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Simple Summary: Deep learning models have been shown to achieve high performance in diagnos-
ing colon cancer compared to conventional image processing and hand-crafted machine learning
methods. Hence, several studies have focused on developing hybrid learning, end-to-end, and
transfer learning techniques to reduce manual interaction and for labelling the regions of interest.
However, these weak learning techniques do not always provide a clear diagnosis. Therefore, it is
necessary to develop a clear explainable learning method that can highlight factors and form the basis
of clinical decisions. However, there has been little research carried out employing such transparent
approaches. This study discussed the aforementioned models for colon cancer diagnosis.

Abstract: Early detection of colorectal cancer can significantly facilitate clinicians’ decision-making
and reduce their workload. This can be achieved using automatic systems with endoscopic and histo-
logical images. Recently, the success of deep learning has motivated the development of image- and
video-based polyp identification and segmentation. Currently, most diagnostic colonoscopy rooms
utilize artificial intelligence methods that are considered to perform well in predicting invasive cancer.
Convolutional neural network-based architectures, together with image patches and preprocesses are
often widely used. Furthermore, learning transfer and end-to-end learning techniques have been
adopted for detection and localization tasks, which improve accuracy and reduce user dependence
with limited datasets. However, explainable deep networks that provide transparency, interpretability,
reliability, and fairness in clinical diagnostics are preferred. In this review, we summarize the latest
advances in such models, with or without transparency, for the prediction of colorectal cancer and
also address the knowledge gap in the upcoming technology.

Keywords: artificial intelligence; colorectal cancer; interpretation; neural network; transfer learning;
transparency

1. Introduction

Colorectal cancer is the third most common cancer worldwide and was the second
most common cause of cancer-related deaths in 2018 [1,2]. Endoscopic removal of precancer-
ous lesion is considered the best way to prevent colorectal cancer. The prognosis of patients
with colorectal cancer can be improved by early detection of cancerous lesions; thus, there is
a need for reliable, early, and accurate endoscopic diagnosis [3–6]. Colonoscopy is the gold
standard for screening colorectal lesions [7–9]. However, the rate of missed polyp detection
during colonoscopy increases according to the expert’s knowledge of endoscopy [10–12].
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Hence, artificial intelligence (AI) technologies could help in reducing the skill gaps among
clinicians and thereby decrease the rate of missed lesions during colonoscopy [13–16].

Given their shared features, colon cancer and rectal cancer are often indicated together.
In this study, rectal, colorectal, and other types of cancers related to colon cancer were
analyzed using deep learning [17–20]. Convolutional neural network (CNN)-based stan-
dard deep structures have been extensively used to segment and classify colon lesions as
being distinct from other unwanted regions [21–25]. However, to date, most of the AI for
computer-aided diagnostic systems discussed in the literature have relied on extensive
manual parameter setting for feature pattern extraction, which affects the outcomes [26–29].
Hand-crafted features with a feature selection module are required before implementing
a neural network, which can be automatically interpreted and markedly improves the
accuracy of colorectal cancer diagnosis [30–32].

Two separate colorectal cancer neural networks that were developed for segmentation
and classification of colon glands achieved accuracy in detecting benign and malignant
cancer [33]. Although these showed good performance, their frameworks typically showed
poor performance in detecting lumen and gland size variations. This may be due to
manual parameter settings for reducing various illumination conditions, which affects the
region of interest for the classification of features. This causes bias and is undesirable for
lesion detection.

Most previous systems relied on preprocessing to extract features for deep learning
structures [34–37]. Only a few of these systems used end-to-end learning, allowing auto-
matic extraction of features from images without requiring expert feature detection [38–41].
However, the information essential for clinical decision-making based on these architec-
tures is often hidden in high-dimensional spaces and is not comprehensible to humans.
It is, therefore, essential to address the interpretability and explainability of decisions in
healthcare. If these aspects are not addressed, these challenges may limit the chances of
adoption of an automatic system in real-world clinical practice. Thus, it is important to
develop AI approaches that can generate additional new attentive information in order to
gain insights into the behavior of networks. This is not yet widely available or exploited in
current diagnostics. However, a few methods that have approached the interpretability of
these networks have been developed [42,43].

