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Simple Summary: Gastric cancer (GC) is the fourth most common cancer that occurs worldwide, 
affecting specifically the Asian population. Currently, there are no available screening programs for 
GC in United States. Since saliva is a highly desirable body fluid for developing biomarkers of can-
cer screening, early detection, and monitoring, we previously reported that salivary extracellular 
RNAs could be developed to detect gastric cancer in a Korean cohort, and here, we validate them 
in a U.S. cohort. Our study emphasizes the importance of population-specific biomarker develop-
ment and validation, and specifically, the noninvasive nature of salivary biomarkers for population-
based screening in at-risk populations. 

Abstract: Gastric cancer (GC) has the fifth highest incidence among cancers and is the fourth leading 
cause of cancer-related death GC has predominantly a higher number of cases in certain ethnic 
groups such as the Korean population. GC found at an early stage is more treatable and has a higher 
survival rate as compared with GC found at a late stage. However, a diagnosis of GC is often de-
layed due to the lack of early symptoms and available screening programs in United States. Extra-
cellular RNA (exRNA) is an emerging paradigm; exRNAs have the potential to serve as biomarkers 
in panels aimed at early detection of cancer. We previously reported the successful use of a panel 
of salivary exRNA for detecting GC in a high-prevalence Korean cohort, and that genetic changes 
reflected cancer-associated salivary exRNA changes. The current study is a case-control study of 
salivary exRNA biomarkers for detecting GC in an ethnically distinct U.S. cohort. A model con-
structed for the U.S. cohort combined demographic characteristics and salivary miRNA and mRNA 
biomarkers for GC and yielded an area under the receiver operating characteristic (ROC) curve 
(AUC) of 0.78. However, the constituents of this model differed from that constructed for the Korean 
cohort, thus, emphasizing the importance of population-specific biomarker development and validation. 

Keywords: biomarkers; validation; gastric cancer; exRNA; saliva 
 

  

Citation: Kaczor-Urbanowicz, K.E.; 

Saad, M.; Grogan, T.R.; Li, F.; Heo, Y.J.; 

Elashoff, D.; Bresalier, R.S.;  

Wong, D.T.W.; Kim, Y. Performance 

of Salivary Extracellular RNA  

Biomarker Panels for Gastric Cancer 

Differs between Distinct  

Populations. Cancers 2022, 14, 3632. 

https://doi.org/10.3390/ 

cancers14153632 

Academic Editors: Rosalba  

D’Alessandro and Alfons Navarro 

Received: 20 May 2022 

Accepted: 19 July 2022 

Published: 26 July 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Cancers 2022, 14, 3632 2 of 12 
 

 

1. Introduction 
Gastric cancer (GC) is an aggressive type of cancer that remains a healthcare burden 

worldwide[1]. For 2022, the American Cancer Society has estimated that there will be 
about 26,380 new cases of gastric cancer in the USA and about 11,090 deaths 
(https://seer.cancer.gov/statfacts/html/stomach.html (accessed on 10 May 2022). Gastric 
cancer accounts for ~1.5% of all new cases of cancers in the USA each year. The incidence 
of GC in the United States has relatively decreased, however, in Western countries, ap-
proximately half of patients present with locally advanced or metastatic GC at diagnosis, 
and an additional 40% to 60% of those patients undergoing resection of gastric adenocar-
cinoma relapse after surgery [2]. Thus, early detection of this type of cancer is the main goal to 
reduce mortality, as the 5-year survival rate of early detected cases can reach >95% [3]. 

Many studies from East Asian countries have shown that screening methods, espe-
cially endoscopic screening for detecting early-stage GC, have resulted in a reduction in 
mortality. However, population-based screening programs do not exist in the USA, be-
cause of the low incidence of GC overall [4]. 

Although upper gastroesophageal endoscopy with targeted and random biopsies re-
mains to be the gold standard for the detection of GC, other screening tools have been 
implemented in high-risk countries such as pepsinogens (PGs) including PG 1 and PG 2, 
gastrin-17, and Helicobacter pylori (H. pylori) IgG antibody tests. Blood-based tumor mark-
ers such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) have 
also been used for the detection of GC, but have low sensitivity and specificity for early-
stage disease [5,6]. 

