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Simple Summary: Deep learning models have been shown to achieve high performance in diag-

nosing colon cancer compared to conventional image processing and hand-crafted machine learn-

ing methods. Hence, several studies have focused on developing hybrid learning, end-to-end, and 

transfer learning techniques to reduce manual interaction and for labelling the regions of interest. 

However, these weak learning techniques do not always provide a clear diagnosis. Therefore, it is 

necessary to develop a clear explainable learning method that can highlight factors and form the 

basis of clinical decisions. However, there has been little research carried out employing such 

transparent approaches. This study discussed the aforementioned models for colon cancer diag-

nosis. 

Abstract: Early detection of colorectal cancer can significantly facilitate clinicians’ decision-making 

and reduce their workload. This can be achieved using automatic systems with endoscopic and 

histological images. Recently, the success of deep learning has motivated the development of im-

age- and video-based polyp identification and segmentation. Currently, most diagnostic colonos-

copy rooms utilize artificial intelligence methods that are considered to perform well in predicting 

invasive cancer. Convolutional neural network-based architectures, together with image patches 

and preprocesses are often widely used. Furthermore, learning transfer and end-to-end learning 

techniques have been adopted for detection and localization tasks, which improve accuracy and 

reduce user dependence with limited datasets. However, explainable deep networks that provide 

transparency, interpretability, reliability, and fairness in clinical diagnostics are preferred. In this 

review, we summarize the latest advances in such models, with or without transparency, for the 

prediction of colorectal cancer and also address the knowledge gap in the upcoming technology. 

Keywords: artificial intelligence; colorectal cancer; interpretation; neural network; transfer learning; 

transparency 

 

1. Introduction 

Colorectal cancer is the third most common cancer worldwide and was the second 

most common cause of cancer-related deaths in 2018 [1,2]. Endoscopic removal of pre-

cancerous lesion is considered the best way to prevent colorectal cancer. The prognosis of 

patients with colorectal cancer can be improved by early detection of cancerous lesions; 

thus, there is a need for reliable, early, and accurate endoscopic diagnosis [3–6]. Colon-

oscopy is the gold standard for screening colorectal lesions [7–9]. However, the rate of 
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missed polyp detection during colonoscopy increases according to the expert’s 

knowledge of endoscopy [10–12]. Hence, artificial intelligence (AI) technologies could 

help in reducing the skill gaps among clinicians and thereby decrease the rate of missed 

lesions during colonoscopy [13–16]. 

Given their shared features, colon cancer and rectal cancer are often indicated to-

gether. In this study, rectal, colorectal, and other types of cancers related to colon cancer 

were analyzed using deep learning [17–20]. Convolutional neural network (CNN)-based 

standard deep structures have been extensively used to segment and classify colon le-

sions as being distinct from other unwanted regions [21–25]. However, to date, most of 

the AI for computer-aided diagnostic systems discussed in the literature have relied on 

extensive manual parameter setting for feature pattern extraction, which affects the out-

comes [26–29]. Hand-crafted features with a feature selection module are required before 

implementing a neural network, which can be automatically interpreted and markedly 

improves the accuracy of colorectal cancer diagnosis [30–32]. 

Two separate colorectal cancer neural networks that were developed for segmenta-

tion and classification of colon glands achieved accuracy in detecting benign and malig-

nant cancer [33]. Although these showed good performance, their frameworks typically 

showed poor performance in detecting lumen and gland size variations. This may be due 

to manual parameter settings for reducing various illumination conditions, which affects 

the region of interest for the classification of features. This causes bias and is undesirable 

for lesion detection. 

Most previous systems relied on preprocessing to extract features for deep learning 

structures [34–37]. Only a few of these systems used end-to-end learning, allowing au-

tomatic extraction of features from images without requiring expert feature detection 

[38–41]. However, the information essential for clinical decision-making based on these 

architectures is often hidden in high-dimensional spaces and is not comprehensible to 

humans. It is, therefore, essential to address the interpretability and explainability of de-

cisions in healthcare. If these aspects are not addressed, these challenges may limit the 

chances of adoption of an automatic system in real-world clinical practice. Thus, it is 

important to develop AI approaches that can generate additional new attentive infor-

mation in order to gain insights into the behavior of networks. This is not yet widely 

available or exploited in current diagnostics. However, a few methods that have ap-

proached the interpretability of these networks have been developed [42,43].  