Network training with unbalanced data distributions produces high-precision and
low-recall predictions and is severely biased toward the majority classes [44,45]. This is
unacceptable because of potential false negatives, which are more important than false
positives in cancer diagnosis. This also emphasizes the importance of the development of
more reliable AI techniques and interpretations.

Although an increasing number of AI systems for the detection of colorectal cancer
have been developed, they have not focused on interpretability, reliability, or the potential
to design a cost-effective AI system-based diagnostic framework. Our systematic review
explains the descriptions of the recent AI learning based on hybrid, end-to-end, knowledge-
transferring, explainable AI and sampling methods and elucidates its advantages and
disadvantages for more reliable detection. We also investigate the gaps in subsequent
decision-making, identify future challenges, and present further recommendations. We
have summarized literature retrieved from PubMed on the latest developments in deep
learning (DL) models focusing on colorectal cancer.

2. Imaging Modalities

To remain consistent and avoid a selection bias towards the datasets, several studies
used varied images and sizes. One study used 224 × 224 RGB images with a resolution
of 256 × 256 pixels of 200 normal tissue samples and 200 tumor samples [39]. The sliding-
window technique was used to break these down into smaller images. Other studies used
various images, such as endoscopic and whole slide images (WSI) for the detection of colon
cancer [46,47]. Another study used a larger image size (768 × 768 pixels) to preserve tissue
architecture information and reduce computational cost, as opposed to a smaller patch
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size (384 × 384 pixels), which produced the same result but had a higher computational
cost [48]. In the study using WSIs of cytokeratin immunohistochemistry obtained using a
digital slide scanner, images were standardized to set 1 µm = 1 pixel and were saved as
non-layered joint photographic experts group (JPEG) images, which were then converted
into binary images after deletion of non-cancerous areas [49]. Another study utilized an
automatic cropping approach, which removed black margins and resulted in a square
image with a 1:1 ratio [50].

3. Methodological Approaches

Recent studies using DL models for recognizing colorectal polyps were able to achieve
good performance with a large amount of data. However, the predictions of nonpolypoid
lesions were unclear [34,37]. This is clinically critical, because the target task of the devel-
oped AI system is the accurate identification of nonpolypoid lesions, given that this is not
a difficult task for an endoscopist. Furthermore, an AI system that can achieve superior
sensitivity and specificity by preventing missed lesions, without being user-dependent,
would be highly useful in clinical trials. Such a system could be particularly valuable for
improving reliability and reducing interobserver variability. The DL methods explained in
the following sections were originally implemented for specific tasks and can be applied to
colon screening and diagnostic tasks using various types of images (Figure 1).
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Figure 1. An overview of deep learning models in colon cancer detection and diagnosis. Created
with BioRender.com (accessed on 1 July 2022).

3.1. Hybrid Learning Methods

Hybrid learning methods combine various algorithms, processes, or procedures from
different applications. In situations where datasets are lacking, extracting the most rel-
evant information from the available datasets is important for analysis. This technique
can be helpful, particularly for extraction and classification of colon cancer. Ghosh et al.
developed a hybrid learning model that combined two machine learning techniques in-
volving supervised (SL) and unsupervised learning techniques for the detection of colon
cancer. This yielded better accuracy than existing approaches and could potentially be
used for real-time cancer detection [51]. This study evaluated data clustering by K-means,
the Girvan–Newman algorithm, and Mahalanobis distance-based clustering, followed by
feature selection and dimensionality reduction based on principal component analysis. The
data was then fed into an artificial neural network (ANN) for colon cancer classification.

