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Simple Summary: A high Ki-67 index usually suggests accelerated and uncontrolled cell prolifera-
tion correlated with tumor growth and is a prognostic factor that is associated with an increased 
recurrent risk in meningioma patients. The aim of our study is to predict the Ki-67 proliferative 
index in meningioma patients using machine learning technology. With 371 cases collected from 
two centers, we systematically analyzed the relevance between clinical/radiological features and the 
Ki-67 index. Moreover, with radiomic features extracted from postcontrast images, we built three 
radiomic models and three clinical radiological–radiomic models to predict the Ki-67 status. The 
models showed good performance, with an AUC of 0.837 in the internal test and 0.700 in the exter-
nal test. The results provide a quantitative method to facilitate clinical decision making for menin-
gioma patients. 

Abstract: Background/aim This study aimed to explore the value of radiological and radiomic fea-
tures retrieved from magnetic resonance imaging in the prediction of a Ki-67 proliferative index in 
meningioma patients using a machine learning model. Methods This multicenter, retrospective 
study included 371 patients collected from two centers. The Ki-67 expression was classified into 
low-expressed and high-expressed groups with a threshold of 5%. Clinical features and radiological 
features were collected and analyzed by using univariate and multivariate statistical analyses. Ra-
diomic features were extracted from contrast-enhanced images, followed by three independent fea-
ture selections. Six predictive models were constructed with different combinations of features by 
using linear discriminant analysis (LDA) classifier. Results The multivariate analysis suggested that 
the presence of intratumoral necrosis (p = 0.032) and maximum diameter (p < 0.001) were inde-
pendently correlated with a high Ki-67 status. The predictive models showed good performance 
with AUC of 0.837, accuracy of 0.810, sensitivity of 0.857, and specificity of 0.771 in the internal test 
and with AUC of 0.700, accuracy of 0.557, sensitivity of 0.314, and specificity of 0.885 in the external 
test. Conclusion The results of this study suggest that the predictive model can efficiently predict 
the Ki-67 index of meningioma patients to facilitate the therapeutic management. 
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1. Introduction 
Meningioma is the most common type of intracranial tumor, which has an incidence 

rate of 37.6% among all primary central nervous system tumors [1–3]. According to the 
2021 EANO guideline, surgery is considered to be the primary treatment of rapid growing 
meningioma, while observation is recommended for asymptomatic incidental tumors 
with a self-limited growth pattern [4]. The Ki-67 index, a histopathological marker defined 
by calculating the percentage of cells by immunostaining with a specific antibody in a 
section of confirmed tumor tissue, is reported to be significantly related to both treatment 
scheming and prognostic prediction [5–7]. A high Ki-67 index usually suggests acceler-
ated and uncontrolled cell proliferation correlated with tumor growth, which is one of the 
main features indicating necessary clinical intervention [4,8]. Moreover, accumulated ev-
idence has suggested that a high Ki-67 index is an independent prognostic predictor that 
is associated with an increased recurrent risk following surgical resection [9–13]. How-
ever, even though there is a correlation between the meningioma WHO grade and Ki-67 
percentage, Ki-67 is not part of the WHO grading criteria of meningiomas. Therefore, an 
accurate prediction of the Ki-67 index status in meningiomas can facilitate clinical decision 
making and is important in individual treatment planning. 

Magnetic resonance imaging (MRI) is the preferred modality for noninvasive detec-
tion and pretreatment diagnosis of meningiomas [4,14]. Previous research has shown that 
some MRI findings were useful in predicting the Ki-67 status for meningioma patients 
[15]. However, a manual analysis is subjective to both radiological variations and personal 
experience. A quantitative analysis with less interpretation by human expert evaluation 
is therefore warranted to better reflect intratumoral heterogeneity. 

Radiomic analysis with machine learning has attracted considerable interest in 
neuro-oncological research [16]. Advances in the extraction of high-throughput computa-
tional features encourage oncologists to convert the gray-level intensity of clinical digital 
images into mineable data [17], which can be subsequently analyzed by machine learning 
algorithms [18,19]. Recently, evidence suggested machine learning was feasible to stratify 
the Ki-67 status in WHO grade I meningiomas based on a radiomic analysis from mul-
tiparametric MRI [20]. However, the following concerns remain to be addressed: first, the 
generalization of this method has not been tested on multicenter data; second, it remains 
unknown if the results are applicable to high-grade meningiomas; third, clinical and ra-
diologic features were not yet incorporated into the model. 