Network training with unbalanced data distributions produces high-precision and 

low-recall predictions and is severely biased toward the majority classes [44,45]. This is 

unacceptable because of potential false negatives, which are more important than false 

positives in cancer diagnosis. This also emphasizes the importance of the development of 

more reliable AI techniques and interpretations.  

Although an increasing number of AI systems for the detection of colorectal cancer 

have been developed, they have not focused on interpretability, reliability, or the poten-

tial to design a cost-effective AI system-based diagnostic framework. Our systematic re-

view explains the descriptions of the recent AI learning based on hybrid, end-to-end, 

knowledge-transferring, explainable AI and sampling methods and elucidates its ad-

vantages and disadvantages for more reliable detection. We also investigate the gaps in 

subsequent decision-making, identify future challenges, and present further recom-

mendations. We have summarized literature retrieved from PubMed on the latest de-

velopments in deep learning (DL) models focusing on colorectal cancer. 

2. Imaging Modalities 

To remain consistent and avoid a selection bias towards the datasets, several studies 

used varied images and sizes. One study used 224 × 224 RGB images with a resolution of 

256 × 256 pixels of 200 normal tissue samples and 200 tumor samples [39]. The slid-

ing-window technique was used to break these down into smaller images. Other studies 

used various images, such as endoscopic and whole slide images (WSI) for the detection 
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of colon cancer [46,47]. Another study used a larger image size (768 × 768 pixels) to pre-

serve tissue architecture information and reduce computational cost, as opposed to a 

smaller patch size (384 × 384 pixels), which produced the same result but had a higher 

computational cost [48]. In the study using WSIs of cytokeratin immunohistochemistry 

obtained using a digital slide scanner, images were standardized to set 1 μm = 1 pixel and 

were saved as non-layered joint photographic experts group (JPEG) images, which were 

then converted into binary images after deletion of non-cancerous areas [49]. Another 

study utilized an automatic cropping approach, which removed black margins and re-

sulted in a square image with a 1:1 ratio [50]. 

3. Methodological Approaches 

Recent studies using DL models for recognizing colorectal polyps were able to 

achieve good performance with a large amount of data. However, the predictions of 

nonpolypoid lesions were unclear [34,37]. This is clinically critical, because the target task 

of the developed AI system is the accurate identification of nonpolypoid lesions, given 

that this is not a difficult task for an endoscopist. Furthermore, an AI system that can 

achieve superior sensitivity and specificity by preventing missed lesions, without being 

user-dependent, would be highly useful in clinical trials. Such a system could be partic-

ularly valuable for improving reliability and reducing interobserver variability. The DL 

methods explained in the following sections were originally implemented for specific 

tasks and can be applied to colon screening and diagnostic tasks using various types of 

images (Figure 1). 

 

Figure 1. An overview of deep learning models in colon cancer detection and diagnosis. Created 

with BioRender.com (accessed on 1 July 2022). 

3.1. Hybrid Learning Methods 

Hybrid learning methods combine various algorithms, processes, or procedures 

from different applications. In situations where datasets are lacking, extracting the most 

relevant information from the available datasets is important for analysis. This technique 

can be helpful, particularly for extraction and classification of colon cancer. Ghosh et al. 

developed a hybrid learning model that combined two machine learning techniques in-

volving supervised (SL) and unsupervised learning techniques for the detection of colon 
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cancer. This yielded better accuracy than existing approaches and could potentially be 

used for real-time cancer detection [51]. This study evaluated data clustering by K-means, 

the Girvan–Newman algorithm, and Mahalanobis distance-based clustering, followed by 

feature selection and dimensionality reduction based on principal component analysis. 

The data was then fed into an artificial neural network (ANN) for colon cancer classifi-

cation. Another study on colorectal cancer involving small datasets utilized the CNN 

system ConvNet from the Visual Geometry Group (VGG) and modified it in five differ-

ent ways. The configuration model that could best identify tumor images was then 

evaluated [39], and it was found that the best model was the one that had the most 

weight layers and depths and displayed the most stable accuracy and loss curves. 