Screening programs for GC vary among countries, depending on prevalence and 
cost-effectiveness [6]. We previously reported the use of extracellular RNA (exRNA) bi-
omarkers in saliva as a diagnostic tool for screening and/or risk assessment for GC [7]. In 
a study of a Korean cohort of subjects, we identified 30 mRNA and 12 miRNA biomarkers 
that were associated with the expression pattern and presence of GC. A configured bi-
omarker panel consisted of three mRNAs (SPINK7, PPL, and SEMA4B) and two miRNAs 
(miR-140-5p and miR-301a-3p) that were all significantly downregulated in the GC group, 
and yielded an area under the receiver operating characteristic (ROC) curve (AUC) of 0.81 
(95% CI 0.72–0.89). When combined with demographic factors, the AUC of the biomarker 
panel reached 0.87 (95% CI 0.80–0.93) in differentiating subjects with GC from those with-
out cancer. Since a lower expression of these salivary markers was indicative of GC, a 
comprehensive cut-off validation study would be necessary to develop these markers for 
the screening of GC in the general population. 

It is known that the pathogenesis of GC depends on multiple etiological factors and 
ethnicity could obviously be one of determining factors [8]. However, it is also possible 
that there are common biological alterations that may contribute to the pathogenesis of 
disease and these genetic changes may be cancer-associated salivary exRNA alterations. 
The miRNAs and exRNAs are endogenous, small non-coding RNA molecules that post-
transcriptionally modulate gene expression [9]. Because these molecules are stable in dif-
ferent body fluids including saliva, analysis of these molecules can lead to an important, 
noninvasive diagnostic and prognostic tool for GC screening. However, the expression of 
biomarkers may differ based on the population investigated. A key requirement of bi-
omarker validation for clinical and regulatory purposes is that of intended use. A bi-
omarker or panel of biomarkers that may differentiate disease from normal in one popu-
lation may not perform similarly in a different population. While we have previously 
demonstrated that a particular panel of salivary biomarkers may differentiate subjects 
with GC from those without cancer in an Asian population with a high prevalence of gas-
tric cancer, it is unclear whether this same panel of markers would perform similarly in a 
low-prevalence U.S. population. The current study represents a case-control study of sal-
ivary exRNA biomarkers in a U.S. cohort. 
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2. Materials and Methods 
2.1. Saliva Collection and Processing 

Unstimulated whole saliva was collected from 50 newly diagnosed treatment-naive 
patients with histologically proven GC (stages I–IV) and 50 control subjects without GC, 
based on recent endoscopic results at the University of Texas MD Anderson Cancer Cen-
ter, USA, using standard operating procedures (SOPs) developed for our prior study of a 
Korean cohort [7,10]. Subjects were asked to avoid oral hygiene measures, eating, drink-
ing, and gum chewing at least 1 h prior to saliva collection. The subjects rinsed with tap 
water (10 mL) for 30 s about 10 min prior to saliva collection and expectorated. Clinical 
samples were collected in sterile tubes, lasting 5–10 min per collection (at least 5 mL of 
saliva), and kept on ice through the entire process. All samples were processed, approxi-
mately 1 h after collection. First, samples were centrifuged in a refrigerated centrifuge at 
2400× g for 15 min at 4 °C, and the supernatant was processed immediately for the con-
current stabilization of proteins and RNA by the inclusion of a protease inhibitor cocktail 
(aprotinin, 3-phenylmethylsulfonyl fluoride (3-PMSF) (Sigma-Aldrich, St. Louis, MO, 
USA), sodium orthovanadate (Na3VO4) (Sigma-Aldrich, St. Louis, MO, USA)) and RNase 
inhibitor (Invitrogen SUPERase·In RNase Inhibitor,Thermo Fisher Scientific, Austin, TX, 
USA) based on our saliva standard operating procedure (SOP) [11]. These samples were 
aliquoted into smaller cryo-vials, labeled, and frozen at −80 °C. 

This study, including the patient consent process, was approved by the Institutional 
Review Board for Human Studies at the University of Texas MD Anderson Cancer Center 
(IRB number PA17-0583). The control group consisted of subjects undergoing upper en-
doscopy for dyspepsia or gastroesophageal reflux-like symptoms and documented to 
have no neoplasia. Patient-level clinical demographics were obtained (age, gender, eth-
nicity, smoking history, staging, and diagnosis). The study was performed from 19 Octo-
ber 2017 to 13 June 2019. 