BioRender.com
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Another study on colorectal cancer involving small datasets utilized the CNN system
ConvNet from the Visual Geometry Group (VGG) and modified it in five different ways.
The configuration model that could best identify tumor images was then evaluated [39],
and it was found that the best model was the one that had the most weight layers and
depths and displayed the most stable accuracy and loss curves. However, that study did
not include some variables, such as large images, to ease computation. To overcome gaps in
colonoscopy, i.e., the detection of non-polypoid colorectal lesions, Yamada et al. first trained
a Faster R-CNN model with an ImageNet dataset and then further trained it with images
of polypoid lesions, consecutive lesions, and noncancerous tissues taken from videos to
detect features such as edges and curves [46]. In another study, the issues associated with
small datasets was addressed by a method that included images of polyps in the dataset.
This produced more samples for training, while at the same time it preserved the realistic
features of the images [52]. This model improved the colonic polyp detection rates and
also reduced the false-negative rate. Furthermore, Ho et al. utilized a hybrid AI model
using training data with annotations from pathologists. They applied a classical machine
learning classifier and a Faster R-CNN model with ResNet-101 for glandular segmentation
and achieved high detection and sensitivity rates for colorectal features [47].

The segmentation model provides detailed results based on individual samples and
enables pathologists to derive further quantitative data from WSIs. For instance, the
application of segmentation not only allows the study to segment colonic tissues into
categories, but also segments other structures, such as blood vessels and inflammatory
lesions. Yu et al. compared SL and semi-supervised learning (SSL) and showed that the
latter performed better and had better generalization abilities than SL with a small amount
of labeled data and large amounts of unlabeled data [53]. They also demonstrated that
the SL model had reduced generalization performance when training data and testing
data were not obtained from the same source. In a study by Urban et al., a different CNN
model was trained with images from ImageNet, resulting in a highly accurate model with
potential for real-world use [34]. Moreover, an accurate, reliable, and active (ARA) strategy
was implemented in a new Bayesian DL CNN model (ARA-CNN), which was tasked with
classifying colorectal tissue and which provided an estimated uncertainty using variational
dropout to quicken the learning process [54]. The model, which was inspired by Microsoft
ResNet and DarkNet 19, displayed high accuracy and surpassed other methods that were
trained using the same dataset. Furthermore, the detection of colorectal cancer using a
DL-based Inception V3 model pre-trained with an ImageNet dataset and combined with
segmentation from digitized hematoxylin–eosin (H&E)-stained histology slides yielded
good performance [48].

A computer-aided diagnostic system for endocytoscopic imaging can support non-
experts in diagnosing lesions without prior training. Such a system showed an accuracy
rate comparable to those of experts, and hence is more beneficial to trainees, as it only
requires the push of a button to obtain a real-time diagnostic output [55]. Takamatsu et al.
used image processing combined with machine learning in Image J software to generate a
prediction model for colorectal cells in lymph node metastasis (LNM) and used cytokeratin
immunohistochemistry obtained from a digital slide scanner for an accurate detection
of cancer foci. It successfully predicted LNM [50]. A further study sought to develop a
mass screening method for determining colorectal cancer risk. To this end, they evaluated
seven SL models, i.e., linear discriminant analysis, support vector machine, naive Bayes,
decision tree, random forest, logistic regression, and ANN. They followed this up with
six imputation methods to deal with missing data (mean, Gaussian, Lorentzian, one-hot
encoding, Gaussian expectation-maximization, and listwise deletion) [56]. It was found
that the model combining ANN and Gaussian expectation-maximization fared best and
had the potential to be used as a screening tool for early detection of colorectal cancer. Wan
et al. developed the early cancer prediction algorithm model, based on an existing model
(the nonnegative matrix factorization method), but with reduced matrix dimensionality
and removal of repetitive data, resulting in more interpretable data [57].
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Utilizing CNNs, such as AlexNet and Caffe, on colon endoscopy cases is useful in
detecting protruding, flat, and recessed lesions. This was proven to yield accurate diagnoses
and good areas under the receiver operating characteristic curve (AUC), as demonstrated by
Ito et al. [58]. Tamai et al. investigated magnifying narrow-band imaging (M-NBI). This is a
detailed observation approach usable in endoscopic diagnosis of colorectal lesions, albeit
requiring knowledge and experience. They demonstrated its potential to be utilized with
computer-aided diagnosis [59]. The software was then used to divide images of colorectal
lesions into three groups: hyperplastic polyps, adenoma/adenocarcinoma lesions, and
submucosal-deep lesions. Some diagnoses differed from those of expert endoscopists,
which led the authors to believe that this model may have limitations in diagnosing
villous lesions.