However, that study did not include some variables, such as large images, to ease com-

putation. To overcome gaps in colonoscopy, i.e., the detection of non-polypoid colorectal 

lesions, Yamada et al. first trained a Faster R-CNN model with an ImageNet dataset and 

then further trained it with images of polypoid lesions, consecutive lesions, and non-

cancerous tissues taken from videos to detect features such as edges and curves [46]. In 

another study, the issues associated with small datasets was addressed by a method that 

included images of polyps in the dataset. This produced more samples for training, while 

at the same time it preserved the realistic features of the images [52]. This model im-

proved the colonic polyp detection rates and also reduced the false-negative rate. Fur-

thermore, Ho et al. utilized a hybrid AI model using training data with annotations from 

pathologists. They applied a classical machine learning classifier and a Faster R-CNN 

model with ResNet-101 for glandular segmentation and achieved high detection and 

sensitivity rates for colorectal features [47].  

The segmentation model provides detailed results based on individual samples and 

enables pathologists to derive further quantitative data from WSIs. For instance, the ap-

plication of segmentation not only allows the study to segment colonic tissues into cate-

gories, but also segments other structures, such as blood vessels and inflammatory le-

sions. Yu et al. compared SL and semi-supervised learning (SSL) and showed that the 

latter performed better and had better generalization abilities than SL with a small 

amount of labeled data and large amounts of unlabeled data [53]. They also demon-

strated that the SL model had reduced generalization performance when training data 

and testing data were not obtained from the same source. In a study by Urban et al., a 

different CNN model was trained with images from ImageNet, resulting in a highly ac-

curate model with potential for real-world use [34]. Moreover, an accurate, reliable, and 

active (ARA) strategy was implemented in a new Bayesian DL CNN model (ARA-CNN), 

which was tasked with classifying colorectal tissue and which provided an estimated 

uncertainty using variational dropout to quicken the learning process [54]. The model, 

which was inspired by Microsoft ResNet and DarkNet 19, displayed high accuracy and 

surpassed other methods that were trained using the same dataset. Furthermore, the 

detection of colorectal cancer using a DL-based Inception V3 model pre-trained with an 

ImageNet dataset and combined with segmentation from digitized hematoxylin–eosin 

(H&E)-stained histology slides yielded good performance [48].  

A computer-aided diagnostic system for endocytoscopic imaging can support 

non-experts in diagnosing lesions without prior training. Such a system showed an ac-

curacy rate comparable to those of experts, and hence is more beneficial to trainees, as it 

only requires the push of a button to obtain a real-time diagnostic output [55]. Takamatsu 

et al. used image processing combined with machine learning in Image J software to 

generate a prediction model for colorectal cells in lymph node metastasis (LNM) and 

used cytokeratin immunohistochemistry obtained from a digital slide scanner for an ac-

curate detection of cancer foci. It successfully predicted LNM [50]. A further study sought 

to develop a mass screening method for determining colorectal cancer risk. To this end, 

they evaluated seven SL models, i.e., linear discriminant analysis, support vector ma-

chine, naive Bayes, decision tree, random forest, logistic regression, and ANN. They fol-

lowed this up with six imputation methods to deal with missing data (mean, Gaussian, 



Cancers 2022, 14, 3707 5 of 14 
 

 

Lorentzian, one-hot encoding, Gaussian expectation-maximization, and listwise deletion) 

[56]. It was found that the model combining ANN and Gaussian expecta-

tion-maximization fared best and had the potential to be used as a screening tool for early 

detection of colorectal cancer. Wan et al. developed the early cancer prediction algorithm 

model, based on an existing model (the nonnegative matrix factorization method), but 

with reduced matrix dimensionality and removal of repetitive data, resulting in more 

interpretable data [57].  

Utilizing CNNs, such as AlexNet and Caffe, on colon endoscopy cases is useful in 

detecting protruding, flat, and recessed lesions. This was proven to yield accurate diag-

noses and good areas under the receiver operating characteristic curve (AUC), as 

demonstrated by Ito et al. [58]. Tamai et al. investigated magnifying narrow-band imag-

ing (M-NBI). This is a detailed observation approach usable in endoscopic diagnosis of 

colorectal lesions, albeit requiring knowledge and experience. They demonstrated its 

potential to be utilized with computer-aided diagnosis [59]. The software was then used 

to divide images of colorectal lesions into three groups: hyperplastic polyps, adeno-

ma/adenocarcinoma lesions, and submucosal-deep lesions. Some diagnoses differed 

from those of expert endoscopists, which led the authors to believe that this model may 

have limitations in diagnosing villous lesions.  

