RBPs gene pairs against the log (lambda) sequence
risk curve of training and test sets; (c) heat map of the six RBPs for the high- and low-risk groups in
the training cohort; (d) heat map of the six RBPs for the high- and low-risk groups in the validation
cohort; (e) risk score distribution for the training cohort; (f) risk score distribution for the validation
cohort; (g) distribution of the survival status of the training cohort; (h) survival status distribution of
the variation cohort.
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Figure 2. DEGs (differentially expressed genes) of RBPs were utilized to build prognostic models
and analyze and verify GEO datasets. (a) Survival analysis of the training cohort. (b) The survival
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analysis curve of the six RBPs in the validation cohort derived by creating the prognostic model
shown in the forest map; yellow indicates the patients in the high-risk group, and blue indicates
the patients in the low-risk group. (c) Receiver operating characteristic (ROC) curve for the training
cohort. (d) ROC curve for the validation cohort. (e) The six RBPs were derived using the prognostic
model depicted in the forest map. * p < 0.05, *** p < 0.001.

3.3. Application of the Six-RBPs Signature in the Validation Cohort

Kaplan–Meier survival curves revealed that patients with low-risk scores had longer
OS than patients with high-risk scores (log-rank test, p < 0.0001, Figure 2a). Furthermore,
time-dependent ROC curves showed that the AUC values for 1-, 3-, and 5-year OS of
the training cohort were 0.72, 0.715, and 0.724, respectively (Figure 2c). The predictive
value of the six RBPs signature was further tested using the GSE32548 dataset from the
GEO database as an external validation cohort. Patients in the validation cohort were
classified into high- or low-risk groups based on the median value (Figure 1d). The risk
score and survival distributions for each patient were presented in Figure 1f,h, respectively.
Similarly, patients with high-risk scores had a shorter OS than those with low-risk scores in
the GSE32548 dataset (p = 0.0073; Figure 2b). ROC curves in the time-dependent analysis
showed that AUC values for 1-, 3-, and 5-year OS of the variation cohort were 0.786, 0.743,
and 0.71, respectively (Figure 2d). Another GSE dataset (GSE31684) with more muscle-
invasive BC patients was applied to confirm our conclusion. In this dataset, 27 cases
were non-muscle-invasive, and 66 cases were muscle-invasive. As shown in Figure S3a,
patients with high-risk scores had a shorter OS than those with low-risk scores in the
GSE31684 dataset (p = 0.0044, hazard ratio = 2.03, 95% CI: 1.12–3.69). ROC curves in the
time-dependent analysis showed that AUCs for 3- and 5-year OS were 0.658 and 0.624,
respectively (Figure S3a). These findings are consistent with our prior validation results,
although further studies involving only muscle-invasive BC cases as the test cohort are
still needed.

3.4. Independent Prognostic Indicator

The predictive ability of the RBP-related risk score for OS in the TCGA cohort was
tested by investigating the prognostic value of the six RBPs signatures with several clinico-
pathological features, including age, sex, TNM (tumor–node–metastasis) stage, smoking
history, pathological stage, and histological grade, via univariate and multivariate analyses.
Univariate analysis results indicated that age (HR: 1.032, 95% confidence interval (CI):
1.006−1.058, p < 0.014), T stage (HR: 1.446, 95% CI: 1.047−1.998, p < 0.025), N stage (HR:
1.638, 95% CI: 1.276−2.103, p < 0.001), M stage (HR: 2.22, 95% CI: 1.282−6.980, p = 0.011),
stage (HR: 1.915, 95% CI: 1.381−2.656, p < 0.001), and risk score (HR: 1.045, 95% CI:
1.022−1.069, p < 0.001) were related to OS (Figure 3a). The risk score was regarded as an
independent prognostic indicator in the subsequent multivariate Cox analysis (HR: 1.042,
95% CI: 1.016−1.068, p < 0.001; Figure 3c).
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3.5. Establishment of a Nomogram 

Figure 3. Independent prognostic analysis and prediction of 1- and 3-year nomograms for patients
with BC in the training and validation cohorts. (a) Single-factor prognostic analysis for the training
cohort. (b) Nomogram for the prediction of 1-year survival probability of patients with BC in
the training set. (c) Multifactor prognosis analysis for the training cohort. (d,e) Nomograms for
the prediction of 2- and 3-year survival probabilities for patients with BC in the training cohort.
(f) Verification of protein expression levels of the six RBPs.
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3.5. Establishment of a Nomogram

A nomogram combining the clinicopathological characteristics associated with OS
(age, TNM stage, and stage) and risk score (Figure 3e) was constructed to provide a clinically
practical tool to predict the probability of OS in patients with BC. Calibration plots for 1-
and 3-year OS were good predictors compared with the ideal model (Figure 3b,d).

