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Simple Summary: One-third of the approximately 10 million deaths yearly caused by cancer worldwide
are due to hepatobiliary, pancreatic, and gastrointestinal tumors. One primary reason for this high
mortality is the lack of response of these cancers to pharmacological treatment. More than 100 genes
have been identified as responsible for seven mechanisms of chemoresistance, but only a few of them
play a critical role. These include ABC proteins (mainly MDR1, MRP1-6, and BCRP), whose expression
pattern greatly determines the individual sensitivity of each tumor to pharmacotherapy.

Abstract: Hepatobiliary, pancreatic, and gastrointestinal cancers account for 36% of the ten million
deaths caused by cancer worldwide every year. The two main reasons for this high mortality are their
late diagnosis and their high refractoriness to pharmacological treatments, regardless of whether
these are based on classical chemotherapeutic agents, targeted drugs, or newer immunomodulators.
Mechanisms of chemoresistance (MOC) defining the multidrug resistance (MDR) phenotype of
each tumor depend on the synergic function of proteins encoded by more than one hundred genes
classified into seven groups (MOC1-7). Among them, the efflux of active agents from cancer cells
across the plasma membrane caused by members of the superfamily of ATP-binding cassette (ABC)
proteins (MOC-1b) plays a crucial role in determining tumor MDR. Although seven families of human
ABC proteins are known, only a few pumps (mainly MDR1, MRP1-6, and BCRP) have been associated
with reducing drug content and hence inducing chemoresistance in hepatobiliary, pancreatic, and
gastrointestinal cancer cells. The present descriptive review, which compiles the updated information
on the expression of these ABC proteins, will be helpful because there is still some confusion on the
actual relevance of these pumps in response to pharmacological regimens currently used in treating
these cancers. Moreover, we aim to define the MOC pattern on a tumor-by-tumor basis, even in a
dynamic way, because it can vary during tumor progression and in response to chemotherapy. This
information is indispensable for developing novel strategies for sensitization.

Keywords: ATP-binding cassette protein; anticancer drug; drug refractoriness; multidrug resis-
tance; transport

Cancers 2022, 14, 3524. https://doi.org/10.3390/cancers14143524 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14143524
https://doi.org/10.3390/cancers14143524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-1186-6849
https://orcid.org/0000-0003-1844-7428
https://orcid.org/0000-0002-4748-0326
https://orcid.org/0000-0001-9271-3320
https://orcid.org/0000-0003-0430-838X
https://orcid.org/0000-0003-3049-6644
https://orcid.org/0000-0002-4386-9342
https://orcid.org/0000-0003-3160-8599
https://orcid.org/0000-0002-2637-1681
https://orcid.org/0000-0001-6891-1554
https://doi.org/10.3390/cancers14143524
https://www.mdpi.com/journal/cancers
http://www.mdpi.com/2072-6694/14/14/3524?type=check_update&version=2


Cancers 2022, 14, 3524 2 of 25

1. Introduction

Hepatobiliary, pancreatic and gastrointestinal tumors account for approximately 36%
of deaths due to cancer worldwide. One of the main reasons for this high mortality is
their late diagnosis and high refractoriness to pharmacological treatments. In this way,
most of these tumors are detected when curative approaches, such as surgical resection,
are no longer advisable. The second cause of poor outcomes is their high refractoriness
to pharmacological treatments, i.e., classical chemotherapy, targeted drugs, and newer
immunomodulators, which may constitute the only therapeutical option for these patients
with advanced cancers. More than 100 genes involved in the lack of response to drug ther-
apy have been identified and classified into seven groups of mechanisms of chemoresistance
(MOC) [1–3]. Among them, the efflux of active agents from cancer cells across the plasma
membrane through members of the superfamily of ATP-binding cassette (ABC) proteins
plays a crucial role in drug resistance mechanisms categorized as MOC-1b. Although there
are seven families of ABC proteins in humans (from ABCA to ABCG), only members of the
ABCB, ABCC, and ABCG families have been clearly associated with anticancer drug export
(Table 1) [4]. Thus, the first member related to chemoresistance was named multidrug
resistance protein 1 (MDR1), also known as P-glycoprotein or P-gp (gene symbol ABCB1).
This pump can transport a large variety of anticancer drugs and is highly expressed in many
tumors of the digestive system (Table 1). Several members of the ABCC family, known as
multidrug resistance-associated proteins (MRPs), have also been associated with the lack of
response to these tumors, namely MRP1 (ABCC1), MRP2 (ABCC2), MRP3 (ABCC3), MRP4
(ABCC4), MRP5 (ABCC5), and MRP6 (ABCC6). Although there is some overlap regarding
substrate-specificity, there are also significant differences in this respect (Table 1). Moreover,
their expression in these tumors shows characteristic patterns (Figure 1). Finally, there is a
member of the ABCG family, the breast cancer resistance protein or BCRP (ABCG2), which
plays a relevant role in the transport of anticancer drugs and hence in the chemoresistance
of digestive cancers (Table 1). MDR1 and MRP1-6 are full transporters, whereas ABCG2
is a half-transporter that requires dimerization to become functionally active. In addition
to their basal expression in naïve tumors, a common feature in resistance development is
their upregulation in response to treatment [4]. Nevertheless, there is also the possibility of
manipulating their expression [5] and function [6]. The present descriptive review com-
piles updated information on the expression of ABC proteins involved in the multidrug
resistance (MDR) phenotype of liver and gastrointestinal cancers.
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Table 1. ABC proteins involved in the transport of common antitumor drugs used in the treatment of
hepatobiliary, pancreatic, and gastrointestinal tumors.

Pharmacological Groups Drugs Cancers ABC Pumps

Alkylating Drugs Cyclophosphamide HB MRP1, 4

Anthracyclines Doxorubicin GAC, HB, HCC MDR1 MRP1, 2, 6 BCRP

Camptothecins Irinotecan BTC, CRC, GAC, HB, PDAC MDR1 MRP1, 2, 4, 6 BCRP

TKIs

Sorafenib HCC MDR1 MRP1, 2, 3 BCRP

Regorafenib CRC, HCC MDR1 MRP2

Lenvatinib HCC MDR1 MRP2

Cabozantinib HCC MDR1 MRP2

Platinum Derivatives
Cisplatin BTC, GAC, HB, HCC MRP2, 6

Oxaliplatin BTC, CRC, GAC, PDAC MRP2, 6

Podophyllotoxins Etoposide BTC, HB MDR1 MRP1, 2

Pyrimidines
5-FU BTC, CRC, GAC, HB, HCC,

PDAC MRP1, 4, 5 BCRP

Gemcitabine BTC, PDAC MDR1 MRP2, 4, 5, 6

Taxanes Docetaxel GAC MDR1 MRP1

Vinca Alkaloids Vinblastine HB MDR1 MRP1, 2

5-FU, 5-Fluorouracil; BCRP, breast cancer resistance protein; BTC, biliary tract cancer; CRC, colorectal carcinoma;
GAC, gastric adenocarcinoma; HB, hepatoblastoma; HCC, hepatocellular carcinoma; MDR, multidrug resistance
protein; MRP, multidrug resistant-associated protein; PDCA, pancreatic ductal adenocarcinoma; TKI, tyrosine
kinase inhibitor.

2. Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC), which derives from hepatocytes, is the most frequent
primary liver cancer, causing more than 800,000 deaths per year worldwide, i.e., more
than 8% of deaths due to cancer (Global Cancer Observatory; http://gco.iarc.fr accessed
on 1 June 2022). Systemic drug therapy is the only therapeutic option for most patients
with unresectable advanced HCC. However, one important feature accounting for the high
mortality of HCC is its marked drug refractoriness mainly to classical chemotherapy, whose
current use is limited to locoregional therapies, such as transarterial chemoembolization
(TACE) with doxorubicin, cisplatin, or 5-fluorouracil (5-FU) in a small group of patients.
Moreover, alternative treatments based on tyrosine kinase inhibitors (TKIs), such as sorafenib,
lenvatinib, regorafenib, and cabozantinib, or even immunotherapy, provide very modest
beneficial effects [7]. This is in part due to drug efflux from cancer cells through ABC proteins,
which play a crucial role in the sensitivity of pharmacotherapy in HCC (Table 2).

Table 2. Role of ABC proteins in the chemoresistance of hepatocellular carcinoma (HCC).

Change Drugs Affected Impact Ref.

MDR1 upregulation
Sorafenib Reduced OS [8,9]

Doxorubicin Worse prognosis [10]

MDR1 variant rs1045642 Sorafenib Better clinical evolution [11]

ABCB5 upregulation Doxorubicin Decreased cell sensitivity in vitro [12]

MRP1 upregulation Sorafenib Worse response [13]

MRP2 upregulation Sorafenib Decreased cell sensitivity in vitro [14]

MRP3 upregulation Sorafenib Decreased cell sensitivity in vitro [15]

MRP4 upregulation Cisplatin Decreased cell sensitivity in vitro [16]

http://gco.iarc.fr
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Table 2. Cont.

Change Drugs Affected Impact Ref.

MRP5 upregulation 5-FU, cisplatin, doxorubicin Decreased cell sensitivity in vitro [17–19]

BCRP upregulation
Doxorubicin Decreased cell sensitivity in vitro [20]

Sorafenib Worse response [9,21]

BCRP variants rs2231137 and
rs2231142 Sorafenib Better clinical evolution [11]

ABCF1 upregulation Cisplatin, doxorubicin Decreased cell sensitivity in vitro and
in vivo [22]

5-FU, 5-Fluorouracil; BCRP, breast cancer resistance protein; MDR, multidrug resistance protein; MRP, multidrug
resistant-associated protein; OS, overall survival.

2.1. MDR1 in Hepatocellular Carcinoma

MDR1, or P-glycoprotein, is expressed in the canalicular membrane of hepatocytes [23],
where it exports amphiphilic cations, endogenous steroids, and xenobiotics into bile. MDR1
expression is highly variable among HCC tumors. Marked upregulation of MDR1 has been
reported in some cases [24], whereas, in many others, MDR1 abundance (both mRNA and
protein) is lower in the tumor than in adjacent liver tissue [25]. HCC-derived cell lines
also show marked variability in MDR1 expression. Most of these cell lines express MDR1
only at low levels, whereas in a few of them, such as HuH-7 and Hep3B, this pump is
highly expressed [26]. In the clinical setting, MDR1 expression is associated with short
overall survival (OS) of HCC patients [8]. There is an inverse relationship between MDR1
expression levels in the tumor and the response to systemic chemotherapy of advanced
HCC [25]. This is consistent with the fact that MDR1 is considered an important factor in
determining the response of HCC to sorafenib [9]. Other TKIs approved by the FDA for
the treatment of HCC, such as regorafenib and lenvatinib, are also MDR1 substrates [27,28].
Elevated MDR1 expression in the tumor has been associated with lower accumulation of
doxorubicin and worse prognosis in patients treated with this drug, making doxorubicin
scarcely effective against HCC [10].

2.2. MRP1 in Hepatocellular Carcinoma

Under basal conditions, healthy hepatocytes express MRP1 at very low, almost un-
detectable levels in the basolateral membrane [29]. However, in HCC, variable MRP1
expression has been reported. Some authors have found overexpression of this transporter
in tumors compared to the surrounding tissue [30], while no difference [31] or even unde-
tectable MRP1 protein levels [32] have been reported by others. Despite the well-known
ability of MRP1 to export many antitumor drugs [33], there is scarce information on the
role of this pump in the overall refractoriness to TKIs used in the treatment of HCC. In
this sense, sorafenib seems to induce MRP1 expression in HCC-derived cells, presumably
through ubiquitin peptidase 22 (UPS22) upregulation [13]. Consistently, positive staining
of UPS22 and MRP1, assessed by immunohistochemistry, correlated with each other in
sorafenib-resistant tumors, but not in sorafenib-sensitive ones [13].

2.3. MRP2 in Hepatocellular Carcinoma

MRP2 is highly expressed in the canalicular membrane of hepatocytes, where it plays
an essential role in liver detoxification and chemoprotection processes [34]. MRP2 is also
highly expressed in HCC [35] and, therefore, could contribute to its MDR phenotype. In-
deed, MRP2 modulates the intracellular accumulation of sorafenib [14] due to the extrusion
of the drug itself or its metabolite sorafenib glucuronide [36]. Moreover, MRP2 can also
export regorafenib [37], cabozantinib [38], and probably lenvatinib [39].
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2.4. MRP3 in Hepatocellular Carcinoma

Although with high individual variability, MRP3 expression shows a trend of decreas-
ing levels in HCC compared with adjacent liver tissue [27,33,34]. Thus, in a recent study,
only 18.8% of HCC (15 out of 80) showed positive staining for MRP3 by immunohisto-
chemistry [40], suggesting a minor role of this ABC transporter in HCC chemoresistance.
Nevertheless, a relationship between MRP3-mediated efflux and sensitivity to sorafenib in
HCC cells has been reported [15].

2.5. MRP4 in Hepatocellular Carcinoma

In healthy hepatocytes, MRP4 is poorly expressed in their basolateral membrane [17].
In contrast, this pump is upregulated in cholestatic liver diseases, favoring the regurgi-
tation of cholephilic compounds toward the sinusoidal blood. Similarly, MRP4 is also
upregulated in HCC [41]. MRP4 expression is also high in cell lines of hepatic origins, such
as HuH-7 [42] and HepaRG [43]. MRP4 mediates the extrusion of xenobiotics together
with reduced glutathione (GSH) [17]. Studies performed on PLC/PRF5 cells exposed
to sorafenib indicated that MRP4 is not involved in HCC refractoriness to this TKI [15].
Although cisplatin is not a known substrate of MRP4, in vitro studies have shown that
cisplatin-resistant HCC cells exhibit MRP4 upregulation [16], which can be involved in
developing cross-resistance.