In a study focusing on the diagnosis of colorectal adenoma, training slides were 

accurately labeled using a custom-developed system for annotation on iPad. The authors 

investigated a DL model based on DeepLab v2 with ResNet-34 and found that it yielded 

performance on par with that of pathologists [60]. The study also demonstrated that the 

deeper the network, the more information was displayed, such as gland shape, nucleus, 

and cell form. The report also stated that the model identified abnormalities in the glands 

as adenomatous glands. Rathore et al. developed a novel strategy that combined textural 

and geometric features of colon tissues and traditional features for the detection of colon 

cancer cells, and its classification into normal and malignant cases [61]. The study in-

volved the usage of a hybrid feature space based on colon-classification; morphological, 

texture, scale-invariant feature transform; elliptic Fourier descriptors; and support vector 

machines as classifiers to extract and classify the datasets. In addition, Nadimi et al. de-

veloped a CNN by improving ZF-Net, a model that combines transfer learning, 

pre-processing, and data augmentations, before deploying it to a Faster R-CNN to restrict 

images to regions that contained colorectal polyps. This approach yielded high accuracy 

in autonomous detection of polyps and demonstrated high interpretability in sensitive 

regions by providing saliency maps [62]. 

3.2. End-to-End Learning Methods 

In order to improve reliability, end-to-end DL models were considered for colon 

cancer identification. End-to-end (e2e) learning is the process of training a complex 

learning system by applying descending gradient-based learning to the system [63]. 

Simply put, models learn all the steps between the initial input phase and final output 

phase, and these parts are simultaneously trained. Some of the studies that apply e2e 

learning methods include the neural Turing machine, differentiable neural computer vi-

sion-based navigation in 3D environments, and value iteration networks [64–67]. While 

these studies have showcased successful models and techniques, quite a few noteworthy 

limitations remain, such as poor local optima, vanishing gradients, ill-conditioned prob-

lems, and slow convergence in different circumstances. Specifically, the development of 

the network architectures becomes more complex [63]. However, some of these limita-

tions were efficiently overcome in the study by Buendgens et al., who applied e2e learn-

ing methods in a non-annotated routine database without manual labels. It accomplished 

good predictive performance in the identification of several diagnoses from gastrointes-

tinal endoscopy images. This displays the potential of weakly supervised AI in clinical 

imaging modalities, in contrast to claims that manual annotations are a bottleneck for the 

future clinical application of AI [49]. The image dataset was preprocessed in MATLAB 
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R2021a, and the ResNet-18 model was trained with the datasets. The model was capable 

of diagnosing inflammatory, degenerative, infectious, and neoplastic diseases from raw 

gastroscopy and colonoscopy images. It was able to detect the presence of diverticulosis, 

candidiasis, and colon and rectal cancer by learning the visual patterns of gastrointestinal 

(GI) pathology directly from the examination labels. In another study on the histopatho-

logical classification of gastric and colonic epithelial tumors and lesions, the authors 

trained CNNs and recurrent neural networks (RNNs), which included the Inception v3 

network, to classify WSIs of biopsy specimens from the stomach and colon into adeno-

carcinoma, adenoma, and non-neoplastic tissue [68]. When tested on datasets obtained 

from The Cancer Genome Atlas (TCGA) with a mix of formalin-fixed paraffin-embedded 

(FFPE) and flash frozen tissues, the model was capable of generalized adenocarcinoma 

prediction, despite being largely trained on biopsies. The max-pooling aggregation 

method (MP-AGG) for WSI classification, demonstrated a higher log-loss than the RNN 

aggregation method. The probabilities of MP-AGG require a high cut-off threshold, and 

the method is more prone to errors in classification. Pinckaers and Litjens utilized gland 

segmentation datasets to train three models, i.e., a baseline U-Net model, another U-Net 

model with fewer filters and ordinary differential equation blocks (called U-Node), and a 

trained U-Node network (called U-ResNet), to predict and separate individual colon 

glands [69]. The U-Node network used fewer parameters compared to the other two 

proposed models and was able to improve segmentation. The study also showed that the 

neural ordinary differential equation improved the segmentation results in terms of 

memory load and parameter counts. 