3.6. GSEA

In the high-risk group, calcium signaling pathway, mitogen-activated protein kinase
signaling pathway, focal adhesion, Rap1 signaling pathway, systemic lupus erythematosus,
Ras signaling pathway, phosphatidylinositol 3-kinase/AKT signaling pathway, regulation
of actin cytoskeleton, transcriptional dysregulation in cancer, and neuroactive ligand-
receptor interactions were highly enriched in KEGG pathway analysis. Biological processes,
such as microfibril formation, mRNA trans-splicing, the spliced leader (SL) addition, mRNA
trans-splicing via the spliceosome, negative regulation of megakaryocyte differentiation,
nucleoside-triphosphate diphosphatase activity, protein heterotrimerization, sequence-
specific mRNA binding, and translation activator activity, were highly enriched in the
high-risk group (Figure 4a,b). We further analyzed the differentially expressed genes
between the high- and low-risk groups. A total of 755 differentially expressed genes were
observed between two groups (p < 0.001, |log2FC| > 1.0, Figure S2).

3.7. Verification of the Expression Levels and Prognostic Significance of the Six RBPs

We also tested the mRNA expression level of the six RBPs in BC and paracarcinoma
tissues. We found that AHNAK, MAP1B, P4HB, and FASN were significantly upregulated
in BC tissues compared with those in paracarcinoma tissues. In contrast, GSDMB was
downregulated in BC tissues relative to paracarcinoma tissues. LAMA2 expression did not
differ between BC and paracarcinoma tissues (Figure 5a). IHC results from the Human
Protein Atlas database were used to verify these observed RBP expressions in BC. As shown
in Figure S3, the development of protein expression levels of the six RBPs in BC samples
was consistent with the results presented in Figure 5a. Ultimately, protein expressions
of the six RBPs were detected in bladder normal epithelial cells (SV-HUC-1) and BC cell
lines (T24, SW780). AHNAK, MAP1B, P4HB, and FASN protein expressions were lower in
SV-HUC-1 than in T24 and SW780 cells. Contrarily, the expression of GSDMB was higher
in SV-HUC-1 than in T24 and SW780 cells, and no significant difference in the expression
of LAMA2 was observed in three cells (Figure 3f).
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represents a distinct tumor sample, and each green dot represents a non-tumor sample. (b) Differential
analysis of tumor-infiltrating immune cells between the high- and low-risk groups; red: high-risk
group, blue: low-risk group (p < 0.05). (c) Visualization of the correlation of AHNAK expression with
macrophage and neutrophil immune infiltration levels in BC (p < 0.05). **** p < 0.0001.

3.8. Assessment of Immune Cell Infiltration

The cancer-specific immune microenvironment plays a crucial role in its genesis,
progression, and treatment. The online tool TIMER2.0 [26] was used to determine whether
there was any difference in the relative abundance of tumor-infiltrating lymphocytes (TILs)
between the high- and low-risk groups (Figure 5b). A significant difference was observed
between training and control groups in the contents of plasma cells, CD8+ T cells, follicular
helper T cells, naive CD4+ T cells, M0 and M2 macrophages, and neutrophils (p < 0.05).
The proportions of naïve CD4+ T cells, M0 and M2 macrophages, and neutrophils in the
high-risk group were higher than those in the low-risk group, whereas the proportions of
the plasma cells, CD8+ T cells, follicular helper T cells in the high-risk group were lower
than those in the low-risk group. Highly expressed AHNAK in the TME had a negative
relationship with tumor purity. AHANK was positively associated with M2 macrophage
and neutrophils (Figure 5c).