In this research, based on the standard preoperative MRIs collected from two insti-
tutions, we developed machine learning models to predict the Ki-67 proliferative index in 
meningioma patients. Moreover, clinical parameters and radiological findings were ana-
lyzed and introduced to the predictive models. The ability to predict Ki-67 preoperatively 
provides clinicians with fast yet important evidence that can be used to guide patient 
management and surgical strategy.  

2. Methods and Materials 
2.1. Patient Selection 

This is a retrospective, multicenter study. From 1 January 2014 to 31 December 2020, 
347 cases from Center A and 75 cases from Center B were initially collected in the present 
study. Their pathology reports were reviewed to ensure they met criteria for meningioma 
using the 2021 World Health Organization (WHO) Classification of Tumors of the Central 
Nervous System [2]. Inclusion criteria for selecting the subjects were as follows: (1) histo-
logically confirmed meningioma and (2) available standard MR scans before any clinical 
intervention (including biopsy and radiotherapy). Exclusion criteria were (1) incomplete 
electronic clinical data (n = 27), (2) presence of significant motion artifact on MR scans (n 
= 18), and (3) irrelevant intracranial disease history, such as subarachnoid hemorrhage 
and cerebral infarction (n = 7). Based on the above criteria, 310 patients and 61 patients 
were identified from Center A and Center B, respectively. The flow chart of the patient 
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selection process is demonstrated in Figure 1. In all patients, the Ki-67 labeling index was 
assessed by immunohistochemistry using an avidin–biotin–peroxidase complex method 
by using Aperio IHC image analysis software, as provided in Figure 2. 

 
Figure 1. The flowchart of patient selection. 

 
Figure 2. Immunohistochemical staining for Ki-67 in meningiomas. 
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2.2. MR Scan Protocols 
In Center A, standard MRI was performed in all patients on 3.0 T Siemens Trio Scan-

ner. The detailed protocols and parameters were set as: Slice Thickness = 1 mm; Repetition 
Time = 1550; Echo Time = 1.98 s; Echo Number(s) = 1; Percent Phase Field of View = 90.625; 
Acquisition Matrix = 0\256\232\0; Flip Angle = 9 degrees. 

In Center B, contrast-enhanced MRI was performed using 3.0 T Skyra. The detailed 
protocols and parameters were set as: Thickness = 1 mm; Repetition Time = 1550; Echo 
Time = 2.44 s; Echo Number(s) = 1; Percent Phase Field of View = 75; Acquisition Matrix = 
0\256\154\0; Flip Angle = 8 degrees. 

All the contrast-enhanced MR scans were acquired following the injection of gado-
pentetate dimeglumine (dose: 0.1 mmol/kg) as the contrast agent. The scanning of dy-
namic-enhanced MRI was conducted within 250 s after injection of the contrast agent.  

2.3. Image Preprocessing and Tumor Segmentation  
Image preprocessing was required to standardize radiomic feature extraction. Image 

preprocessing for each of the patients included normalization at a scale of 100, a 
resampling of the images to 1 × 1 × 1 mm3 resolution, and gray-level intensity normaliza-
tion in the range of 0 to 255.  

The study used 3D slicer software (version 4.11, Kikinis et al, Boston, MA, USA) to 
gain satisfying image segmentation. Among all MRIs, contrast-enhanced images can 
clearly describe the tumor boundary and were selected for radiomic feature extraction. 
Blinded to the electronic medical record and Ki-67 proliferation index, regions of interests 
(ROIs) were separately segmented along the boundary of the enhancing tumors by two 
neuroradiologists with more than 10 years of experience in image reading and were 
checked by a senior neuro-radiologist with more than 20 years of experience in image 
reading. Enhanced tumor dual tails were excluded in the ROIs in the present study. 