3.3. Transfer Learning Methods 

Transfer learning is a technique that transfers knowledge gained from a machine 

learning model used to address one problem to another model to solve a different but 

related problem. Transfer learning involves transfer of information to new tasks while 

entirely depending on the previously learned tasks (Figure 2). It has several main ad-

vantages over other training models, such as a better starting model, higher accuracy, 

and faster training [70]. There are two similar approaches, one of which involves using a 

pre-trained model to transfer knowledge to a target model and adapting the features of 

the source model, while the other involves developing a new model from scratch to 

transfer knowledge from its main task, and then explicitly training it with available in-

formation [71]. Transfer learning based on the AlexNet model was adopted to learn ef-

fective classification features [58]. This method increased the limited number of colon le-

sion images and improved the screening performance for colorectal cancers. A study that 

utilized the former method to study colorectal cancer using confocal laser microscopy 

images with various transfer learning methods from the ImageNet dataset found that this 

approach yielded improved performance compared to the latter method, despite func-

tioning differently according to different models and delegated tasks [72]. 

In another study, a fully automated lymph node detection and segmentation 

method was generated through transfer learning techniques, namely by fusing T2- and 

diffusion-weighted images of multiparametric magnetic resonance imaging to the model 

Mask R-CNN to improve the performance of magnetic resonance imaging-based lymph 

node detection and segmentation. The model performance was evaluated based on sen-

sitivity, positive-predictive value, false positive rate per case, and Dice similarity coeffi-

cient [32]. The model performed significantly better and faster than junior radiologists 

using manual detection. In addition, transfer learning methods are able to overcome is-

sues such as a lack of rich WSI datasets. Hamida et al. used several CNNs, such as 

AlexNet, VGG, ResNet, DenseNet, and Inception, for studying the classification of 

patch-level colon cancer WSIs, of which ResNet presented the highest accuracy [73]. A 

pixel-wide segmentation approach for colon cancer was also applied using U-Net and 

SegNet models in the same study, in order to highlight regions of colon cancer in the 

slides. This revealed that SegNet had a higher accuracy than U-Net. Despite its excep-
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tional performance, SegNet has a high computational cost. Additionally, Hamida et al. 

also compared different transfer learning strategies deployed in various CNN models 

and found that the models demonstrated low accuracy when learning from scratch, 

whereas pretraining the models resulted in better performance, although the accuracy of 

classification was unknown. However, fine-tuning the models produced the best per-

formance among all the strategies and enabled rapid scanning of the datasets. Further-

more, Malik et al. investigated the usability of DL-based methods, namely a deep CNN 

with a limited amount of labeled data and low-resolution histology images for colorectal 

cancer identification and detection [74].  

 

Figure 2. An overview of transfer learning model. Created with BioRender.com (accessed on 1 July 

2022). 

In contrast to the findings of Hamida et al., it was found that training a CNN from 

scratch resulted in higher accuracy and a more consistent detection rate than that of other 

fine-tuned models, whereas existing deep CNN models trained with transfer learning 

approaches produced the most superior identification of cancer. Kather et al. trained 

several CNNs, namely VGG19, AlexNet, SqueezeNet 1.1, GoogLeNet, and ResNet50, to 

identify tissue types that are abundant in histological images of colorectal cancer, in-

cluding those that are non-tumorous. These were also able to decompose complex tissues 

into constituents and aggregated the score of the abundance of the tissue parts [75]. The 

VGG19 model performed best and was also able to recreate the morphological features 

learnt from the datasets and visualize tissue structures via the DeepDream approach. 

This was continuously applied to larger images and WSIs, showing a high classification 

accuracy that was on par with human vision. Gessert et al. utilized transfer learning ap-

proaches, including learning from scratch, partial freezing variants, and fine-tuning, in 

the VGG16 and Inception v3 models, with a small number of datasets [72]. The train-

ing-from-scratch method performed extremely poorly, whereas there were no significant 

differences between the partial freezing variants and fine-tuning strategies. The study 
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also demonstrated that, while transfer learning improved performance, the optimal 

strategy differed for various models and classification tasks.  