2.2. RNA Isolation from Saliva Samples 
Total RNA from 50 blinded GC subjects and 50 non-GC control subjects was isolated 

by using a Qiagen miRNeasy Micro kit (Qiagen, Germantown, MD, USA). The 250 μL 
samples of cell-free saliva was used to isolate total RNA using a modified protocol suc-
cessfully used in the lab for isolating salivary RNA [10]. The final RNA was eluted in 14 
μL of water. 

2.3. Validation of miRNA GC Markers 
The biomarker panel used in this study contained two miRNAs (miR-140-5p and miR-

301a-3p); U6 snRNA and miR-197 were used as the reference genes. TaqMan miRNA as-
says (Thermo Fisher Scientific, Austin, TX, USA), containing these four small RNA genes, 
were ordered from Applied Biosystems (Foster City, CA, USA). The protocol was similar 
to that recommended by the manufacturer for creating custom reverse transcription (RT) 
and preamplification primer pools using TaqMan MicroRNA Assays (Thermo Fisher Sci-
entific, Austin, TX, USA). Total RNA (3 ng) was converted to cDNA using a TaqMan Mi-
croRNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). After RT, 
the product was preamplified using SsoAdvance PreAmp Supermix (Bio-Rad, Hercules, 
CA, USA) and preamplification primer pool. The preamplified product was diluted 2 
times prior to miRNA quantification. The qPCR reactions for each candidate miRNA were 
performed in triplicate on a Roche LightCycler 480 II (Roche, San Francisco, CA, USA). 
The average threshold cycle (Cq) was examined and U6 snRNA and miR-197 were used 
as the reference genes for normalizing the data. 

2.4. Validation of mRNA GC Markers 
Three selected candidate mRNA biomarkers (3 mRNAs (PPL, SEMA4B, and SPINK7) 

as well as 2 reference genes (GAPDH and ACTB)) generated by microarray profiling were 
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validated by nested real-time quantitative polymerase chain reaction (RT-qPCR) (RT-PCR 
followed by a separate SYBR green quantitative polymerase chain reaction (qPCR)) on the 
new set of samples from MD Anderson Cancer Center (blinded 50 GC and 50 non-GC). 
The gene accession numbers and primer sequences used for the transcriptomic biomarker 
validation are shown in Supplementary Materials Table S1. The qPCR primers were de-
signed using the Primer3 software and synthesized by Sigma-Genosys after performing a 
Primer-BLAST search. The primer sequences were designed to avoid any known single-
nucleotide polymorphism region in the target gene. All the amplicons were intron span-
ning. The RT-qPCR assay followed the Minimum Information for Publication of Quanti-
tative Real-Time PCR Experiment guidelines and was performed in duplicate with each 
biomarker candidate. The specificity of the PCR product for each gene was confirmed 
with melting curve analysis and 3% agarose gel analysis. 

2.5. RT-qPCR Preamplification for Validation of mRNA Candidates 
The multiplex RT-PCR preamplification was performed with an Invitrogen Super-

Script III Platinum One-Step qRT-PCR System (Thermo Fisher Scientific, Austin, TX, USA) 
with a pool of outer primers at 100 nM each. The reaction mixture was prepared on ice, 
and then loaded into the preheated thermocycler. The amplification was performed as 
follows: 2 min at 60 °C; 30 min at 50 °C; 2 min at 95 °C; and 15 cycles of 15 sec at 95 °C, 30 
sec at 50 °C, 10 sec at 60 °C, and 10 sec at 72 °C; with a final extension for 10 min at 72 °C 
and cooling to 4 °C. Immediately after RT-qPCR, 10 μL of the reaction was treated with 4 
μL of Exo-SAP-IT (Thermo Fisher Scientific, Austin, TX, USA) for 15 min at 37 °C to re-
move excess primers and deoxynucleotide triphosphates (dNTPs), and then heated to 80 
°C for 15 min to inactivate the enzyme mix. The preamplified complementary DNAs 
(cDNAs) were then diluted by adding water to 200 μL (20-fold) to enable the qPCR of all 
targets. 