2.6. MRP5 in Hepatocellular Carcinoma

MRP5 is expressed in the basal plasma membrane of many epithelial cells, including
hepatocytes [44]. Some authors have described an increased MRP5 expression in untreated
HCC compared to adjacent non-tumor liver tissue [18,41]. In contrast, other studies have
failed to detect MRP5 in either tumor or healthy liver parenchyma [45]. MRP5 is unambigu-
ously detected (both mRNA and protein) in HCC-derived cell lines such as HuH-7, Hep3B,
and HLF [39,40,44]. Some reports have also shown that in cisplatin- and doxorubicin-
resistant HCC cells, MRP5 expression is higher than in wild-type cells [16,19]. Typical
endogenous substrates of MRP5 are cyclic nucleotides, such as cAMP and cGMP [46]. In
addition, this transporter can mediate the export of 5-FU, thus reducing the sensitivity of
HCC cells to this drug [47]. However, so far, no clinical data on the relevance of MRP5 in
the lack of response of HCC to chemotherapy or TKIs are available.

2.7. BCRP in Hepatocellular Carcinoma

BCRP is expressed in the apical membrane of hepatocytes [48] and in a very heteroge-
neous way in HCC-derived cells. Although some studies have reported non-significant
upregulation of ABCG2 mRNA in HCC [41], in general, BCRP expression is higher in tumor
tissue than in adjacent non-tumor liver tissue and healthy hepatocytes [49,50]. Moreover,
ABCG2 mRNA levels in HCC-derived cells are higher in undifferentiated than in differenti-
ated cell lines [49]. ABCG2 expression is typically very high in the so-called side-population
(SP) of stem cells, whose chemoresistance is stronger than those without stemness charac-
teristics [51]. Thus, BCRP is a potential marker for liver cancer stem cells (LCSC) [52,53].
Interestingly, BCRP expression is closely related to the initiation, proliferation, metastasis,
and chemoresistance of HCC. Increased BCRP expression has been correlated with reduced
OS in HCC of elderly patients [50]. Surprisingly, other studies have reported that HCC
patients with low BCRP expression have a significantly shorter OS and recurrence-free
survival time after treatment with epirubicin or cisplatin, alone or in combination with
5-FU [54]. ABCG2 expression, which can be modulated by AKT signaling, can significantly
influence the efflux from HCC cells of drugs such as doxorubicin, therefore hindering their
efficacy [54]. In addition, the development in HCC cells of an LCSC phenotype, in which
ABCG2 upregulation is prominent, is associated with malignant traits, such as increased
proliferation, migration, and invasion [53]. It is noteworthy that these features can be
diminished by ABCG2 downregulation [52]. BCRP is one of the most relevant ABC proteins
in determining the response of HCC patients to sorafenib [9]. BCRP plays a dominant role
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in sorafenib efflux [55], and it has been proposed as a predictor of HCC response to this
drug [21]. In addition, HCC patients who carry the genetic variants rs2231137 (c.34G>A,
p.Val12Met) and rs2231142 (c.421C>G/A, p.Gln141Glu/Lys) of ABCG2 and rs1045642
(c.3645T>G, p.Ile1215Met) of ABCB1 have lower plasma levels of sorafenib and show better
progression-free survival [11]. However, the presence of these variants does not affect the
pharmacokinetics of lenvatinib.

2.8. Other ABC Pumps in Hepatocellular Carcinoma

The involvement of other ABC proteins, such as ABCA2, ABCA3, ABCA6, ABCA8,
MRP6, and MRP7 (ABCC10), in the development of the MDR phenotype in HCC, is con-
sidered scarcely relevant [56]. ABCB5 and ABCF1 are LCSC markers. Cell subpopulations
with stemness properties, obtained from biopsies of HCC patients, express higher levels of
ABCB5 than the surrounding non-tumor tissue [57]. Using Hep3B cells, the overexpression
of ABCB5 has been related to the development of doxorubicin resistance [12]. ABCF1 is a
hepatic oncofetal protein upregulated in HCC, which has recently been reported to promote
resistance to cisplatin and doxorubicin using both in vitro and in vivo models [22].

3. Biliary Tract Cancer

Biliary tract cancer (BTC) refers to a group of rare and aggressive malignancies arising
in the biliary tree that comprises cholangiocarcinoma (CCA), gallbladder cancer (GBC), and
ampullary cancer. Options of systemic chemotherapy for treating patients with advanced
BTC are similar in all cases, including in the first-line combinations of gemcitabine and
cisplatin or oxaliplatin plus 5-FU (FOLFOX) or capecitabine (CAPOX). In the second-line
setting, alternatives, such as FOLFIRINOX (5-FU, irinotecan, and oxaliplatin) and etoposide
toniribate, have been assayed. Finally, novel targeted drugs and immunotherapy offer hope
for the future of these patients, although no efficient therapy currently exists [58]. As part
of the BTC “transportome”, defined as the set of transporters expressed at a given moment
in the tumor, which is an essential element for defining its MDR phenotype, ABC proteins
play a crucial role [59] (Table 3).

Table 3. Role of ABC proteins in chemoresistance of biliary tract cancer (BTC).

Change Drugs Affected Impact Ref.

MDR1 upregulation Gemcitabine Reduced response [60]

MRP1 upregulation
5-FU, Gemcitabine Decreased cell sensitivity in vitro [61,62]

Cisplatin, Gemcitabine Worse prognosis [63,64]

MRP3 downregulation 5-FU Increased cell sensitivity in vitro [65]

MRP5 downregulation Gemcitabine Increased cell sensitivity in vitro [66]

MRP6 downregulation Gemcitabine Increased cell sensitivity in vitro [66]

MDR1, MRP3, and BCRP upregulation 5-FU Reduced response [67]

5-FU, 5-Fluorouracil; BCRP, breast cancer resistance protein; MDR, multidrug resistance protein; MRP, multidrug
resistant-associated protein.

3.1. MDR1 in Biliary Tract Cancer

The presence of MDR1 in the apical plasma membrane of the bile duct and gallbladder
epithelial cells suggests that this export pump plays a physiological role in preventing the
accumulation of endogenous and xenobiotic compounds secreted into bile in cells of the
biliary tree by exporting them back to bile [23,68]. MDR1 expression levels are maintained
in CCA and GBC [41,68] but are usually decreased in poorly differentiated tumors [69].
Accordingly, MDR1 is considered a contributing factor to the MDR phenotype of these
tumors [70]. In fact, in patients with GBC, high MDR1 levels have been associated with
increased resistance to gemcitabine [60].
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3.2. MRP1 in Biliary Tract Cancer

Although MRP1 is not detected in normal cholangiocytes and gallbladder epithe-
lium [71], its expression has been found elevated in some cases of intrahepatic CCA
(iCCA) [63]. MRP1 has been shown to confer resistance to gemcitabine in CCA-derived
cells [61]. Several studies have also associated MRP1 downregulation with increased sen-
sitivity to 5-FU of CCA-derived cells in vitro [62,72]. Moreover, in patients with iCCA or
GBC who received adjuvant chemotherapy, their poor prognosis was associated with high
MRP1 mRNA levels in these tumors [63,64].