Learning transfer with a pretrained model on ImageNet datasets, based on various 

CNN models for colorectal cancer using histology-stained slides, replaced the final clas-

sification layer and trained the whole network with a stochastic gradient descent with 

momentum. The VGG19 showed the best performance of all the networks, within an ac-

ceptable training time [75]. Another study implemented a modified VGG-based CNN 

model on colorectal histology images to classify normal and tumor tissue samples. This 

system accurately classified 294 out of 309 normal tissue images, and 667 out of 719 tu-

mor tissue images [39]. Each of the above studies had its limitations, such as the use of a 

relatively small number of datasets for generalization, a weak learning procedure for an 

appropriate level of support for the diagnostic decision, and nontransparent high pre-

diction accuracy in complex model architectures. It is imperative that the connection 

between features and predictions be comprehensible from the algorithm. Therefore, if the 

generated AI algorithm contributes to a clinical decision, it should be easy for clinicians 

to understand why a specific output was produced and how it was characterized. 

3.4. Explainable Learning Methods 

When dealing with medical data, besides demonstrating accurate prediction, it is 

important for models to justify uncertainties in results, as cases that are more complex 

should be further inspected by humans. These “failed” prediction data can then be an-

notated by experts and turned into a new training set [76]. This is where explainable 

models come into play. Explainable AI (XAI) involves processes or methods that allow 

users to understand the results produced by machine learning models, their impacts, and 

potential biases. While some models are able to compute accurate predictive data, some 

are not able to supply justification for their decisions. Most of the aforementioned models 

for colorectal cancer have used standard DL structures. Moreover, these approaches 

mostly focus on increasing the accuracy of the final results [68,77–79]. Hence, very few 

studies have mentioned any significant evidence that contributes to the decision out-

comes [41–45]. Korbar et al. developed a deep ResNet visualization network for detection 

of colorectal polyps [42]. They established a pretrained ResNet-101 classification model 

with labeled patches of stained slide images. Furthermore, the classification could be 

projected back to the input pixel space to indicate parts of the input image that were key 

to the classification. This approach used a visualization model that identified regions and 

features of interest. A fully convolutional ResNet would be useful for visualizing the 

output in the last layer and to find the regions of interest for pathologists to analyze and 

confirm the classification of the model. Similarly, Raczkowski et al. addressed misclassi-

fied labels using an active learning-based Bayesian CNN model for classifying colorectal 

cancer [54]. This model was initially trained on a small dataset and on a dataset extended 

by using new samples, to reduce the entropy in the data analysis.  

The explainable AI system using a cumulative fuzzy class membership criterion for 

the classification of colorectal cancer tissues complements its decision with three types of 

information: visualization of the most important regions for decision, visualization of 

unwanted regions, and semantic explanation [43]. The use of the membership criterion 

proved to be a reliable and accountable explainable classifier in the decision-making 

process in clinical trials, with a highly satisfactory performance. In multiple instances, a 

fully convolutional network with attention to pooling architecture has been used to ag-

gregate interpretable features of colorectal cancer patterns [80]. A pretrained VGG using 

the ImageNet dataset have been used to extract features for each image patch and 

adopted K-means clustering to cluster patches based on their extracted features. This was 

found to be more effective and suitable for huge datasets and showed better interpreta-

bility in locating important patterns and features, which contributed to accurate predic-

tion of survival in patients with cancer. 
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Sabol et al. used a plain CNN model to generate an explainable Cumulative Fuzzy 

Class Membership Criterion (X-CFCMC) model that could be used to classify images and 

WSI segmentation on histopathological cancer tissues. It rationalized its decisions using 

three main methods: semantically explaining the possibilities of misclassification, dis-

playing the training samples that were responsible for a certain prediction, and showing 

the training samples from other conflicting classes [43]. The pathologists involved in the 

study preferred the X-CFCMC model over the plain CNN model, as it was more useful 

and reliable. Another model utilizing XAI methods, namely the layer-wise relevance 

propagation method, was tested to identify various types of tumor entities, and it pro-

duced results that were consistent with experts’ insights and provided visual explana-

tions in the form of heat maps [76]. These explainable heat maps assisted in detecting 

biases that could potentially affect the generalization abilities of the models, such as bi-

ases affecting the entire dataset, biases correlated to a specific class label by chance, and 

sampling biases. Moreover, Korbar et al. demonstrated the capabilities of XAI-based 

techniques, using gradient-based visualization approaches, for explaining reasons for 

classification in WSI analysis for different types of colorectal polyps, with minimal costs 

and easy interpretability [42]. For this study, a ResNet model was used to classify colo-

rectal polyps on labeled patches of H&E-stained WSIs, and to justify the outcomes using 

a gradient-based approach. The DL architecture and imaging modality based on ex-

plainable AI and sampling studies are shown in Table 1. 