2.4. Collection of Clinical Features, Radiological Features, and Radiomic Features 
Five radiological features were analyzed by two neuroradiologists with more than 10 

years of experience in image reading, including peritumoral edema, cerebrospinal fluid 
(CSF) space surrounding tumor, absent capsular enhancement, heterogeneous enhance-
ment, and intratumoral necrosis. The following clinical features and pathological features 
were also retrieved: age, gender, and WHO grade. Tumor characteristics were calculated 
and collected from drawn ROIs, including laterality, location, maximum tumor diameter, 
and tumor volume.  

The radiomic features were retrieved by using “PyRadiomics” package on Python. 
In total, 1218 radiomic features were initially retrieved, including shape features, first or-
der radiomic features, and higher-order radiomic features from four different matrices, 
including gray-level cooccurrence matrix (GLCM), gray-level run length matrix 
(GLRLM), gray-level size zone matrix (GLSZM), and gray-level dependence matrix 
(GLDM). Then, the radiomic features were standardized by removing the mean and scal-
ing to unit variance.  

2.5. Feature Selection and Machine Learning Model Establishment 
Figure 3 describes the workflow for establishing machine learning models. The ex-

tensive number of extracted texture features must be selected properly at first to avoid 
overfitting the machine learning algorithms. For clinical features and radiological fea-
tures, multivariate logistic regression was performed to select the significantly correlated 
features for the machine learning model, and p values less than 0.05 were considered sta-
tistically significant in multivariate analysis. In addition, for radiomic features, three 
methods were independently used to select relatively important features, including least 
absolute shrinkage and selection operator (LASSO), extra tree classification (ETC), and 
linear support vector classification (LinearSVC). 
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Figure 3. The workflow for the development of machine learning models to predict the Ki-67 index 
in meningioma patients. ETC: Extra tree classifier; Lasso: Least absolute shrinkage and selection 
operator; LDA: Linear discriminant analysis; SVC: Support vector machine; ROIs: Region of inter-
ests; AUC: Area under curve. 

Three radiomic-based machine learning models and three clinical radiological–radi-
omic-based machine learning models were established for five-fold cross-validation to 
predict the Ki-67 index in the meningioma patients. Cases from Center A were randomly 
divided into the training group and the internal test group at a ratio of 4:1; cases from 
Center B were used as the external test group. Although the Ki-67 index was determined 
as a prognostic predictor for meningioma patients, the optimal threshold had not been 
identified yet. Based on previous machine learning research, the Ki-67 index was stratified 
as binary variable by defining <5% as low and ≥5% as high [12]. The machine learning 
classifier used in this research was the linear discriminant analysis (LDA). Performances 
were demonstrated with areas under curve (AUC), accuracy, sensitivity, and specificity, 
respectively. The predictive models were performed with Python programming language 
(version 3.9). 

2.6. Statistical Analysis 
Categorical variables were presented with percentages and frequencies, whereas 

continuous variables were presented with means and standard deviation. In univariate 
analysis, point-biserial correlation analysis and chi-square test were used to assess the as-
sociations between the Ki-67 index and clinical/radiological features, and p value less than 
0.10 were considered statistically significant. Interobserver agreement was evaluated by 
calculating intra-/interclass correlation coefficients (ICCs) of two extracted features, and 
only the radiomics features with high ICCs (ICCs ≥ 0.75) were taken into modeling. Sta-
tistical analysis was performed with IBM SPSS Statistics 22. 
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3. Results 
3.1. Patient Characteristics 

The patient baseline clinical characteristics and demographics are summarized in Ta-
ble 1. The mean patient age was 52.6 ± 11.8 years (range: 5–82%), and the sex ratio of the 
study cohort was Male: Female =113: 258. For 310 cases from Center A, the mean Ki-67 of 
tumor specimens was 4.63 ± 2.96%, range between 1% and 20%. There were 152 patients 
(49.0%) with a low Ki-67 status and 158 patients with a high Ki-67 status (51.0%). For the 
61 cases from Center B, the mean Ki-67 of tumor specimens was 3.57 ± 1.93% (range 1–
10%), and a total of 14 subjects (23.0%) had a high Ki-67 status in this group. The vast 
majority of the included tumors were histologically proven as low-grade meningioma in 
both the high Ki-67 group (59.3%) and low Ki-67 group (87.9%). 