3.3. MRP2 in Biliary Tract Cancer

MRP2 is expressed in the apical membrane of cholangiocytes and gallbladder epithe-
lial cells, where it plays a role in the barrier for anionic metabolites present in bile [71]. In a
study carried out in 2008, it was suggested that MRP2 is not relevant in BTC chemoresis-
tance because this protein was detected by immunohistochemistry in only 4 out of 14 GBC
analyzed and was not detectable in any CCA [73]. However, subsequent studies, including
a more significant number of cases, suggested the opposite conclusion because mRNA
expression was found elevated in 28 out of 55 iCCA [63], and reactivity by immunohisto-
chemistry was observed in most (96.3%) of the 56 CCA analyzed. A higher expression was
seen in well or moderately differentiated tumors [40]. Moreover, MRP2 expression was
found in half (53.1%) of the 143 GBC samples analyzed in another study [74]. Although
marked MRP2 expression has not been found in human GBC cell lines [66,75], this is
enhanced by incubation with cisplatin [76]. Moreover, MRP2 contributes to resistance to
cisplatin, oxaliplatin, and gemcitabine in other types of tumors [77–79], which justifies the
need to look further into its role in BTC resistance.

3.4. MRP3 in Biliary Tract Cancer

Under physiological conditions, MRP3 is expressed in the basolateral membrane of
cholangiocytes [80] and gallbladder epithelial cells [71]. MRP3 is also markedly expressed
in BTC. In a study carried out in 2008 [73], positive staining by immunohistochemistry
was found in 13 of 14 GBC and 4 of 7 CCA. More recently, other studies have reported
intense MRP3 expression in 44.5% of 56 CCAs [40] and in 74.5% of 59 GBCs, which was
higher in more differentiated tumors [81]. MRP3 expression is also elevated in human
CCA-derived cells [75]. Moreover, it has been demonstrated that MRP3 plays an impor-
tant role in CCA chemoresistance, and, accordingly, it has been proposed as a target for
chemosensitization [65].

3.5. MRP4, MRP5, and MRP6 in Biliary Tract Cancer

Although MRP4 can transport nitrogenous bases and nucleoside derivatives used
against BTC, such as 5-FU and gemcitabine, its low expression in healthy biliary epithe-
lium [82] and, although somewhat higher, in CCA [41] suggests that this pump has a minor
role in BTC chemoresistance.

Tissue mRNA analyses revealed that MRP5 is ubiquitously expressed. High levels
of this export pump able to transport derivatives of nitrogenous base and nucleosides
have been found in CCA [41] and CCA-derived cell lines [66]. The exposure of HuCCT1
and KMBC cells, from iCCA and extrahepatic CCA (eCCA), respectively, to gemcitabine
enhanced MRP5 expression. In contrast, MRP5 knockdown significantly increased gemc-
itabine cytotoxicity in KMBC cells [66]. However, an association between MRP5 expression
and drug response in BTC patients has not been described yet.

The liver is one of the tissues with the highest expression levels of MRP6. Nevertheless,
it is not clear whether this pump is expressed in cholangiocytes. Moreover, MRP6 has
not been detected in gallbladder epithelium [83]. In contrast, HuCCT1 cells, derived from
iCCA, show high mRNA and protein MRP6 levels, while no expression was detected in
KMBC cells derived from eCCA. Gemcitabine upregulates MRP6 in HuCCT1 cells, and its
knockdown enhances the sensitivity to this drug [66].
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3.6. BCRP in Biliary Tract Cancer

BCRP is expressed in the apical membrane of cholangiocytes [84] and gallbladder
epithelial cells [85], suggesting a protective role against potentially toxic compounds present
in bile. Immunohistochemical analysis of 41 GBC specimens showed apical staining in
well-differentiated tumors, whereas in poorly differentiated tumors, part of the signal
was localized intracellularly [85]. Increased resistance to 5-FU has been described in CCA
patients with high expression of BCRP, MDR1, and MRP3 [67].

4. Hepatoblastoma

Hepatoblastoma (HB) is the most common liver cancer in children and is treated with
surgery and adjuvant or neoadjuvant antitumor chemotherapy [86]. Standard first-line
chemotherapy is based on cisplatin plus doxorubicin. Although the response is better
than that of HCC, it is not infallible because about 20% of HB patients do not respond to
treatment and have a poor prognosis [87]. Other platinum and anthracycline derivatives, as
well as other drugs such as etoposide, TKIs, Vinca alkaloids, 5-FU, irinotecan, and nitrogen
mustards, are used as second-line treatment for refractory HB [88]. The bioavailability of
some of these drugs is dependent on ABC pumps (Table 4).

Table 4. Role of ABC proteins in chemoresistance of hepatoblastoma (HB).

Protein Change Drugs Affected Impact Ref.

MDR1 upregulation Doxorubicin Decreased cell sensitivity in vitro [89]

MRP1 upregulation Doxorubicin Reduced response [33]

MRP2 upregulation Cisplatin Reduced response [90]
MDR, multidrug resistance protein; MRP, multidrug resistant-associated protein.

4.1. MDR1 in Hepatoblastoma

MDR1 expression is usually high in HB [91] and can be further enhanced during drug
treatment [91,92]. HB-derived cell lines exhibit a wide range of MDR1 expression [26],
which is upregulated by incubating these cells with cisplatin or doxorubicin [92,93]. Simi-
larly, mouse HB xenografts showed increased levels of MDR1 expression following treat-
ment with doxorubicin [94] and cisplatin [95]. MDR1 confers resistance to anthracyclines in
HB, as has been demonstrated in HepG2 cells overexpressing this pump [89]. Other drugs
used in the second-line treatment of HB, such as etoposide, irinotecan, Vinca alkaloids, and
sorafenib are also MDR1 substrates. Accordingly, upregulation of this ABC protein in HB
may reduce its response to these drugs [88].

4.2. MRP1, MRP2, and MRP3 in Hepatoblastoma

MRP1 is highly expressed in HB compared to the surrounding liver tissue [88], as well
as in HB-derived cell lines, such as HepG2 [41,96], HuH-6, and HepT1 [97]. However, there
are discrepant results on the changes in MRP1 expression induced by the pharmacological
treatment [98]. MRP1 plays an important role in anthracycline resistance [33] and is
upregulated in HuH-6 cell spheroids, which decreases their sensitivity to doxorubicin [97].
Furthermore, the sensitivity to this drug was enhanced in HepG2 cells after silencing
MRP1 [99].