2.6. qPCR for Validation of mRNA Candidates 
Singleplex qPCR was performed in 10 µL reactions with 2 µL of each preamplified 

cDNA sample and the inner primers at 200 nM each. The reaction was conducted with a 
SYBR Green I Master mix in LightCycler 480 (Roche Diagnostics, Indianapolis-Marion 
County, Indiana) instrument. After 10 min of polymerase activation at 95 °C, 40 cycles of 
15 sec at 95 °C and 60 sec at 60 °C were performed, followed by melting curve analysis. 
Three controls including one RT control, no-template control, and positive control with 
universal human RNA were performed with every candidate on each sample. 

2.7. Statistical Analysis for qPCR 
The qPCR analyses were all done in triplicate. For the miRNA analysis, data were 

analyzed using the RQ Manager software version 1.2 and DataAssist software version 3.0 
(Applied Biosystems). Similarly, the ∆Cq value was computed using RNA polymerase III 
transcribed U6 small nuclear RNA as the reference gene [7]. For the mRNA analysis, the 
∆Cq of each biomarker candidate was calculated by subtracting the Cq value of the 
housekeeping genes (GAPDH and ACTB) from the raw Cq value in the same sample. ∆Cq 
values for mRNA and miRNA were compared between groups using the Wilcoxon rank-
sum test. 

3. Results 
3.1. Clinicopathological Characteristics of Patients 

The patients’ characteristics and study variables are summarized between groups 
(GC vs. control) using mean (SD) and frequency (%) and compared between groups using 
the two-sample t-test or chi-square test (Table 1). 
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Table 1. Patients’ characteristics for non-GC and GC patients from the MD Anderson Cancer Center. 

Patient Characteristics Control (n = 49) GC (n = 51) p-Value Test 
Age 60.0 (11.2%) 61.0 (12.3%) 0.666 t-Test 
Male 16 (32.7%) 32 (62.7%) 0.003 Chi-square 

Ethnicity   0.467 Fisher’s 
Asian 3 (6.1%) 6 (11.8%)   

Black, non-Hispanic 6 (12.2%) 10 (19.6%)   

Caucasian 32 (65.3%) 26 (51.0%)   

Hispanic 8 (16.3%) 9 (17.6%)   

Present smoker 5 (10.2%) 7 (13.7%) 0.588 Chi-square 
Prior smoker 16 (32.7%) 15 (29.4%) 0.726 Chi-square 

Present or prior smoker 21 (42.9%) 22 (43.1%) 0.977 Chi-square 
H. pylori biopsy performed 22 35 -- -- 

H. pylori positive (% of tested 
individuals) 

2 (9.1%) 5 (14.3%) 0.695 Fisher’s 

3.2. miRNA RT-qPCR 
Next, we constructed a model with the demographic terms (age, gender, and smok-

ing history) plus the two candidate miRNA markers for GC (computing the dCT by sub-
tracting the reference gene (U6) from our candidate markers (miR-140 and miR-301a)). This 
was the same reference gene (U6) used in our prior study [7]. In this study, we found the 
CT values for U6 were 15.37 ± 2.64 in the non-GC control group and 15.53 ± 2.70 in the GC 
patient group (p = 0.809 by t-test). The p-values show no significant differences between 
GC patients and non-GC controls, suggesting U6 is a good reference gene for salivary 
exRNA quantification. To reduce the potential bias from one reference gene, we also 
tested miR-197 as an extra reference small RNA. We found the CT values for miR-197 were 
16.20 ± 1.82 in the non-GC control group and 16.19 ± 1.85 in the GC patient group (p = 
0.796). Next, we compared the AUC between the model with only demographic factors to 
the model utilizing demographic and miRNA data using the DeLong’s test (Table 2). 
Analyses were conducted using IBM SPSS V25 (Armonk, NY, USA) and R V 3.6.1 (www.r-
project.org (accessed on 20 March 2021), Vienna, AU, USA) and p-values < 0.05 were con-
sidered to be statistically significant. The AUC (95% CI) was 0.75 (0.65–0.84) for the GC 
group versus the non-GC group based on these two miRNA markers together with de-
mographic factors. The markers (dCT) were both significant in that model (miR-140 (p = 
0.003), miR-301a (p = 0.002)). Interestingly, the demographic model alone yielded an AUC 
of only 0.68, while the combined model (demographic data with miRNA biomarkers) re-
sulted in an improved AUC of 0.75 (DeLong p-value = 0.129). 