Table 1. Baseline clinical and radiological characteristics of the study population. 

Characteristics Center A (n = 310) Center B (n = 61) Total  

 
Ki-67 ≥ 5% 

(n = 158) 
Ki-67 < 5% 

(n = 152) 
Ki-67 ≥ 5% 

(n = 14) 
Ki-67 < 5% 

(n = 47) 
Ki-67 ≥ 5% 

(n = 172) 
Ki-67 < 5% 

(n = 199) 
p Value 

Age        
mean 51.7 ± 14.8 56.0 ± 10.0 51.7 ± 14.2 55.0 ± 12.1 51.7 ± 14.5 55.2 ± 11.7 0.546 
range 5−82 39−76 9−77 31−77 5−82 31−77  

Gender        
male 53 (33.6%) 42 (27.6%) 5 (35.7%) 13 (27.7%) 58 (33.7%) 55 (27.6%) 0.215 
Female 105 (66.4%) 110 (72.4%) 9 (64.3%) 34 (72.3%) 114 (66.3%) 144 (72.4%)  

Location         
Cerebral convexity 90 (57.0%) 78 (51.3%) 5 (35.7%) 25 (53.2%) 95 (55.2%) 103 (51.8%) 0.433 
Falx 23 (14.5%) 32 (21.1%) 2 (14.3%) 7 (14.9%) 25 (14.5%) 39 (19.6%)  
Skull base 45 (28.5%) 42 (27.6%) 7 (50%) 15 (31.9%) 52 (30.3%) 57 (28.6%)  

Laterality         
 Left 70 (44.3%) 69 (45.4%) 7 (50%) 21 (44.7%) 77 (44.8%) 90 (45.2%) 0.715 
 Right 71 (44.9%) 71 (46.7%) 6 (42.9%) 22 (46.8%) 77 (44.8%) 93 (46.7%)  
 Midline 17 (10.8%) 12 (7.9%) 1 (7.1%) 4 (8.5%) 18 (10.4%) 16 (8.1%)  
WHO grade          
 Low grade          
  WHO I 94 (59.5%) 133 (87.5%) 8 (57.1%) 42 (89.4%) 102 (59.3%) 175 (87.9%) <0.001 
 High grade          
  WHO II 57 (36.1%) 19 (12.5%) 5 (35.7%) 5 (10.6%) 62 (36.0%) 24 (12.1%) <0.001 
  WHO III 7 (4.4%) 0 (0%) 1 (7.2%) 0 (0%) 8 (4.7%) 0 (0%) <0.001 
Peritumoral edema 125 (79.1%) 110 (72.4%) 10 (71.4%) 30 (63.8%) 135 (78.5%) 140 (70.4%) 0.076 
CSF space surround-
ing tumor 

92 (58.2%) 78 (51.3%) 8 (57.1%) 20 (42.6%) 100 (58.1%) 98 (49.2%) 0.095 

Absent capsular en-
hancement 

39 (24.7%) 25 (16.4%) 4 (28.6%) 9 (19.1%) 43 (25.0%) 34 (17.1%) 0.072 

Heterogeneous en-
hancement 

93 (58.9%) 75 (49.3%) 9 (64.3%) 21 (44.7%) 102 (59.3%) 96 (48.2%) 0.037 

Intratumoral Necro-
sis 

48 (30.4%) 35 (23%) 5 (35.7%) 10 (21.3%) 53 (30.8%) 45 (22.6%) 0.078 

Maximum diameter 5.76 ± 2.56 4.53 ± 1.63 5.16 ± 3.74 4.52 ± 2.13 5.72 ± 2.70 4.53 ± 1.76 <0.001 
Tumor volume 43.1 ± 52.4 23.0 ± 26.5 24.8 ± 33.5 27.4 ± 28.6 41.57 ± 51.32 24.03 ± 27.00 <0.001 
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3.2. Morphologic Analysis and Radiological Findings  
There were wide overlaps in both the maximum diameter and tumor volumes be-