MRP2 expression is high in HB [41] and is not changed in response to the treatment
of these patients with cisplatin and doxorubicin [98]. HB-derived cell lines also express
MRP2 [97]. Moreover, cisplatin-resistant HepG2 cells exhibited increased MRP2 levels [100].
Of note, MRP2 expression has been associated with the lack of response to cisplatin both
in vitro [26] and in patients [90]. MRP2 could be involved in the resistance of HB to substrates
of this pump, such as anthracyclines, irinotecan, sorafenib, etoposide, and Vinca alkaloids.

The levels of MRP3 expression are similar in healthy liver and HB tumor samples
from untreated or standard chemotherapy-treated patients [98]. However, MRP3 has been
found upregulated in HepG2 cells after exposure to cisplatin [41,101]. In experiments
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using cell models of MRP3 expression, this pump was able to transport sorafenib [15] and
etoposide [102].

4.3. MRP4 and MRP5 in Hepatoblastoma

Although MRP4 could be involved in HB resistance to irinotecan, cyclophosphamide,
5-FU, and doxorubicin [88], its relevance is probably minor because MRP4 expression in
healthy liver and HB is similarly low [41]. In contrast, HepG2 cells have high levels of
MRP4 expression [103], which is further increased after the incubation with cisplatin [41].

MRP5 can determine tumor sensitivity to 5-FU [104] or anthracyclines [105]. However,
its relevance in HB is uncertain. There are some discrepant results regarding MRP5 expres-
sion in HB. Previous determinations in a small number of patients reported no significant
differences between HB compared to healthy liver tissue [41]. However, more recent re-
ports suggested the existence of upregulated MRP5 expression in HB [88]. Moreover, the
exposure of HepG2 cells to cisplatin did not further enhance their already elevated MRP5
expression [88].

4.4. BCRP in Hepatoblastoma

Although some studies have reported higher BCRP expression levels in HB than
in healthy liver tissue, both at the mRNA and protein levels [41,98], the story is unclear
because BCRP expression in the plasma membrane of HB cells has been reported to be
low [98]. Another study has also found a decreased abundance of ABCG2 mRNA in
HB [88]. Moreover, BCRP expression was increased in the tumors after treating HB patients
with cisplatin plus doxorubicin [98]. These findings were consistent with those obtained
in HB-derived HuH-6 cells after short-term exposure to both drugs individually [88].
As anthracyclines, irinotecan, etoposide, sorafenib, and 5-FU are BCRP substrates, the
expression of this ABC protein could affect the response of HB patients to these drugs [88].

4.5. Other ABC Pumps in Hepatoblastoma

The role of other ABC proteins in HB resistance is poorly understood. MRP6 and
MRP7 are expressed in HB-derived cells and upregulated after cisplatin treatment [41,106].
These pumps can participate in resistance to etoposide, cisplatin, irinotecan, and anthracy-
clines [107,108].

5. Gastric Adenocarcinoma

Gastric adenocarcinoma (GAC) is a lethal type of cancer, accounting for approximately
770,000 deaths per year worldwide, which constitutes 7.7% of deaths due to cancer. The
lack of availability of efficient pharmacological treatment for advanced GAC, either as
neoadjuvant or adjuvant chemotherapy to surgical resection or radiotherapy [1,109] justifies
the high mortality of this disease. As first-line treatment, the most used chemotherapeutic
regimens include 5-FU, leucovorin, oxaliplatin, and perioperative docetaxel (FLOT) [110],
and the combination of epirubicin, cisplatin, and 5-FU (ECF) [111]. However, other newer
strategies such as immunotherapy or anti-VEGF therapy are also available [112]. Second-
line treatments include classical drugs, such as docetaxel, irinotecan, as well as newer
antibodies against tyrosine kinase receptors (TKRs) (trastuzumab and cetuximab), and
some TKIs (erlotinib and gefitinib) [113]. The activity of several ABC proteins reduces the
sensitivity to many of these drugs (Table 5).

Table 5. Role of ABC proteins in chemoresistance of gastric adenocarcinoma (GAC).

Change Drugs Affected Impact Ref.

MDR1 upregulation
Cisplatin, epirubicin Worse response [114,115]

Cisplatin, oxaliplatin, epirubicin Decreased cell sensitivity in vitro [116–118]

MRP1 upregulation Cisplatin Worse response [119]
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Table 5. Cont.

Change Drugs Affected Impact Ref.

MRP4 downregulation 5-FU Increased cell sensitivity in vitro [120]

Cisplatin Increased cell sensitivity in vitro [121]

MRP4 upregulation Dasatinib Decreased cell sensitivity in vitro and in vivo [122]

BCRP upregulation Cisplatin, 5-FU Reduced OS [123,124]

5-FU, 5-Fluorouracil; BCRP, breast cancer resistance protein; MDR, multidrug resistance protein; MRP, multidrug
resistant-associated protein; OS, overall survival.

5.1. MDR1 in Gastric Adenocarcinoma

The relevance of MDR1 in GAC chemoresistance is unclear. MDR1 is barely detectable
in normal gastric mucosa, either by mRNA expression analysis [125] or immunohistochem-
istry [126]. Some studies have reported enhanced MDR1 expression in the early stages of
GAC development, associating such expression with a poor prognosis due to increased
resistance to chemotherapy [127,128]. However, other authors have found intracellular
localization of the protein in GAC-derived cells, which precludes any role of the pump as a
drug exporter [129]. Elevated MDR1 expression has been observed in GACs from patients
classified as poor responders to platinum-based therapy alone or in combination with
epirubicin [114,115]. This was surprising because the cytotoxic activities of these drugs
were not expected to be affected by MDR1 expression levels [130]. Nevertheless, studies
carried out using in vitro cellular models have demonstrated the involvement of MDR1 in
GAC resistance to chemotherapeutic treatment with oxaliplatin [116], cisplatin [117], and
epirubicin [118]. This points to MDR1 as a potential target for gene therapy to improve the
response to the pharmacological treatment of patients with advanced GAC.

5.2. MRP1 in Gastric Adenocarcinoma

MRP1 is highly expressed in gastric mucosa and GAC [131,132]. The expression
levels of this protein have been extensively investigated in several studies, which have
reported elevated MRP1 expression in a variable proportion of cases ranging from 12 to
89% of GACs analyzed [132–134]. In most GAC specimens, MRP1 expression levels do not
differ substantially from those determined in adjacent healthy tissue, although decreased
MRP1 expression has been reported in a small proportion of samples analyzed [133]. The
study of GAC-derived cell lines reveals a great variability in MRP1 expression, which
inversely correlates with the sensitivity of these cells to anticancer drugs, such as etoposide,
vincristine, epirubicin, doxorubicin, and vinblastine [135]. MRP1 has been proposed as a
marker of chemoresistance in GAC, mainly associated with acquired resistance to cisplatin,
although this drug is not believed to be a substrate of MRP1. Following treatment with
anticancer platinum-based regimens, increased chemoresistance associated with higher
MRP1 expression has been observed in both GAC patients and the cisplatin-resistant
GAC-derived cell line KATOIII/DDP [119]. In addition, recent studies suggest that long
non-coding RNAs (lncRNAs) are involved in the acquisition of the MDR phenotype, a
process in which increased MRP1 expression is involved [136,137].