In a study focusing on the diagnosis of colorectal adenoma, training slides were
accurately labeled using a custom-developed system for annotation on iPad. The authors
investigated a DL model based on DeepLab v2 with ResNet-34 and found that it yielded
performance on par with that of pathologists [60]. The study also demonstrated that the
deeper the network, the more information was displayed, such as gland shape, nucleus,
and cell form. The report also stated that the model identified abnormalities in the glands
as adenomatous glands. Rathore et al. developed a novel strategy that combined textural
and geometric features of colon tissues and traditional features for the detection of colon
cancer cells, and its classification into normal and malignant cases [61]. The study involved
the usage of a hybrid feature space based on colon-classification; morphological, texture,
scale-invariant feature transform; elliptic Fourier descriptors; and support vector machines
as classifiers to extract and classify the datasets. In addition, Nadimi et al. developed a
CNN by improving ZF-Net, a model that combines transfer learning, pre-processing, and
data augmentations, before deploying it to a Faster R-CNN to restrict images to regions that
contained colorectal polyps. This approach yielded high accuracy in autonomous detection
of polyps and demonstrated high interpretability in sensitive regions by providing saliency
maps [62].

3.2. End-to-End Learning Methods

In order to improve reliability, end-to-end DL models were considered for colon cancer
identification. End-to-end (e2e) learning is the process of training a complex learning system
by applying descending gradient-based learning to the system [63]. Simply put, models
learn all the steps between the initial input phase and final output phase, and these parts
are simultaneously trained. Some of the studies that apply e2e learning methods include
the neural Turing machine, differentiable neural computer vision-based navigation in 3D
environments, and value iteration networks [64–67]. While these studies have showcased
successful models and techniques, quite a few noteworthy limitations remain, such as
poor local optima, vanishing gradients, ill-conditioned problems, and slow convergence
in different circumstances. Specifically, the development of the network architectures
becomes more complex [63]. However, some of these limitations were efficiently overcome
in the study by Buendgens et al., who applied e2e learning methods in a non-annotated
routine database without manual labels. It accomplished good predictive performance
in the identification of several diagnoses from gastrointestinal endoscopy images. This
displays the potential of weakly supervised AI in clinical imaging modalities, in contrast
to claims that manual annotations are a bottleneck for the future clinical application of
AI [49]. The image dataset was preprocessed in MATLAB R2021a, and the ResNet-18
model was trained with the datasets. The model was capable of diagnosing inflammatory,
degenerative, infectious, and neoplastic diseases from raw gastroscopy and colonoscopy
images. It was able to detect the presence of diverticulosis, candidiasis, and colon and
rectal cancer by learning the visual patterns of gastrointestinal (GI) pathology directly from
the examination labels. In another study on the histopathological classification of gastric
and colonic epithelial tumors and lesions, the authors trained CNNs and recurrent neural
networks (RNNs), which included the Inception v3 network, to classify WSIs of biopsy
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specimens from the stomach and colon into adenocarcinoma, adenoma, and non-neoplastic
tissue [68]. When tested on datasets obtained from The Cancer Genome Atlas (TCGA) with
a mix of formalin-fixed paraffin-embedded (FFPE) and flash frozen tissues, the model was
capable of generalized adenocarcinoma prediction, despite being largely trained on biopsies.
The max-pooling aggregation method (MP-AGG) for WSI classification, demonstrated a
higher log-loss than the RNN aggregation method. The probabilities of MP-AGG require a
high cut-off threshold, and the method is more prone to errors in classification. Pinckaers
and Litjens utilized gland segmentation datasets to train three models, i.e., a baseline U-Net
model, another U-Net model with fewer filters and ordinary differential equation blocks
(called U-Node), and a trained U-Node network (called U-ResNet), to predict and separate
individual colon glands [69]. The U-Node network used fewer parameters compared to the
other two proposed models and was able to improve segmentation. The study also showed
that the neural ordinary differential equation improved the segmentation results in terms
of memory load and parameter counts.