Table 1. General summary of studies related to explainable artificial intelligence and sampling 

methods using deep learning techniques for colon cancer detection. 

References Methods Imaging Modality 

Yao et al., 2020 [80] 

Deep Attention Multiple Instance Survival Learning 

(DeepAttnMISL) with Multiple Instance Fully Con-

volutional Network (MI-FCN), DeepMISL, Fine-

tuned-WSISA-LassoCOx, Finetuned-WSISA-MTLSA, 

WSISA-LassoCox, WSISA-MTLSA 

Sample images of tissues taken through colonoscopy 

and turned into WSI clusters. 

Sirinukunwattana et al., 

2016 [21] 

Spatially Constrained Convolutional Neural Net-

work (SC-CNN) 

100 H&E-stained histology images of colorectal ad-

enocarcinomas of 500 × 500 pixels were cropped from 

WSIs using Omnyx VLI20 scanner. 

Sabol et al., 2020 [43] 
Cumulative Fuzzy Class Membership Criterion 

(CFCMC) 

H&E tissue slides cut into 5000 small sections of 150 × 

150 pixels and annotation as one of eight tissue clas-

ses. 

Korbar et al., 2017 [42] ResNet 
176 H&E-stained WSIs collected from patients who 

underwent colorectal cancer screening. 

Hägele et al., 2020 [76] GoogLeNet from Caffe Model Zoo 
H&E-stained images from TCGA Research Network 

were chosen and its WSIs were annotated. 

Koziarski et al., 2020 [81] MobileNet 

Colorectal cancer histology image datasets divided 

into 5000 different types of tissues, each with a 150 × 

150 pixels dimensionality. 

Kainz et al., 2017 [33] Object-Net and Separator-Net 

165 annotated, H&E-stained images of colorectal 

adenocarcinomas were collected at 20× magnification 

using a Zeiss MIRAX MIDI Scanner. 

Hong et al., 2020 [45] 
U-Net with EfficientNet B4 and EfficientNet B5 en-

coder 

Datasets obtained from ETIS-Larib from the MICCAI 

2015 polyp detection challenge, and CVCColonDB 

Shapcott et al., 2019 [44] Matconvnet, Tensorflow “cifar10” with Pycharm IDE 

142 H&E-stained, 40× magnification colorectal cancer 

images obtained from TCGA COAD data set from 

the Genomic Data Commons Portal 2018.  

3.5. Sampling Methods 

The basic properties of AI systems should include transparency, interpretability, 

and reliability to provide trust and fairness in clinical diagnostics. These qualities im-
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prove discrimination ability and diminish potential mistakes. The majority of AI tech-

niques have been designed based on balanced class distributions. However, when 

trained on imbalanced data, such techniques are biased toward the majority class at the 

expense of the minority class, degrading their overall performance [44,45,81]. Data im-

balance poses a significant challenge for traditional learning algorithms. Hence, a few 

studies using DL methods in colon cancer have approached this data distribution prob-

lem using data-level and algorithm-level methods. Koziarski et al. utilized the over-

sampling technique in the image space to enhance a large amount of data to train a CNN 

and implemented it by sampling in the feature space to fine-tune the last layers of the 

network [81]. They revealed that higher levels of imbalance between classes highly af-

fected the classification performance. Thus, they concluded that the decrease in the 

number of observations used for training was not only the reason for the performance 

decline, but that data imbalance was also an important factor. Hong et al. developed a 

novel algorithmic-level loss function, which combined cross-entropy with asymmetric 

loss in EfficentNet and U-Net models [45]. This identified each pixel individually by 

comparing the class predictions and producing a better balance between precision and 

recall for colon cancer polyp segmentation. Shapcott et al. used systematic random sam-

pling and adaptive sampling in the CNN architecture to overcome the imbalance prob-

lem and achieved significant improvements in colorectal cancer diagnostic performance 

[44]. 

4. Results and Discussion 

It is important to focus on what the network is learning and interpret the pixel space 

visualizations by an attention-based network, as these represent the regions of interest 

that should be located and used to confirm the classification outcomes of the model. 