5.3. MRP2 and MRP3 in Gastric Adenocarcinoma

The relevance of MRP2 and MRP3 in developing the MDR phenotype in GAC cells is
likely minor and null, respectively. MRP2 expression is inversely correlated with differenti-
ation, being higher in poorly differentiated gastric tumors [138]. In GAC-derived cell lines,
MRP2 expression varies from low to moderate [139,140].

Besides, MRP3 has not been detected at the protein level in healthy stomachs and
GAC [44,132]. The same occurs in GAC-derived cells, except for SNU601 cells with acquired
resistance to cisplatin, in which an increased MRP3 expression has been found [141].
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5.4. MRP4 and MRP5 in Gastric Adenocarcinoma

MRP4 is abundantly expressed in healthy gastric mucosa and GAC [122,132]. In GAC
biopsies, the MRP4 expression was significantly higher than in normal gastric tissue [142].
Furthermore, MRP4 levels are upregulated in several gastric cell lines, especially in those
that have developed chemoresistance [120]. The inhibition of MRP4 expression in these
cells by siRNA increases the sensitivity to 5-FU through cell cycle arrest and activation of
apoptosis via BCL2/BAX [120]. Similarly, increased MRP4 expression has been described
in the cisplatin-resistant cell line SGC7901, whose sensitivity to this drug was enhanced
after ABCC4 silencing using siRNA [121]. MRP4 has also been associated with reduced
GAC response to dasatinib [122].

Scarce information on MRP5 expression in GAC is available. Although MRP5 is known
to transport 5-FU, there is no data on the relationship between this pump and the response
of GAC to 5-FU.

5.5. BCRP in Gastric Adenocarcinoma

Immunohistochemical analysis of BCRP shows homogeneous and intense staining in
the plasma membrane and intracellular compartment of untreated GAC [143]. In addition,
in vitro studies have revealed increased ABCG2 mRNA levels in GAC cells exposed to
cisplatin [144]. In GAC patients, elevated BCRP levels in tumor samples obtained before
chemotherapy were associated with shorter OS [123]. Furthermore, after treatment with
cisplatin and 5-FU, the residual cells have elevated expression of hedgehog (Hg) target
genes GLI1 and GLI2, suggesting activation of Hg signaling. This pathway is a crucial
regulator for putative cancer stem cells. Thus, enhanced GLI1/GLI2 expression is ac-
companied by BCRP upregulation, which is associated with decreased OS and increased
risk of cancer relapse [124]. In addition, GLI2 knockdown sensitized GAC cells to 5-FU
treatment. Because of the possible role of BCRP in GAC chemoresistance, identifying
novel BCRP inhibitors able to enhance the response to anticancer drugs transported by
this pump could be helpful. For example, genistein-induced inhibition of BCRP expression
in GAC-derived cells is associated with increased sensitivity to 5-FU and cisplatin [145].
Furthermore, using ribozymes in GAC cells to reduce BCRP mRNA increased sensitivity to
BCRP substrates [146].

6. Pancreatic Ductal Adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC) is another aggressive malignancy affecting
the digestive system. The number of deaths caused by this cancer per year worldwide is
close to 470,000, i.e., 4.7% of deaths due to cancer. The standard-of-care therapy for PDAC
patients consists of 5-FU, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) [147],
although some patients receive gemcitabine alone or combined with nab-paclitaxel or
erlotinib. The benefit of chemotherapy is minimal because PDAC is characterized by its
high chemoresistance, due in part to the elevated activity of ABC pumps accounting for
the reduction of intracellular concentration of these drugs [148] (Table 6).

Table 6. Role of ABC proteins in chemoresistance of pancreatic ductal adenocarcinoma (PDAC).

Change Drugs Affected Impact Ref.

MDR1 upregulation Gemcitabine Decreased cell sensitivity in vitro [149,150]

MRP1 upregulation 5-FU Decreased cell sensitivity in vitro [151,152]

MRP1 downregulation Gemcitabine Increased cell sensitivity in vitro [153]

MRP2 upregulation Gemcitabine Reduced OS [154]

MRP2 downregulation Gemcitabine Increased cell sensitivity in vitro [79,155]

MRP3 upregulation 5-FU Decreased cell sensitivity in vitro [156,157]

MRP4 upregulation 5-FU Decreased cell sensitivity in vitro [156]
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Table 6. Cont.

Change Drugs Affected Impact Ref.

MRP5 upregulation
5-FU Decreased cell sensitivity in vitro [158]

Gemcitabine Decreased cell sensitivity in vitro [159,160]

BCRP upregulation Gemcitabine Worse prognosis [161]

5-FU, 5-Fluorouracil; BCRP, breast cancer resistance protein; MDR, multidrug resistance protein; MRP, multidrug
resistant-associated protein; OS, overall survival.

6.1. MDR1 in Pancreatic Ductal Adenocarcinoma

As in other epithelial cells, MDR1 is expressed in the apical membrane of epithelial
cells lining the pancreatic ducts [23], where it participates in the transport of components
of the pancreatic secretion. Immunohistochemical analysis revealed that MDR1 expression
is higher in non-treated PDAC than in healthy ducts [162,163]. Intense positive staining
was observed in 52 out of 71 PDAC analyzed, and this was associated with a better
prognosis in patients who did not receive chemotherapy [163]. MDR1 expression in
PDAC-derived cell lines is a heterogeneous feature, ranging from undetectable or low to
high [149,164,165]. The abundance of ABCB1 mRNA has been associated with resistance
to gemcitabine [149] and taxanes, but not to 5-FU [166]. Gemcitabine-resistant pancreatic
cell lines established by dose-escalation of the drug showed stemness characteristics and
MDR1 overexpression [167].

6.2. MRP1 in Pancreatic Ductal Adenocarcinoma

MRP1 is expressed in fibroblasts but not in pancreatic acinar/ductal cells and PDAC [168].
Although MRP1 mRNA expression was high in 32 PDAC specimens compared to adjacent
non-tumor tissue, minimal contribution to the poor response to treatment was attributed
to this transporter [169]. However, more recent studies have demonstrated that MRP1
overexpression is associated with 5-FU [151] and gemcitabine resistance [152,170] in PDAC
cells in vitro. Interestingly, molecular communication between cancer-associated fibroblasts
(CAFs) and PDAC cells has been suggested as the mechanism triggering MRP1 downregu-
lation and, consequently, reduced gemcitabine resistance in PDAC cells [153].