Table 2. Models: (A) Demographic model for gastric cancer and (B) demographic model with two 
miRNA biomarkers for gastric cancer. 

A. Demographic Model for Gastric Cancer 
Terms Odds Ratio (95% CI) p-Value 

Age 0.99 (0.96–1.04) 0.945 
Male 3.74 (1.57–8.92) 0.003 

Present or prior smoker 0.75 (0.31–1.79) 0.514 
B. Demographic Model with Two miRNA Biomarkers for Gastric Cancer 

Terms Odds Ratio (95% CI) p-Value 
Age 0.99 (0.95–1.03) 0.683 
Male 5.42 (2.03–14.48) 0.001 

Ever Smoker 0.82 (0.33–2.07) 0.680 
dCTmiR140_U6 2.56 (1.37–4.79) 0.003 
dCTmiR301_U6 0.36 (0.19–0.68) 0.002 
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Next, logistic regression models for GC status were constructed using demographic 
factors from our previous publication (age, gender, and smoking history) with the AUC 
(95% CI) and odds ratios (ORs) estimated (Table 3). Interestingly, the demographic factors 
in this U.S. cohort showed an AUC of 0.68 (95% CI 0.57–0.78), which was similar to the 
AUC of 0.69 (95% CI 0.59–0.79) in the Korean cohort that we previously reported [7]. 

Table 3. Performance of the panel (demographic features + miRNAs + mRNAs) according to the 
different stages of GC (I–IV). 

vs. Control Overall Stage I/II Stage III/IV Stage IV 
Demographic 
features only 

0.68 (0.57–0.78) 0.67 (0.51–0.84) 0.67 (0.56–0.79) 0.68 (0.55–0.80) 

Demographic 
features + miRNAs 

0.75 (0.65–0.84) 0.80 (0.63–0.96) 0.72 (0.61–0.83) 0.70 (0.58–0.83) 

Demographic 
features + miRNAs 

+ mRNAs 
0.78 (0.69–0.87) 0.85 (0.72–0.99) 0.75 (0.64–0.85) 0.74 (0.63–0.86) 

3.3. mRNA RT-qPCR 
We constructed a new model for the U.S. cohort using the same variables in three 

different ways, as reported in our previous report based on a Korean cohort [7]: 
1) Model 1, a new model with only demographic characteristics (AUC = 0.68, sensitivity 

= 62.7%, and specificity = 70.8%); 
2) Model 2, a new model with demographic characteristics and miRNA biomarkers for 

GC (AUC = 0.75, sensitivity = 62.7%, and specificity = 81.3%); 
3) Model 3, a new model with demographic characteristics, miRNA, and mRNA bi-

omarkers for GC (AUC = 0.78, sensitivity = 62.7%, and specificity = 83.3%). 
When mRNAs were combined with miRNA biomarkers and demographic features, 

the new combined model yielded the best AUC of 0.78 for differentiating subjects with 
GC from those without GC, with the highest specificity (sensitivity = 62.7% and specificity 
= 83.3%) (Figure 1) as compared with the models composed of only demographic features 
(AUC = 0.68, sensitivity = 62.7%, and specificity = 70.8%) or demographic features together 
with miRNAs (AUC = 0.75, sensitivity = 62.7%, and specificity = 81.3%). There was also a 
significant difference between Model 1 (AUC = 0.68) and Model 3 (AUC = 0.78) (Delong’s 
test p-value = 0.037), suggesting that the model with both miRNA and mRNA biomarkers 
for GC combined with demographic characteristics (Model 3) performed better than the 
model with only demographic characteristics (Model 1) with increased specificity (83.3% 
for Model 3 as compared with 70.8% for Model 1) (Figure 1, Table 4). 
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Figure 1. Performance of 3 different models: (1) A new model with only demographic characteristics 
(AUC = 0.68, sensitivity = 62.7%, and specificity = 70.8%); (2) a new model with demographic char-
acteristics and miRNA biomarkers for gastric cancer (AUC = 0.75, sensitivity = 62.7%, and specificity 
= 81.3%); (3) a new model with demographic characteristics, miRNA and mRNA biomarkers for 
gastric cancer (AUC = 0.78, sensitivity = 62.7, and specificity = 83.3%). 