tween lesions with a low Ki−67 index and a high Ki-67 index, as illustrated in Figure 4. 
The mean and standard deviation of maximum tumor diameters in high Ki-67 group were 
5.72 ± 2.70 cm, compared with 4.53 ± 1.76 cm in the low Ki-67 group. Meningiomas with 
a high Ki-67 index were also larger in volume compared to tumors with a low Ki-67 index 
(41.57 ± 51.32 cm3 and 24.03 ± 27.00 cm3, respectively). Moreover, in the high Ki-67 group, 
the percentage of peritumoral edema, CSF space surrounding tumor, absent capsular en-
hancement, heterogeneous enhancement, and intratumoral necrosis was 78.5%, 58.1%, 
25.0%, 59.3%, and 30.8%, respectively, while the percentages in the low Ki-67 group were 
70.4%, 49.2%, 17.1%, 48.2%, and 22.6%, respectively. 

 
Figure 4. Distribution of maximum tumor diameter and tumor volume of Ki-67 ≥ 5% and Ki-67 < 
5% meningiomas. 

3.3. Clinical and Radiological Features Related to Ki-67 index 
The results of the chi-square test and point-biserial correlation suggest that the pres-

ence of peritumoral edema (p = 0.076), CSF space surrounding tumor (p = 0.095), absent 
capsular enhancement (p = 0.072), intratumoral tumor necrosis (p = 0.078), heterogeneous 
enhancement (p = 0.037), higher WHO grade (p < 0.001), larger maximum tumor diameters 
(p < 0.001), and larger tumor volumes (p < 0.001) was significantly associated with a high 
Ki-67 status. A multivariate analysis of logistic regression suggested that intratumoral tu-
mor necrosis (p = 0.032) and maximum tumor diameters (p < 0.001) were independently 
associated with the Ki-67 status. The results of the univariate analysis and multivariate 
analysis are demonstrated in Table 2. 
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Table 2. Univariate and multivariate statistical analyses of clinical and radiological features. 

Variables (Ki-67 ≥ 5% vs. Ki-67 < 5%) Odds Ratio, 95% CI 
p Value 

Univariate Analysis Multivariate Analysis 
Peritumoral edema 1.538 (0.957–2.470) 0.076 0.279 

CSF space surrounding tumor 1.403 (0.930–2.116) 0.095 0.216 
Absent capsular enhancement 1.618 (0.976–2.681) 0.072 0.602 
Heterogeneous enhancement 1.536 (1.035–2.361) 0.037 0.320 

Intratumoral necrosis 1.524 (0.959–2.424) 0.078 0.032 
Tumor volume (cm3) 1.013 (1.006–1.019) <0.001 0.672 

Maximum diameter (cm) 1.025 (1.014–1.035) <0.001 <0.001 

3.4. Radiomic Feature Selection and Model Performances 
Based on the results of feature selection, 14, 11, and 8 radiomic features were deter-

mined to be important and were separately introduced into predictive models wrapped 
by the LDA algorithm. The distribution of each selected feature is demonstrated in Table 
3. Three radiomic-based models were constructed based on radiomic features, and three 
clinical radiological–radiomic-based models were constructed using different combina-
tions of radiomic features and clinical features. The model performance in both the inter-
nal test and external test is listed in Table 4. 

Table 3. The number of features selected by different feature selection methods. 

Radiomic  Features Lasso (n = 14) SVC (n = 11) ETC (n = 8) 
First-Order Features 3 3 0 
Shape Features (2D) 1 1 0 
Shape Features (3D) 0 0 0 

GLCM Features 3 5 1 
GLSZM Features 5 1 4 
GLRLM Features 0 0 1 
GLDM Features 2 1 2 

GLCM: Gray-Level Co-occurrence Matrix; GLSZM: Gray-Level Size Zone Matrix; GLRLM: Gray-
Level Run Length Matrix; GLDM: Gray-Level Dependence Matrix. 

Table 4. Predictive model performance in the internal test and external test. 