6.3. MRP2 in Pancreatic Ductal Adenocarcinoma

Immunohistochemical analyses have supported that MRP2 is not expressed in healthy
exocrine pancreatic tissue [138,168]. However, there is controversy regarding the expression
of this pump in PDAC, because although it was not detected by some groups [168], other
studies have detected its presence in 91% of 67 tumor samples from patients who had
not previously received any treatment [161]. Different research detected intracellular
and plasma membrane staining of MRP2 in 77.5% of 40 tumor samples analyzed [171].
Patients bearing the MRP2 variant Gly40Ala showed a weak association with survival
and tumor response to gemcitabine therapy and, surprisingly, this association diminished
in patients receiving gemcitabine/cisplatin plus radiotherapy [154]. Regarding human
pancreatic cell lines, one study described a low abundance of MRP2 mRNA in some PDAC-
derived cells, but protein expression by Western blot was not found in any of the seven
cell lines tested [156]. Another study reported moderate MRP2 mRNA expression in five
cell lines and induction of its expression in cisplatin-resistant cells [171]. Besides, indirect
downregulation of MRP2 gene expression was suggested to induce gemcitabine sensitivity
in PDAC cell lines [155].

6.4. MRP3 in Pancreatic Ductal Adenocarcinoma

MRP3 is expressed in the basolateral membrane of normal pancreatic acinar/ductal
cells and PDAC, with higher mRNA levels in more differentiated tumors [168]. Increased
expression of MRP3 was associated with lower survival of PDAC patients and it was
suggested to play an essential role in tumor growth in vivo [157]. MRP3 expression is
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variable among PDAC-derived cell lines and was upregulated both at mRNA and protein
levels [156,157] in an established 5-FU resistant cell line [156], but not in gemcitabine-
resistant cells [160].

6.5. MRP4 in Pancreatic Ductal Adenocarcinoma

MRP4 is localized in the plasma membrane of both ductal and acinar pancreatic
cells and PDAC cells [168,172]. Still, there is controversy regarding the expression of this
export pump in PDCA compared with normal ductal cells. Thus, one study reported
similar expression in PDAC and healthy tissue, but another found higher expression in
PDAC [168,172]. Variable mRNA and protein MRP4 levels in seven PDAC-derived cell
lines have been reported. Upregulation of MRP4 in response to increased intracellular
cAMP levels [173] and in 5-FU resistant cells [156] has been described.

6.6. MRP5 and MRP6 in Pancreatic Ductal Adenocarcinoma

MRP5 is also localized in the basolateral membrane of the duct and acinar cells and
the plasma membrane of PDAC cells [168]. MRP5 mRNA levels were higher in PDAC
than in normal tissue and were not associated with tumor grade or stage [168]. Several
studies using PDAC-derived cell lines have shown that ABCC5 mRNA levels in these cells
correlated significantly with their refractoriness to 5-FU [158]. Exposure of PDAC cells to
gemcitabine or 5-FU induced MRP5 upregulation, which was associated with enhanced
resistance to these anticancer agents [169,171,174].

The information regarding MRP6 expression in PDAC is scarce. The abundance of
ABCC6 mRNA in healthy pancreas and PDAC specimens obtained before chemotherapy
was very low [168].

6.7. BCRP in Pancreatic Ductal Adenocarcinoma

The abundance of ABCG2 mRNA in healthy pancreatic tissue is low. In contrast,
although with marked interindividual variability, considerable ABCG2 mRNA levels have
been found in PDAC samples from 31 patients undergoing partial pancreatectomy [168].
Heterogeneity in BCRP expression was confirmed by immunohistochemistry, which re-
vealed positive staining in 73% of 65 PDAC samples analyzed, as well as an association
between high BCRP expression, early recurrence, and poor survival of patients treated with
adjuvant gemcitabine-based chemotherapy [161].

7. Colorectal Carcinoma

The available drug therapy to treat colorectal carcinoma (CRC) provides limited
beneficial effects in patients with advanced disease [175]. Thus, close to 940,000 people die
from CRC each year, which represents 9.4% of deaths due to cancer. Both conventional
chemotherapy, based mainly on 5-FU and other pyrimidine analogs (e.g., capecitabine,
trifluridine, and tipiracil), platinum agents (e.g., oxaliplatin), and irinotecan, and targeted
therapy, based on TKIs (e.g., regorafenib), and monoclonal antibodies against TKRs (e.g.,
aflibercept, bevacizumab, cetuximab, panitumumab, and ramucirumab) are used [175].
Immunotherapy has recently been approved to treat CRC. The role of ABC proteins in CRC
chemoresistance is commented below (Table 7).

Table 7. Role of ABC proteins in chemoresistance of colorectal carcinoma (CRC).

Change Drugs Affected Impact Ref.

MDR1 upregulation Doxorubicin, vincristine Decreased cell sensitivity in vitro [174]

ABCB5 upregulation 5-FU Worse response [176]

MRP1 upregulation
5-FU, oxaliplatin Decreased cell sensitivity in vitro [177,178]

Irinotecan Worse response [179]

MRP1 variant rs17501011 5-FU, irinotecan Reduced OS [180]
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Table 7. Cont.

Change Drugs Affected Impact Ref.

MRP2 upregulation
Cisplatin Worse response [181]

Cisplatin Decreased cell sensitivity in vitro [182]

MRP3 upregulation Etoposide, oxaliplatin Decreased cell sensitivity in vitro [183,184]

MRP4 variant rs3742106 5-FU Worse response [185]

MRP5 upregulation 5-FU, doxorubicin, cisplatin, oxaliplatin Decreased cell sensitivity in vitro [104]

BCRP downregulation 5-FU, oxaliplatin Increased cell sensitivity in vitro [186]

5-FU, 5-Fluorouracil; BCRP, breast cancer resistance protein; MDR, multidrug resistance protein; MRP, multidrug
resistant-associated protein; OS, overall survival.

7.1. MDR1 in Colorectal Carcinoma

MDR1 is highly expressed in the colon mucosa [23]. The abundance of ABCB1 mRNA
is increased in most CRCs, being significantly higher in well-differentiated than in poorly
differentiated tumors [187] regardless of tumor location and size [188]. Immunohistochem-
ical analysis of CRC biopsies also revealed a high proportion of MDR1 positivity among
analyzed tumors [188]. Nevertheless, MDR1 is believed to play a minor role in CRC resis-
tance to pharmacological treatment based on 5-FU, platinum derivatives, irinotecan, and its
active metabolites because these drugs are not transported by MDR1 [189,190]. However,
this pump contributes to the CRC intrinsic resistance to anthracyclines, Vinca alkaloids,
epipodophyllotoxins, and taxanes, all of which are MDR1 substrates [191]. Unlike in tu-
mors, in CRC-derived cell lines, MDR1 expression is higher in poorly differentiated than in
more differentiated ones. Moreover, their MDR1 expression levels parallel the resistance to
its drug substrates, such as anthracyclines and vincristine [174].