Table 4. Demographic characteristics with miRNA and mRNA biomarkers for gastric cancer. 

Demographic Features + 2 miRNA Biomarkers for GC + 3 mRNA Biomarkers for GC 
Terms OR (95% CI) p-Value 

Age 0.99 (0.95–1.03) 0.544 
Male 5.42 (2.03–14.48) 0.001 

Ever Smoker 0.82 (0.33–2.07) 0.421 
dCTmiR-140_U6 2.56 (1.37–4.79) 0.007 
dCTmiR-301a_U6 0.36 (0.19–0.68) 0.002 
dCTPPL_ACTB 0.88 (0.66–1.18) 0.406 

dCTSEMA4B_ACTB 0.90 (0.66–1.23) 0.497 
dCTSPINK7_ACTB 1.23 (0.94–1.60) 0.132 

However, when we applied the coefficients as estimated from the prior Korean co-
hort study [7], the AUC was only 0.52 because of differences in the significance of indi-
vidual demographic features as well as in performance of GC miRNA and mRNA bi-
omarkers in the current U.S. cohort as compared with the Korean cohort. 

Additionally, we also assessed the panel performance (demographic characteristics 
(demo) + miRNAs + mRNAs) in two separate scenarios defined as controls vs. early-stage 
GC (I, II) as well as controls vs. late-stage GC (III, IV). It appeared that the discrimination 
(AUC) of the control vs. early-stage GC model was 0.85 (0.72–0.99), whereas for the control 
vs. late-stage GC, the performance was 0.75 (0.64–0.85). Therefore, our panel may perform 
better in discriminating controls from early-stage GC, although this would need to be con-
firmed in a follow-up study (Table 3).  
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4. Discussion 
A growing number of studies have demonstrated the utility of exRNA as a reliable 

noninvasive approach for diagnosis, therapy, and prognosis of cancers [12]. Extracellular 
RNAs have been explored as biomarkers in a number of different biofluids and types of 
cancer, which include esophageal squamous cell carcinoma (ESCC) [13], lung cancer [14], 
brain cancers [15–18], prostate cancer [19], pancreatic cancer [20], colon cancer [21], and 
gastric cancer [22]. As of 2020, 45 clinical trials, in the USA and numerous other countries, 
have been reported that have focused on the use of exRNA and exosomes as clinical bi-
omarkers of cancer [12]. These clinical trials have explored exRNAs as clinical biomarkers 
of various cancer types including lung and prostate cancers. Blood is a primary source of 
exRNAs that have been tested, but studies have also investigated urine. Especially saliva 
is being explored as an emerging biofluid that is easy to collect, and has been shown to 
reflect the spectrum of health and disease states found using serum [23,24]. 

Standards for validation of biomarkers require that they be applied in the population 
for which they are intended to be used [25]. A biomarker or panel of biomarkers which 
can differentiate disease from normal in one population may not perform similarly in a 
different population. We previously reported on a panel of salivary biomarkers which, 
when combined with specific demographic factors, differentiated subjects with GC from 
those without cancer in an Asian population with a high prevalence of gastric cancer. Our 
aim was to evaluate the performance of salivary exRNA biomarkers for GC, which we 
previously discovered and validated in Korean GC patients [7], in a U.S. population. Pre-
viously, 12 mRNA and 6 miRNA candidates were verified with a discovery Korean cohort 
by RT-qPCR and further validated with an independent Korean cohort (n = 200). The con-
figured biomarker panel consisted of three mRNAs (SPINK7, PPL, and SEMA4B) and two 
miRNAs (miR-140-5p and miR-301a), which were all significantly downregulated in the 
GC group, and yielded an AUC of 0.81 (95% CI 0.72–0.89). When combined with demo-
graphic factors, the AUC of the biomarker panel reached 0.87 (95% CI 0.80–0.93) [7]. In 
our prior study, demographic characteristics (including age, gender, and smoking) were 
all highly significant predictors of case status [7], while, in the current U.S. MD Anderson 
Cancer Center cohort, only gender was significant (Table 4). However, this U.S. cohort 
(MD Anderson Cancer Center cohort) had more ethnic diversity including Caucasian 
(51% of the GC group and 65.3% of the control group), Black non-Hispanic (19.6% of the 
GC group and 12.2% of the control group), and Hispanic (17.6% of the GC group and 
16.3% of the control group) subjects, with the Asian population as the least prevalent 
group (11.8% of theGC group and 6.1% of the control group). In a previous study [7], 
Asians constituted 100% of the GC and control groups for both mRNA and miRNA dis-
covery and validation phases (Figure 2). In addition, in the current study, the samples 
were obtained from older patients (GC group, 61 years old and control group, 60 years 
old), fewer smokers (present or prior smoking, 43.1% of the GC group and 42.9% of the 
control group), and fewer males (62.7% of the GC group and 32.7% of the control group) 
as compared with the Korean cohort (Figure 2) [7]. 
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Figure 2. Comparison of demographic characteristics between Korean and U.S. study groups. The 
demographic characteristics of the Korean cohort used in our previous study [7] (Table 1 for the 
discovery phase and Table 2 for the validation phase) were compared with the demographic char-
acteristics of the U.S. cohort used in this study (Table 3). (Table 1 and Table 2 adapted from Li et al. 
[7]. Reprinted with permission of the Oxford University Press, Copyright © 2022 American Associ-
ation of Clinical Chemistry. Li et al. Discovery and Validation of Salivary Extracellular RNA Bi-
omarkers for Noninvasive Detection of Gastric Cancer. Clin. Chem. 2018, 64, 1513–1521. 
https://doi.org/10.1373/clinchem.2018.290569).  