3.3. Transfer Learning Methods

Transfer learning is a technique that transfers knowledge gained from a machine learn-
ing model used to address one problem to another model to solve a different but related
problem. Transfer learning involves transfer of information to new tasks while entirely
depending on the previously learned tasks (Figure 2). It has several main advantages
over other training models, such as a better starting model, higher accuracy, and faster
training [70]. There are two similar approaches, one of which involves using a pre-trained
model to transfer knowledge to a target model and adapting the features of the source
model, while the other involves developing a new model from scratch to transfer knowl-
edge from its main task, and then explicitly training it with available information [71].
Transfer learning based on the AlexNet model was adopted to learn effective classification
features [58]. This method increased the limited number of colon lesion images and im-
proved the screening performance for colorectal cancers. A study that utilized the former
method to study colorectal cancer using confocal laser microscopy images with various
transfer learning methods from the ImageNet dataset found that this approach yielded
improved performance compared to the latter method, despite functioning differently
according to different models and delegated tasks [72].

In another study, a fully automated lymph node detection and segmentation method
was generated through transfer learning techniques, namely by fusing T2- and diffusion-
weighted images of multiparametric magnetic resonance imaging to the model Mask
R-CNN to improve the performance of magnetic resonance imaging-based lymph node
detection and segmentation. The model performance was evaluated based on sensitivity,
positive-predictive value, false positive rate per case, and Dice similarity coefficient [32].
The model performed significantly better and faster than junior radiologists using manual
detection. In addition, transfer learning methods are able to overcome issues such as a lack
of rich WSI datasets. Hamida et al. used several CNNs, such as AlexNet, VGG, ResNet,
DenseNet, and Inception, for studying the classification of patch-level colon cancer WSIs,
of which ResNet presented the highest accuracy [73]. A pixel-wide segmentation approach
for colon cancer was also applied using U-Net and SegNet models in the same study, in
order to highlight regions of colon cancer in the slides. This revealed that SegNet had
a higher accuracy than U-Net. Despite its exceptional performance, SegNet has a high
computational cost. Additionally, Hamida et al. also compared different transfer learning
strategies deployed in various CNN models and found that the models demonstrated low
accuracy when learning from scratch, whereas pretraining the models resulted in better
performance, although the accuracy of classification was unknown. However, fine-tuning
the models produced the best performance among all the strategies and enabled rapid
scanning of the datasets. Furthermore, Malik et al. investigated the usability of DL-based
methods, namely a deep CNN with a limited amount of labeled data and low-resolution
histology images for colorectal cancer identification and detection [74].
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In contrast to the findings of Hamida et al., it was found that training a CNN from
scratch resulted in higher accuracy and a more consistent detection rate than that of other
fine-tuned models, whereas existing deep CNN models trained with transfer learning
approaches produced the most superior identification of cancer. Kather et al. trained
several CNNs, namely VGG19, AlexNet, SqueezeNet 1.1, GoogLeNet, and ResNet50, to
identify tissue types that are abundant in histological images of colorectal cancer, including
those that are non-tumorous. These were also able to decompose complex tissues into
constituents and aggregated the score of the abundance of the tissue parts [75]. The VGG19
model performed best and was also able to recreate the morphological features learnt
from the datasets and visualize tissue structures via the DeepDream approach. This was
continuously applied to larger images and WSIs, showing a high classification accuracy
that was on par with human vision. Gessert et al. utilized transfer learning approaches,
including learning from scratch, partial freezing variants, and fine-tuning, in the VGG16
and Inception v3 models, with a small number of datasets [72]. The training-from-scratch
method performed extremely poorly, whereas there were no significant differences between
the partial freezing variants and fine-tuning strategies. The study also demonstrated that,
while transfer learning improved performance, the optimal strategy differed for various
models and classification tasks.