7.2. MRP1 in Colorectal Carcinoma

The role of MRP1 in CRC chemoresistance is controversial. Several studies have
reported the lack of association [190,192], whereas others have observed a link between
TNM staging and differentiation grade and enhanced MRP1 expression in CRC biop-
sies, revealed by positive immunohistochemical staining [193]. Moreover, in vitro testing
has demonstrated that MRP1 is associated with resistance to oxaliplatin, 5-FU, and beva-
cizumab [177,178,194]. Besides, the detection of MRP1 in circulating tumor cells in patients
with CRC has recently been suggested as a biomarker of irinotecan resistance [179,195].
Furthermore, the presence of the intron variants ABCC1 rs17501011 (c.49-20550G>A),
CES1 rs9921399 (c.52+538A>G), UGT1A rs1113193 (c.855+41929G>A for UGT1A8 and
c.855+23114G>A for UGT1A10) was related to lower OS in FOLFIRI-treated CRC pa-
tients [180].

7.3. MRP2 in Colorectal Carcinoma

High levels of MRP2 mRNA have been found in CRC compared with tissue from
non-tumor surrounding mucosa and healthy individuals. Elevated MRP2 expression is
considered one of the most critical mechanisms of chemoresistance, leading to the failure
of CRC treatment based on cisplatin or oxaliplatin [181,196]. In several CRC-derived
cell lines, MRP2 is constitutively expressed, their sensitivity to cisplatin being dependent
on their ABCC2 mRNA levels [182], which correlate with reduced intracellular cisplatin
accumulation [197]. Long-term exposure of these cells to cisplatin results in a marked
stimulation of the expression of several ABC proteins, particularly MRP2 [198,199]. In
addition, when cisplatin-sensitive cells were stably transfected with ABCC2 cDNA, they
acquired drug resistance [77], which was reversed by incubation with probenecid, an MRP2
inhibitor [197].
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7.4. MRP3 in Colorectal Carcinoma

The role of MRP3 in the response of CRC to chemotherapy seems irrelevant. Indeed,
in surgically resected CRC, no relationship between MRP3 expression and the sensitivity
to anticancer agents, such as doxorubicin, mitomycin C, cisplatin, 5-FU, etoposide, and
camptothecin derivatives, has been found [181]. Moreover, MRP3 mRNA levels in CRC and
colorectal polyps compared with non-tumor tissues are decreased or unchanged [181,200].
However, upregulation of MRP3 in CRC-derived cell lines contributed to resistance to oxali-
platin [183] and etoposide [184]. In addition, short-term exposure in vitro to cisplatin [199]
or oxaliplatin and 5-FU [201] results in enhanced MRP3 expression.

7.5. MRP4 in Colorectal Carcinoma

Compared with healthy tissue, MRP4 expression is higher in human CRC, colorectal
polyps, and CRC cell lines [202]. Despite the ability of MRP4 to transport 5-FU and
irinotecan, there is no strong evidence linking MRP4 expression to the lack of response of
CRC patients to these drugs. The rs3742106 variant of ABCC4 (c.*38A>C/T) affects the
binding of miR-3190-5p to ABCC4 3′-UTR, which reduces its expression [185]. Thus, in
patients with enhanced expression of this MRP4 variant, 5-FU concentrations in tumor
cells are reduced [185]. It should be considered that CRC is a tumor with a marked
inflammatory microenvironment. In this context, MRP4 plays a role in regulating the
levels of prostaglandin E2 (PGE2), the most abundant COX-2-derived pro-carcinogenic
prostaglandin in the CRC microenvironment [203]. Some authors have investigated the
effect of celecoxib, a COX-2 inhibitor, in combination with irinotecan and oxaliplatin against
CRC. However, trials have not shown an advantageous effect of this combination, which
may be due to the fact that celecoxib induces MRP4 upregulation [204].

7.6. MRP5 in Colorectal Carcinoma

Genetic variants of ABCC5 (along with those of the ABCG1 and SLCO1B1) have been
associated with the gastrointestinal toxicity of its substrate irinotecan [205]. Its administra-
tion should be avoided in combination with celecoxib because this drug increases MRP5
expression [204]. Experiments with cells transfected with MRP5 show increased efflux of
5-FU, adefovir, and purine analogs [104,206]. These studies also demonstrated that, in ad-
dition to 5-FU, MRP5 also confers resistance in CRC to several anticancer agents, including
methotrexate, pemetrexed, doxorubicin, and the platinum-containing drugs cisplatin and
oxaliplatin [104]. However, the role of MRP5 expression in CRC chemoresistance in the
clinical setting has not been established.

7.7. BCRP in Colorectal Carcinoma

Compared with paired non-tumor tissue, a significantly lower abundance of ABCG2
mRNA was determined in CRC biopsies obtained before the patients received antitumor
therapy [198]. However, BCRP is highly expressed in CD133-positive cells from human
CRC. These are thought to be putative cancer stem-like cells with an associated lack of re-
sponse, leading to tumor recurrence and metastasis [186,207]. High BCRP levels have been
found in CRC-derived mitoxantrone- and cisplatin-resistant cell lines [199,208]. Downregu-
lation of this efflux pump significantly enhances the efficacy of 5-FU and oxaliplatin in vitro
and in vivo [186].

7.8. Other ABC Pumps in Colorectal Carcinoma

Regarding the role of other ABCs in the MDR phenotype of CRC, ABCB5 has been
proposed as a marker of refractoriness to 5-FU treatment in these patients. This was due
to the high levels of expression of this protein that was found in patients who did not
respond to 5-FU-based chemotherapy regimens. Interestingly, the relationship between
ABCB5 overexpression and 5-FU resistance was confirmed in a CRC xenograft model that
had undergone 5-FU monotherapy [176].
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8. Conclusions

Although there is still some confusion about the actual relevance of ABC pumps in
the response of hepatobiliary, pancreatic, and gastrointestinal cancers to pharmacological
treatment, there is a clear consensus on the need to consider them in future strategies
to improve the efficacy of classical and newer drugs. The first step in this direction
is to correctly identify the members of this superfamily of proteins expressed in each
type of cancer (Figure 1). However, the existence of interindividual variability makes it
necessary to define the MOC pattern on a tumor-by-tumor basis, even in a dynamic way,
because it can vary during tumor progression and in response to chemotherapy. One
important conclusion of this descriptive review is that each type of cancer has its own major
characteristics defining its ABC expression pattern, which should be refined by deeper
individual analyses and considered before starting any pharmacological treatment to get
the highest probability of success in each patient. This information would also be required
to develop novel strategies for sensitization.
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