Features Features Test AUC Accuracy Sensitivity Specificity 

Radiomics 

Lasso + LDA 
Internal Test 0.795 ± 0.033 0.722 ± 0.042 0.724 ± 0.043 0.719 ± 0.046 
External Test 0.631 ± 0.015 0.508 ± 0.027 0.278 ± 0.017 0.840 ± 0.019 

SVC + LDA 
Internal Test 0.782 ± 0.034 0.730 ± 0.042 0.703 ± 0.058 0.769 ± 0.029 
External Test 0.646 ± 0.013 0.590 ± 0.021 0.323 ± 0.018 0.867 ± 0.030 

ETC+ LDA 
Internal Test 0.764 ± 0.038 0.645 ± 0.039 0.708 ± 0.033 0.605 ± 0.030 
External Test 0.56 ± 0.017 0.525 ± 0.032 0.143 ± 0.031 0.725 ± 0.23 

Radiomics+ Clin-
ics 

Lasso + LDA 
Internal Test 0.837 ± 0.036 0.810 ± 0.042 0.857 ± 0.040 0.771 ± 0.044 
External Test 0.700 ± 0.026  0.557 ± 0.027 0.314 ± 0.017 0.885 ± 0.030 

SVC + LDA 
Internal Test 0.798 ± 0.033 0.698 ± 0.046 0.676 ± 0.056 0.731 ± 0.046 
External Test 0.702 ± 0.015 0.492 ± 0.017 0.282 ± 0.010 0.864 ± 0.014 

ETC+ LDA 
Internal Test 0.754 ± 0.024 0.710 ± 0.039 0.760 ± 0.038 0.676 ± 0.028 
External Test 0.607 ± 0.025 0.574 ± 0.027 0.286 ± 0.024 0.818 ± 0.021 

ETC: Extra tree classifier; Lasso: Least absolute shrinkage and selection operator; LDA: Linear dis-
criminant analysis; SVC: Support vector machine. 

Among the radiomic-based models, a relatively better performance was yielded from 
the model constructed by the features selected by Lasso. In the internal test, the AUC, 
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accuracy, sensitivity, and specificity were 0.795, 0.722, 0.724, and 0.719, respectively. In 
the external test, the model showed a decline in these indexes and the AUC of 0.631, ac-
curacy of 0.508, sensitivity of 0.278, and specificity of 0.840. When combined with clinical 
features, this method showed improvement and achieved the highest performance among 
all the models, with AUC of 0.837, accuracy of 0.810, sensitivity of 0.857, and specificity of 
0.771 in the internal test, and with AUC of 0.700, accuracy of 0.557, sensitivity of 0.314, 
and specificity of 0.885 in the external test. The ROC curves of the Lasso + LDA models 
are illustrated in Figure 5. All of the model performance is demonstrated in Table 4. 

 
Figure 5. Receiver operating characteristic curves of Lasso+ LDA machine learning models. (A): In-
ternal test (n = 62) of radiomic model; (B): External test (n = 61) of radiomic model; (C): Internal test 
(n = 62) of clinical radiological–radiomic-based model; (D): External test (n = 61) of clinical radiolog-
ical–radiomic-based model; AUC: Area under Curve. 

4. Discussion 
Although the majority of meningiomas are classified as low-grade, benign tumors, 

there is wide heterogeneity in the rate of growth, clinical presentation, and risk of recur-
rence after treatment [21]. The prediction of Ki-67 is clinically relevant as it may reveal 
prognostic insights to predict tumor behavior and to assist in choosing a more individual 
treatment strategy [7,10,13]. In the current study, we systematically analyzed the relation-
ship between the Ki-67 status and traditional radiological findings. Moreover, machine 
learning models fusing radiomic features and radiological features were trained to predict 
the Ki-67 status in meningiomas, and the performance of models was tested in both the 
internal cohorts and external cohorts. The results may guide surgical timing and operative 
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strategy in that a more aggressive operative intervention with an earnest attempt should 
be considered for patients known to harbor tumors with a high Ki-67 status. 