Visualizing particular features in such deep network architectures can result in the 

highest probability of success in the diagnostic decision-making. Modifications to the 

VGG-inspired CNN model ConvNet were evaluated by identifying colorectal cells, 

yielding values of 93.48%, 0.4385, 95.10%, and 92.76%, for accuracy, loss, sensitivity, and 

specificity, respectively [39]. Ghosh et al. reported that the proposed classifiers had the 

highest classification accuracy (98.60%) among classifiers, ranging from 88.71% to 98.40% 

[51]. Furthermore, the diagnostic performance of AI and endoscopists yielded sensitivi-

ties of 97.30% and 87.40%, respectively, specificities of 99.00% and 96.40%, respectively, 

and processing times of 0.022 s/image and 2.4 s/image, respectively [46]. In another 

study, researchers achieved an accuracy exceeding 92% when using hybrid models that 

automatically detect colon cancer [61]. Li et al. discussed the accuracy of hybrid models 

that combined available features and variables to yield improved accuracy in both 

training and validation datasets (>90% and >85%, respectively), aside from significantly 

improving the prediction performance of the hybrid model [82]. In some studies, the AI 

model achieved an AUC of 0.917, with high sensitivity (97.4%) in detecting high-risk 

features of dysplasia and malignancy [47]. In another study, the labeled patches from 

WSIs achieved accurate patch-level recognition [83]. However, when SSL was used, only 

about one-tenth of labeled patches used in the SL testing and 37,800 unlabeled patches 

were used to achieve a similar AUC [53]. In another study, AI operating on real-time 

detection of polyps (1 frame in 10 ms) was able to detect the presence of polyps with an 

accuracy of 96.4% and an AUC of 0.991, using a CNN model that was first trained on the 

ImageNet data and then on an available polyp dataset [34]. Additionally, ARA-CNN was 

found to perform better, by 18.78%, than other models using the same dataset [54]. An-

other hybrid learning approach demonstrated that this technique produced a median 

accuracy of 99.9% for healthy tissue slides and 94.8% for cancer slides, as compared to 

pathologist-based diagnosis from clinical samples [48]. A hybrid learning model that was 

modified from ZF-Net had an accuracy of 98.0%, a sensitivity of 98.1%, and a specificity 

of 96.3% [62]. A study by Iizuka et al. demonstrated high AUC values (0.96–0.99) for 

adenomas in the gastric and colonic epithelium by applying the same techniques, with 
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few limitations [68]. A study on weakly supervised e2e AI in gastrointestinal endoscopy 

found that the AUC for the diagnoses of 13 diseases had a value of 0.7–0.8 and was able 

to predict the presence of colorectal cancer with an AUC > 0.76 [49]. The accuracy of a few 

CNN models in recognizing features in colorectal histopathological WSIs was compared. 

After fine-tuning, AlexNet, ResNet, DenseNet, VGG, and Inception models presented 

better performance than training-from-scratch and pre-trained approaches. The CNNs 

displayed accuracy rates of 89.42%, 95.25%, 96.98%, 95.86%, and 92.43%, respectively, 

with fine tuning and enabled rapid scanning and updating of the parameters to cope 

with the dataset [68]. In another study, the training-from-scratch approach performed 

better and had the most consistent detection rate across all evaluation criteria, achieving a 

specificity rate that was 16.81% higher than the best-performing CNN model. The model 

also produced a detection accuracy of 94.5%, which was 3.85% higher than the highest 

accuracy rate achieved by other CNN models [74]. Another study evaluated the reliabil-

ity of the X-CFCMC XAI model by running acceptability tests against a plain CNN 

model, using feedback from pathologists, and found that the former was more acceptable 

to pathologists due to its explaining capacity [43]. 

5. Conclusions 

Overall, this study concluded that AI is demonstrating promising results in terms of 

accuracy in the diagnosis of colorectal cancer. However, the user-dependent and com-

plex, non-transparent deep network models do not provide an appropriate level of evi-

dence for the key points used in classification, which is the reason for the slow applica-

tion of this technique in clinical practice. Most AI models for predicting invasive cancer 

are prone to over-detection. This suggests that supporting evidence for results of 

AI-based diagnosis of colorectal cancer is strongly required to continue to optimize 

model performance for practice-level validation. Therefore, we propose that AI using a 

visualization method for classification outcomes could significantly reduce the burden on 

clinicians and improve the diagnostic accuracy for colorectal cancer. 
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