It is unclear how these factors may account for differences between the two distinct 
populations with respect to biomarker profiles. Interestingly, the prevalence of H. pylori 
positivity in the U.S. population with gastric cancer was relatively low as compared with 
Asian populations with gastric cancer where H. pylori was a major risk factor. There was 
no difference, however, in the prevalence of H. pylori between cancer patients and controls 
in the U.S. cohort, but the number of subjects studied was small. 

These demographic differences may be important factors to consider for validation 
of salivary exRNA GC biomarkers in two entirely independent patient cohorts (Korea vs. 
USA). Our study indicated that, overall, the demographic factors in this U.S. cohort were 
similar (AUC of 0.68) to those of the Korean cohort (AUC of 0.69) [7]. In our previous 
study with Korean subjects, we found a difference in nearly all the selected mRNAs 
(ANXA1, CD24, CSTB, ERO1A, KRT4, KRT6A, PPL, RANBP9, S100A10, SEMA4B, and 
SPINK7) and miRNAs for GC (miR-140-5p, miR-374a, miR-454, miR-15b, miR-28-5p, and 
miR-301a). They were all statistically significant (FDR-adjusted p-value <0.05). However, 
in the U.S. cohort, none of the miRNAs (miR-140 and miR-301) and mRNAs (SPINK7, PPL, 
and SEMA4B) performed similarly (Supplementary Materials Figure S1). Therefore, any 
model constructed from the prior Korean cohort could not be generalized to the current 
U.S. cohort [7]. 

Interestingly, there was a statistically significant difference between a new model 
with only demographic characteristics (AUC = 0.68) and a new model with demographic 
characteristics, and miRNA/mRNA biomarkers for GC (AUC = 0.78) (Figure 1) (Delong’s 
test p-value = 0.037), indicating that the model with both miRNAs and mRNAs together 
with demographic characteristics (Model 3) was much better than the model with 
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demographic characteristics alone (Model 1). Interestingly, our panel has a potential to 
perform better in discriminating non-GC controls from early-stage GC (I, II) (AUC = 0.85 
(95% CI 0.72–0.99)) as compared with the late-stage GC (III, IV) (AUC = 0.75 (95% CI 0.64–
0.85)), although this still would need to be confirmed in a follow-up study. Thus, we were 
able to validate a panel of salivary exRNA biomarkers with credible clinical performance 
for the detection of GC in a U.S. population. Our study confirms, again, the potential util-
ity of salivary exRNA biomarkers in screening and risk assessment for GC. 