Learning transfer with a pretrained model on ImageNet datasets, based on various
CNN models for colorectal cancer using histology-stained slides, replaced the final clas-
sification layer and trained the whole network with a stochastic gradient descent with
momentum. The VGG19 showed the best performance of all the networks, within an accept-
able training time [75]. Another study implemented a modified VGG-based CNN model
on colorectal histology images to classify normal and tumor tissue samples. This system
accurately classified 294 out of 309 normal tissue images, and 667 out of 719 tumor tissue
images [39]. Each of the above studies had its limitations, such as the use of a relatively
small number of datasets for generalization, a weak learning procedure for an appropriate
level of support for the diagnostic decision, and nontransparent high prediction accuracy

BioRender.com
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in complex model architectures. It is imperative that the connection between features and
predictions be comprehensible from the algorithm. Therefore, if the generated AI algorithm
contributes to a clinical decision, it should be easy for clinicians to understand why a
specific output was produced and how it was characterized.

3.4. Explainable Learning Methods

When dealing with medical data, besides demonstrating accurate prediction, it is
important for models to justify uncertainties in results, as cases that are more complex
should be further inspected by humans. These “failed” prediction data can then be anno-
tated by experts and turned into a new training set [76]. This is where explainable models
come into play. Explainable AI (XAI) involves processes or methods that allow users to
understand the results produced by machine learning models, their impacts, and potential
biases. While some models are able to compute accurate predictive data, some are not
able to supply justification for their decisions. Most of the aforementioned models for
colorectal cancer have used standard DL structures. Moreover, these approaches mostly
focus on increasing the accuracy of the final results [68,77–79]. Hence, very few studies
have mentioned any significant evidence that contributes to the decision outcomes [41–45].
Korbar et al. developed a deep ResNet visualization network for detection of colorectal
polyps [42]. They established a pretrained ResNet-101 classification model with labeled
patches of stained slide images. Furthermore, the classification could be projected back to
the input pixel space to indicate parts of the input image that were key to the classification.
This approach used a visualization model that identified regions and features of interest.
A fully convolutional ResNet would be useful for visualizing the output in the last layer
and to find the regions of interest for pathologists to analyze and confirm the classification
of the model. Similarly, Raczkowski et al. addressed misclassified labels using an active
learning-based Bayesian CNN model for classifying colorectal cancer [54]. This model was
initially trained on a small dataset and on a dataset extended by using new samples, to
reduce the entropy in the data analysis.

The explainable AI system using a cumulative fuzzy class membership criterion for
the classification of colorectal cancer tissues complements its decision with three types
of information: visualization of the most important regions for decision, visualization of
unwanted regions, and semantic explanation [43]. The use of the membership criterion
proved to be a reliable and accountable explainable classifier in the decision-making process
in clinical trials, with a highly satisfactory performance. In multiple instances, a fully
convolutional network with attention to pooling architecture has been used to aggregate
interpretable features of colorectal cancer patterns [80]. A pretrained VGG using the
ImageNet dataset have been used to extract features for each image patch and adopted
K-means clustering to cluster patches based on their extracted features. This was found
to be more effective and suitable for huge datasets and showed better interpretability
in locating important patterns and features, which contributed to accurate prediction of
survival in patients with cancer.

Sabol et al. used a plain CNN model to generate an explainable Cumulative Fuzzy
Class Membership Criterion (X-CFCMC) model that could be used to classify images
and WSI segmentation on histopathological cancer tissues. It rationalized its decisions
using three main methods: semantically explaining the possibilities of misclassification,
displaying the training samples that were responsible for a certain prediction, and showing
the training samples from other conflicting classes [43]. The pathologists involved in the
study preferred the X-CFCMC model over the plain CNN model, as it was more useful
and reliable. Another model utilizing XAI methods, namely the layer-wise relevance
propagation method, was tested to identify various types of tumor entities, and it produced
results that were consistent with experts’ insights and provided visual explanations in the
form of heat maps [76]. These explainable heat maps assisted in detecting biases that could
potentially affect the generalization abilities of the models, such as biases affecting the entire
dataset, biases correlated to a specific class label by chance, and sampling biases. Moreover,
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Korbar et al. demonstrated the capabilities of XAI-based techniques, using gradient-based
visualization approaches, for explaining reasons for classification in WSI analysis for
different types of colorectal polyps, with minimal costs and easy interpretability [42]. For
this study, a ResNet model was used to classify colorectal polyps on labeled patches of
H&E-stained WSIs, and to justify the outcomes using a gradient-based approach. The
DL architecture and imaging modality based on explainable AI and sampling studies are
shown in Table 1.