This study revealed five radiological features, which were significantly different be-
tween the high Ki-67 meningioma group and the low Ki-67 meningioma group. In our 
datasets, a univariate analysis suggested that compared to low Ki-67 meningiomas, high 
Ki-67 meningiomas were more likely to present peritumoral edema (p = 0.076), larger tu-
mor volume (p < 0.001), and larger tumor maximum diameter (p < 0.001). These results are 
consistent with the long-held point that the rapid growth of tumors, for which a high-
expressed Ki-67 is a surrogate marker, may induce a greater degree of peritumoral edema 
[15]. In addition, the results of this study also suggest that higher Ki-67 meningiomas were 
more likely to present intratumoral necrosis (p = 0.078) and heterogeneous enhancement 
(p = 0.037), which corroborated earlier findings that necrosis and “fluid-secreting” low-
grade neoplasm were strong predictors of meningioma progression [22–24]. Another im-
portant finding was that absent capsular enhancement was significantly different between 
high Ki-67 and low Ki-67 meningiomas (p = 0.072), and this could result from the adaption 
of a rapid tumor, causing a less fibrous part and a more venous vascular component in 
the capsule [25]. Taken together, these morphologic findings indicated that tradition radi-
ological features were useful in predicting Ki-67 status, highlighting the benefits of using 
clinical radiological–radiomic features instead of solely radiomic features to improve the 
performance of machine learning models. 

There is a growing body of literature that has applied radiomic-based machine learn-
ing to meningiomas. These studies received promising results in prognostic analysis, 
grading prediction, and image-guided molecular diagnosis [5–7]. Generally, models in-
volving multiparametric feature sets are superior to models involving single-sequence 
feature sets [26–28]. Similarly, in previous research, radiomic-based machine learning al-
gorithms were built to predict the Ki-67 status in meningiomas by enrolling the features 
extracted from multiple MR sequences, including T1/T2-weighted, T1-weighted contrast-
enhanced (T1CE), and FLAIR [20]. Their radiomic model outperformed our model with 
an AUC of 0.84. This result undoubtedly suggests that multiparametric feature sets could 
provide more information and assist in classification, which corroborated previous find-
ings that some radiological features were more apparent on multiparametric MRI se-
quences. However, overfitting should be considered and investigated if the model can 
generalize the learning of the training data [20]. One major concern should be noted that 
there were too many features involved in their modeling compared to ours (60 vs. 14). The 
most convincing method to identify whether the trained model is overfitted is externally 
testing it on unseen data obtained from another institution[29,30]. The results of our ex-
ternal test suggest there was a moderate overfitting in our models, even if only 14 features 
were used as classifier inputs. Therefore, the generalization of the radiomic-based model 
was limited, and the improved method should be explored in future research.  

The present study further enrolled statistically significant clinical findings and radi-
ological findings into the classifiers. The clinical radiological–radiomic-based models 
showed better performance in both the internal test and external test, with an AUC of 
0.837 and 0.700, respectively. It has long been demonstrated in previous studies that some 
combined models may serve to outperform the single radiomic models or clinical models 
[31–33]. In contrast to the higher-order radiomic features, the relationship between these 
image parameters and tumor growth has long been established by researchers and pro-
vided a clearer interpretation of the models [25,34]. Considering that all the image find-
ings included in this study can be easily collected in routine clinical practice, robust clini-
cal radiological–radiomic-based models are more recommended to facilitate the treatment 
strategy and perform the surveillance of meningioma patients. 

Our study has several limitations. First, this is a retrospective analysis, and inherent 
selection bias is inevitable. Second, the external test illustrates insufficiency in the sensi-
tivity, as high Ki-67 patients only account for a small percentage of total patients in Center 
B. A large-scale validation from multicenter research is required to further support our 
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results. Third, the methodology of this study is mainly restricted to machine learning al-
gorithms, and advanced deep learning technology can provide an end-to-end approach 
without complicated preprocessing steps. Deep learning models should be investigated 
in future research. Finally, the model robustness should be examined in future studies. 
Since the radiomic features in the present study were extracted from MP-RAGE sequence, 
radiomics from different sequences including 3D-SPGR and TSE should be investigated. 

5. Conclusions 
This study set out to use machine learning algorithms to construct predictive models 

of the Ki-67 index before any invasive examinations in all grades of meningioma patients. 
We built three radiomic models along with three clinical radiological–radiomic-based 
models and proved them to be efficient and accurate. The findings will be of interest to the 
therapeutic management of meningioma patients in clinical practice. Further multicenter 
studies with advanced machine learning algorithms are required to validate the results. 
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