4.1. Current Biomarker Performance 
Most of the currently available published reports are based on blood-based bi-

omarkers for GC. So et al. developed a 12-miR assay from serum specimens (miR-140, miR-
183, miR-30e, miR-103a, miR-126, miR-93, miR-142, miR-21, miR-29c, miR-424, miR-181a, and 
miR-340) in a three-phase, multicenter study comprising 5248 subjects from Singapore and 
Korea in retrospective cohorts of 682 subjects [26]. Interestingly, one of the miRNAs was 
miR-140, the same as that investigated in our studies. The 12- miRNA panel yielded an 
AUC of 0.93 (95% CI 0.90–0.95) and an AUC of 0.92 (95% CI 0.88–0.96) in the discovery 
and verification cohorts, respectively. In this prospective study, overall sensitivity was 
87.0% (95% CI 79.4%–92.5%) at specificity of 68.4% (95% CI 67.0%–69.8%). Interestingly, 
the AUC was 0.848 (95% CI 0.81–0.88), much higher than other more frequently used gas-
tric tumor markers such as H. pylori serology (0.635), pepsinogen (PG) 1/2 ratio (0.641), PG 
index (0.576), ABC method (0.647), CEA (0.576), and CA19-9 (0.595) [26]. Other plasma 
miRNAs yielded AUCs from 0.65 to 0.75 for miR-185, miR-20a, miR-210, miR-25, and miR-
92b [27]. In another study, miR-181a-1 and KAT2B mRNA were identified as a combined 
predictor for GC with AUC > 0.95 [28], while the expression levels of HOXC6 mRNA in 
patients with advanced GC (AGC) were found to be significantly higher than those in 
patients with early-stage GC (EGC) [29]. Another report suggested that the combination 
of three biomarkers (collagen type VI alpha 3 chain (COL6A3), serpin family H member 1 
(SERPINH1), and pleckstrin homology and RhoGEF domain containing G1 (PLEKHG1)) 
yielded an elevated AUC of 0.907. A higher COL6A3 level was also significantly correlated 
with lymph node metastasis and poor prognosis in GC patients, while high levels of SER-
PINH1 and PLEKHG1 mRNA expression were correlated with lower overall survival (OS) 
in GC patients [30]. CircRNAs may also be an auxiliary diagnostic biomarker of GC [16]. 
In a combined 11 studies, which included 12 types of circRNAs (11 in tissues and 5 in 
plasma), all were downregulated. The combined diagnostic OR (DOR) and AUC with 95% 
CI were 8.778 (6.108, 12.614) and 0.81 (0.78, 0.84) respectively [31]. Another type of RNA 
with diagnostic value for GC detection include long non-coding RNAs (lncRNAs). The 
ROC curve showed that the AUC of serum lncRNA HCP5 detected by qRT-PCR was 0.818 
(95% CI 0.757–0.880, p < 0.001, 80% sensitivity, and 70% specificity), while the three com-
bined diagnoses (HCP5, CEA, and CA199) provided the highest AUC of 0.870 (95% CI 
0.819–0.921, p < 0.001) in distinguishing between GC and healthy donors reaching 81% 
sensitivity and 79% specificity [32]. In addition, it was found that LINC00941 was associ-
ated with tumor depth and distant metastasis in GC as it could discriminate GC samples 
from normal samples (AUC = 0.7911, 95% CI 0.7264–0.8559, p < 0.0001) and M1 samples 
from M0 samples (AUC = 0.6809, 95% CI 0.5852–0.7766, p = 0.0031) [33]. 

4.2. Limitations, Future Studies, and Advantage of the Markers Used in this Study 
The abovementioned studies suggest salivary RNAs as potential biomarkers for the 

diagnosis of GC, but emphasize the need for validation in intended use populations. How-
ever, no study of adequate sample size for independent validation has been performed to 
date. There remains an unmet need to develop a noninvasive biomarker assay for identi-
fying patients with GC from a high-risk population. Thus, the major advantage of the 
markers used in the current study is their noninvasive nature, which is important for pop-
ulation-based screening in at-risk populations. 



Cancers 2022, 14, 3632 11 of 12 
 

 

5. Conclusions 
We aimed to develop universal biomarkers for GC that could be applicable to all 

individuals regardless of their ethnic origin. Although we were unable to ”validate” the 
prior model developed based on a Korean cohort [7], we were able to demonstrate that 
our markers had diagnostic utility above and beyond demographic factors alone. Addi-
tional studies are needed to evaluate the diagnostic utility of our models in different ethnic 
populations, such as a Korean cohort in a U.S. population. More importantly, our study 
emphasizes the importance of population-specific biomarker development and validation 
for salivary exRNA biomarker for GC detection. 
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