Table 1. General summary of studies related to explainable artificial intelligence and sampling
methods using deep learning techniques for colon cancer detection.

References Methods Imaging Modality

Yao et al., 2020 [80]

Deep Attention Multiple Instance
Survival Learning (DeepAttnMISL) with

Multiple Instance Fully Convolutional
Network (MI-FCN), DeepMISL,
Finetuned-WSISA-LassoCOx,

Finetuned-WSISA-MTLSA,
WSISA-LassoCox, WSISA-MTLSA

Sample images of tissues taken through
colonoscopy and turned into WSI clusters.

Sirinukunwattana et al., 2016 [21] Spatially Constrained Convolutional
Neural Network (SC-CNN)

100 H&E-stained histology images of
colorectal adenocarcinomas of

500 × 500 pixels were cropped from WSIs
using Omnyx VLI20 scanner.

Sabol et al., 2020 [43] Cumulative Fuzzy Class Membership
Criterion (CFCMC)

H&E tissue slides cut into 5000 small sections
of 150 × 150 pixels and annotation as one of

eight tissue classes.

Korbar et al., 2017 [42] ResNet
176 H&E-stained WSIs collected from

patients who underwent colorectal
cancer screening.

Hägele et al., 2020 [76] GoogLeNet from Caffe Model Zoo
H&E-stained images from TCGA Research

Network were chosen and its WSIs
were annotated.

Koziarski et al., 2020 [81] MobileNet
Colorectal cancer histology image datasets
divided into 5000 different types of tissues,

each with a 150 × 150 pixels dimensionality.

Kainz et al., 2017 [33] Object-Net and Separator-Net

165 annotated, H&E-stained images of
colorectal adenocarcinomas were collected at

20× magnification using a Zeiss MIRAX
MIDI Scanner.

Hong et al., 2020 [45] U-Net with EfficientNet B4 and
EfficientNet B5 encoder

Datasets obtained from ETIS-Larib from the
MICCAI 2015 polyp detection challenge,

and CVCColonDB

Shapcott et al., 2019 [44] Matconvnet, Tensorflow “cifar10” with
Pycharm IDE

142 H&E-stained, 40× magnification
colorectal cancer images obtained from

TCGA COAD data set from the Genomic
Data Commons Portal 2018.

3.5. Sampling Methods

The basic properties of AI systems should include transparency, interpretability, and
reliability to provide trust and fairness in clinical diagnostics. These qualities improve
discrimination ability and diminish potential mistakes. The majority of AI techniques
have been designed based on balanced class distributions. However, when trained on
imbalanced data, such techniques are biased toward the majority class at the expense of
the minority class, degrading their overall performance [44,45,81]. Data imbalance poses a
significant challenge for traditional learning algorithms. Hence, a few studies using DL
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methods in colon cancer have approached this data distribution problem using data-level
and algorithm-level methods. Koziarski et al. utilized the oversampling technique in
the image space to enhance a large amount of data to train a CNN and implemented it
by sampling in the feature space to fine-tune the last layers of the network [81]. They
revealed that higher levels of imbalance between classes highly affected the classification
performance. Thus, they concluded that the decrease in the number of observations used
for training was not only the reason for the performance decline, but that data imbalance
was also an important factor. Hong et al. developed a novel algorithmic-level loss function,
which combined cross-entropy with asymmetric loss in EfficentNet and U-Net models [45].
This identified each pixel individually by comparing the class predictions and producing a
better balance between precision and recall for colon cancer polyp segmentation. Shapcott
et al. used systematic random sampling and adaptive sampling in the CNN architecture
to overcome the imbalance problem and achieved significant improvements in colorectal
cancer diagnostic performance [44].