3.9. AHNAK Promotes Cell Proliferation, Migration, and Invasion of BC Cell Lines In Vitro and
In Vivo

Among the six RBPs, AHNAK is the most expressed differentially; however, its role in
BC has not yet been examined. To explore the biological function of AHNAK in BC, we first
characterized the endogenous expression of AHNAK in BC cells based on the predictions in
the GEMICCL database [28]. T24 and SW780 cells were observed to have the most abundant
AHNAK transcripts and protein expression. Using short hairpin RNA (shRNA), we
knocked down AHNAK in T24 and SW780 cell lines (Figure 6a,b). A significant reduction
in proliferation was observed in AHNAK knockdown cells (Figure 6c,h,i). Consequently,
the results of CCK-8 and EdU experiments suggested that there was a relationship between
AHNAK expression and tumor cell proliferation. Furthermore, the effects of AHNAK on
cell migration and invasion were examined (Figures 6d–g and S4a). AHNAK knockdown
inhibited invasion and metastasis in T24 and SW780 cells. In vivo, the tumor volume and
weight of AHNAK-knockdown tumors were significantly lower than those of the control
group. The proliferation of the tumor was significantly inhibited by AHNAK knockdown
(Figures 6j–m and S4h–j). IHC staining showed that Ki67 expression in the knockdown
groups was significantly lower than in the control group.
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of AHNAK-knockdown T24/SW780 cells was determined using the CCK-8 assay (mean ± SD,
n = 6); Transwell assays showed that AHNAK knockdown significantly inhibited (d,e) invasion and
(f,g) migration of T24 and SW780 cells. (h,i) An EdU assay kit was used to test the cell proliferation
ability. (j,k) Knockdown of AHNAK inhibited the proliferation of T24 cells in vivo. (l,m) Immunohis-
tochemical staining demonstrated the suppression of AHNAK-knockdown cells in vivo, as indicated
by the expression of Ki67-positive cells. * p < 0.05, ** p < 0.01, *** p < 0.001; Scale bar: 100 µm.

4. Discussion

RBPs have important biological functions that directly affect the nucleus, cytoplasm,
organelles, proteome complexity, transcriptome, and RNA substrates through various mech-
anisms [29,30]. Recently, attention has focused on the role of RBPs in the post-transcriptional
regulation of gene expression [31,32]. Tristetraprolin belongs to a prognostic family of RBPs
that is directly related to post-transcriptional regulation of oncogene mRNAs and exhibits
tumor-suppressor properties [33,34]. However, research on the molecular mechanisms of
RBP gene interactions in BC has been limited. Multiple studies have suggested that BC is
a highly immunogenic malignant tumor and that the TME is involved in BC progression
and prognosis [35–37]. PD-L1, TMB, and microsatellite instability biomarkers were used to
predict the efficacy of treatment [38]. Therefore, a powerful RBP gene signature should be
explored and validated for the prediction of BC progression.

In our study, we selected an array of six genes, namely AHNAK, MAP1B, P4HB,
FASN, LAMA2, and GSDMB, to create a survival risk score model that can be exploited to
predict survival. Using the six RBPs based signature and clinicopathological risk factors
in a nomogram, the model was shown to excel at predicting patient survival. Both the
AUC and calibration curves showed that our model had good predictability. Combining
the risk score with the nomogram improved the ability to segment BC into different
risk groups, and facilitating its clinical use. However, both sequencing data for muscle-
invasive and non-muscle-invasive BC are included in the GEO dataset. Our conclusions
were further validated in another GSE dataset (GSE31684) with more muscle-invasive BC
patients. According to the pathway and functional enrichment analyses, the six DERBPs
identified in this study may play crucial roles in mRNA trans-splicing, SL addition, mRNA
trans-splicing via the spliceosome, negative regulation of megakaryocyte differentiation,
nucleoside triphosphate diphosphatase activity, protein heterodimerization, sequence-
specific mRNA binding, and translation activator activity.