4. Results and Discussion

It is important to focus on what the network is learning and interpret the pixel space
visualizations by an attention-based network, as these represent the regions of interest that
should be located and used to confirm the classification outcomes of the model. Visualizing
particular features in such deep network architectures can result in the highest probability
of success in the diagnostic decision-making. Modifications to the VGG-inspired CNN
model ConvNet were evaluated by identifying colorectal cells, yielding values of 93.48%,
0.4385, 95.10%, and 92.76%, for accuracy, loss, sensitivity, and specificity, respectively [39].
Ghosh et al. reported that the proposed classifiers had the highest classification accuracy
(98.60%) among classifiers, ranging from 88.71% to 98.40% [51]. Furthermore, the diagnostic
performance of AI and endoscopists yielded sensitivities of 97.30% and 87.40%, respectively,
specificities of 99.00% and 96.40%, respectively, and processing times of 0.022 s/image
and 2.4 s/image, respectively [46]. In another study, researchers achieved an accuracy
exceeding 92% when using hybrid models that automatically detect colon cancer [61].
Li et al. discussed the accuracy of hybrid models that combined available features and
variables to yield improved accuracy in both training and validation datasets (>90% and
>85%, respectively), aside from significantly improving the prediction performance of the
hybrid model [82]. In some studies, the AI model achieved an AUC of 0.917, with high
sensitivity (97.4%) in detecting high-risk features of dysplasia and malignancy [47]. In
another study, the labeled patches from WSIs achieved accurate patch-level recognition [83].
However, when SSL was used, only about one-tenth of labeled patches used in the SL
testing and 37,800 unlabeled patches were used to achieve a similar AUC [53]. In another
study, AI operating on real-time detection of polyps (1 frame in 10 ms) was able to detect
the presence of polyps with an accuracy of 96.4% and an AUC of 0.991, using a CNN model
that was first trained on the ImageNet data and then on an available polyp dataset [34].
Additionally, ARA-CNN was found to perform better, by 18.78%, than other models using
the same dataset [54]. Another hybrid learning approach demonstrated that this technique
produced a median accuracy of 99.9% for healthy tissue slides and 94.8% for cancer slides,
as compared to pathologist-based diagnosis from clinical samples [48]. A hybrid learning
model that was modified from ZF-Net had an accuracy of 98.0%, a sensitivity of 98.1%, and a
specificity of 96.3% [62]. A study by Iizuka et al. demonstrated high AUC values (0.96–0.99)
for adenomas in the gastric and colonic epithelium by applying the same techniques, with
few limitations [68]. A study on weakly supervised e2e AI in gastrointestinal endoscopy
found that the AUC for the diagnoses of 13 diseases had a value of 0.7–0.8 and was able to
predict the presence of colorectal cancer with an AUC > 0.76 [49]. The accuracy of a few
CNN models in recognizing features in colorectal histopathological WSIs was compared.
After fine-tuning, AlexNet, ResNet, DenseNet, VGG, and Inception models presented better
performance than training-from-scratch and pre-trained approaches. The CNNs displayed
accuracy rates of 89.42%, 95.25%, 96.98%, 95.86%, and 92.43%, respectively, with fine tuning
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and enabled rapid scanning and updating of the parameters to cope with the dataset [68].
In another study, the training-from-scratch approach performed better and had the most
consistent detection rate across all evaluation criteria, achieving a specificity rate that was
16.81% higher than the best-performing CNN model. The model also produced a detection
accuracy of 94.5%, which was 3.85% higher than the highest accuracy rate achieved by
other CNN models [74]. Another study evaluated the reliability of the X-CFCMC XAI
model by running acceptability tests against a plain CNN model, using feedback from
pathologists, and found that the former was more acceptable to pathologists due to its
explaining capacity [43].

5. Conclusions

Overall, this study concluded that AI is demonstrating promising results in terms of
accuracy in the diagnosis of colorectal cancer. However, the user-dependent and complex,
non-transparent deep network models do not provide an appropriate level of evidence for
the key points used in classification, which is the reason for the slow application of this
technique in clinical practice. Most AI models for predicting invasive cancer are prone to
over-detection. This suggests that supporting evidence for results of AI-based diagnosis
of colorectal cancer is strongly required to continue to optimize model performance for
practice-level validation. Therefore, we propose that AI using a visualization method for
classification outcomes could significantly reduce the burden on clinicians and improve the
diagnostic accuracy for colorectal cancer.
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