Among those six RBPs, MAP1B has potential applications in evaluating comprehensive
neuropathic paracancer autoantibodies, as well as chemotherapy resistance and cancer
progression [39,40]. The establishment of the prognostic model, validation, and detection
results in BC tissue all suggest that MAP1B is extremely valuable as a prognostic predictor
of BC. Ma et al. and Wu et al. [41,42] claimed that P4HB could be a useful biomarker of
cancer. The results of our study are consistent with those of the previous study, and the
verification results in BC tissues also suggest that P4HB is highly expressed in BC and has a
specific role in the evaluation of prognosis. Tao et al. [43] first discovered the PKM2/FASN
axis and hypothesized that the interaction between PKM2 and FASN may be a new target
for treatment of BC. In our study, FASN expression in BC was negatively correlated with
prognosis and can be used as an independent predictor. The influence of MAP1B and P4HB
in tumor immune infiltration cannot be ignored. GSDMB is located in a genomic region that
is frequently amplified during cancer development. Therefore, GSDMB function may affect
tumor progression and metastasis [44,45]. In our study, GSDMB was downregulated in BC
tissues, as shown by the bioinformatics, qPCR, and Western blotting results. The results of
our study were different from those previously reported, and this may be related to the
heterogeneity of BC. The LAMA2 expression pattern may be helpful as a biomarker to
predict prognosis in patients with pituitary neuroendocrine tumors [46]. High expression
levels of LAMA2 in the microenvironment are observed to be inversely correlated with
tumor purity and positively related to immune cells. Thus, the role of LAMA2 in tumor
immune cell infiltration urgently needs to be verified.
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As a nucleoprotein, AHNAK is widely expressed in many types of cells. Previous
studies suggested that regulating AHNAK expression could affect epithelial-mesenchymal
transitions (EMT) in gastric cancer by regulating the Wnt signaling pathway [47]. According
to our prognostic model, AHNAK is an independent prognostic factor. Moreover, AHNAK
was highly expressed in the BC samples of patients and BC cell lines. High levels of AHNAK
indicate poor survival. Interestingly, AHNAK knockdown suppressed the proliferation,
migration, and invasion of BC cells. Furthermore, AHNAK knockdown also significantly
inhibited the development and growth of tumors in vivo. The obtained data suggest that
AHNAK could be used as a prognostic marker of and therapeutic target for BC.

In correlation analysis of AHNAK expression, immune cell infiltration in BC was
detected. We believe that the purity of the tumor and multiple immune cells that infiltrate
tumors (DC cells, B cells, CD4+ T cells, and CD8+ T cells) were associated with AHNAK
expression in BC. We hypothesize that elevated AHNAK levels in the microenvironment
would have unfavorable associations with tumor purity. In addition, we established a posi-
tive correlation between the level of AHNAK expression and the number of macrophages
and neutrophils present in each sample. These outcomes indicate a potential association
between AHNAK and immune infiltration of BC. Whether AHNAK interacts with immune
cells and influences their functions requires further exploration.

The effectiveness of prediction models for BC of previous studies, such as the nine RBPs
constructed by Okholm et al. [13], were not further verified using an external validation
set. The six RBPs developed by Wu et al. [14] were previously examined. However,
the exact functions of RBPs in BC have not been further explored. In our study, a close
relationship between the six RBPs and tumor immune infiltrating cells were identified,
although further studies are needed to illustrate the underlying molecular regulatory
mechanisms. Among those six DERBPs, AHNAK, which was identified in both Wu’s
model [14] and our prediction model, received considerable attention from us. Interestingly,
genetic knockdown of AHNAK significantly inhibited the proliferation, invasion, and
migration of both T24 and SW780 cells in vitro and inhibited the formation and growth
of subcutaneous tumors in vivo, suggesting the oncogenic role of AHNAK in BC. Further
studies, particularly mechanistic studies, are needed to determine the specific role of
other RBPs.

RBPs have recently been attracting increased attention for the treatment of cancers.
Accumulating evidence suggests the potential effects of therapeutic drugs on RBP functions.
Pyrvinium pamoate, an FDA-approved anthelminthic drug, was reported to promote nu-
clear import of HuR (an RBP), leading to unbearable genomic instability and cell death in BC
cells [48]. Similarly, the RBP EWSR1 was identified to aggregate in the cytoplasm in temo-
zolomide (a chemotherapeutic agent)-resistant glioblastoma cells and patient samples [49].
Additionally, the RBP MEX3B was proven to mediate resistance to cancer immunotherapy
by down-regulating HLA-A expression on the surface of tumor cells [50]. Interestingly, our
study also demonstrated that highly expressed AHNAK in the tumor microenvironment
has a negative relationship with tumor purity, suggesting a potential link between RBPs and
immune cell infiltration. Considering the vital role of immunotherapy and chemotherapy
in BC treatment, further in-depth studies are needed to uncover the exact relationship
between immunotherapy/chemotherapy and RBP in BC.

5. Conclusions

In this study, we thoroughly analyzed the key RBPs associated with OS in patients
with BC using bioinformatic analysis. Moreover, we identified six DERBPs in BC. Survival
analysis revealed that the six RBPs may have a predictive value for BC. A close relationship
between RBPs and immune cell infiltration was identified. More importantly, we func-
tionally confirmed the oncogenic role of AHNAK in BC (Figure 7). Further research is
needed to explore the roles of these six RBPS in BC cells and their potential applications as
prognostic biomarkers in BC.
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