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Simple Summary: Neoadjuvant chemotherapy (NAC) followed with surgery is the standard strategy
in the treatment of locally advanced breast cancer, but the individual efficacy varies. Early and
accurate prediction of complete responders determines the NAC regimens and prognosis. Breast MRI
has been recommended to monitor NAC response before, during, and after treatment. Radiomics
has been heralded as a breakthrough in medicine and regarded to have changed the landscape of
biomedical research in oncology. Delta-radiomics characterizing the change in feature values by
applying radiomics to multiple time points, is a promising strategy for predicting response after NAC.
In our study, the delta-radiomics model built with the change of radiomic features before and after
one cycle NAC could effectively predict pathological complete response (pCR) in breast cancer. The
model provides strong support for clinical decision-making at the earliest stage and helps patients
benefit the most from NAC.

Abstract: Objective: To investigate the value of delta-radiomics after the first cycle of neoadjuvant
chemotherapy (NAC) using dynamic contrast-enhanced (DCE) MRI for early prediction of patho-
logical complete response (pCR) in patients with breast cancer. Methods: From September 2018 to
May 2021, a total of 140 consecutive patients (training, n = 98: validation, n = 42), newly diagnosed
with breast cancer who received NAC before surgery, were prospectively enrolled. All patients
underwent DCE-MRI at pre-NAC (pre-) and after the first cycle (1st-) of NAC. Radiomic features
were extracted from the postcontrast early, peak, and delay phases. Delta-radiomics features were
computed in each contrast phases. Least absolute shrinkage and selection operator (LASSO) and a
logistic regression model were used to select features and build models. The model performance
was assessed by receiver operating characteristic (ROC) analysis and compared by DeLong test.
Results: The delta-radiomics model based on the early phases of DCE-MRI showed a highest AUC
(0.917/0.842 for training/validation cohort) compared with that using the peak and delay phases
images. The delta-radiomics model outperformed the pre-radiomics model (AUC = 0.759/0.617,
p = 0.011/0.047 for training/validation cohort) in early phase. Based on the optimal model, longitu-
dinal fusion radiomic models achieved an AUC of 0.871/0.869 in training/validation cohort. Clinical-
radiomics model generated good calibration and discrimination capacity with AUC 0.934 (95%CI:
0.882, 0.986)/0.864 (95%CI: 0.746, 0.982) for training and validation cohort. Delta-radiomics based on
early contrast phases of DCE-MRI combined clinicopathology information could predict pCR after
one cycle of NAC in patients with breast cancer.
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1. Introduction

As a standard care for locally advanced breast cancer, neoadjuvant chemotherapy
(NAC) is clinically useful to downsize and downstage tumors and reduce the extent of
surgery from mastectomy to breast conservation. Less than 10% to 50% of patients achieve
pathological complete response (pCR) through NAC depending on receptor status and
subtype [1]. Achieving pCR can result in a more favorable long-term prognosis [2–4]. If
we can confidently predict that a patient has a high probability of pCR, surgery can be
safely postponed or even omitted. Thus, predicting the likelihood of pCR is important
for the development of improved and personalized treatment plans. The earlier accurate
predictions are made, the more likely patients are to benefit. Therefore, early and reliable
predictors of tumor response are needed.

Breast MRI is recommended to monitor therapy response during NAC [5,6], with
dynamic contrast-enhanced MRI (DCE-MRI) providing vascular information to evaluate
tumor presence with high sensitivity. Tumor morphology, vascularity, and cell density
can be affected by NAC. Many feature-level MRI metrics have been explored to monitor
treatment response, including tumor size [7–10], DCE kinetic parameters [7,11,12], diffu-
sion measures [8,13], and MRI texture parameters [14–16]. Recent studies [17–20] have
demonstrated the feasibility of radiomics for predicting NAC response. Most radiomics
studies about breast cancer [18–20] extracted radiomic features from single time-point
images (e.g., before NAC). However, these studies generally neglect the changes in tumors
during NAC. Delta-radiomics is a new concept based on the changes in radiomic features
in a set of longitudinal images [21]. Therapy-induced changes in tumor morphology and
heterogeneity can be quantified using delta-radiomics as a complement to response eval-
uation criteria in solid tumor (RECIST) for monitoring therapeutic response in several
tumor types [22,23]. In the field of breast cancer, key radiomic features associated with the
pathological response were significantly different before and after NAC [24]. Fan et al. [25]
evaluated the delta-radiomic model after the second cycle of NAC using DCE-MRI. How-
ever, whether the delta-radiomics model can predict NAC response after the first cycle,
which is the earliest time-point, remains unclear.

We assumed that delta-radiomics could reflect changes in tumor heterogeneity or
genetic profiles after only one cycle of NAC. The main objective of this work was to
determine whether therapy-induced delta-radiomics features can improve models for
predicting NAC outcomes when used in conjunction with longitudinal fusion radiomic
features. Additionally, we also used differential subsampling with cartesian ordering
(DISCO) DCE-MRI, which has high spatiotemporal resolution [26], to analyze the model
performance in the early, peak, and delay phases during contrast agent inflow and outflow,
and determine the optimal contrast phase of DCE-MRI.

2. Materials and Methods
2.1. Patients

The prospective protocol was approved by our Institutional Review Board (approval
code: 2019-33-2), and each participant provided written informed consent.

In the prospective study, the inclusion criteria were as follows: (1) the patient had
biopsy-proven unilateral primary breast invasive ductal cancer and ipsilateral axillary
lymph node metastasis without prior treatment; (2) complete biopsy information including
histological grades, receptor status, and Ki-67 level of the primary tumor was available;
and (3) baseline DCE-MRI and DCE-MRI following the first cycle of NAC were conducted.
The exclusion criteria were as follows: (1) occult cancers or small lesions less than 1.0 cm in
diameter on baseline DCE-MRI; (2) large lesions more than 10.0 cm in diameter; (3) incom-
plete NAC cycle or change in chemotherapy regimen during NAC; (4) surgery after NAC
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was performed in an external institution. Figure 1 shows a flowchart of patient collection.
From March 2019 to May 2021, the consecutive cohort enrolled in our study included a
total of 162 patients with paired DCE-MRI (baseline DCE-MRI and DCE-MRI following
the first cycle of NAC). According to the exclusion criteria, 22 patients were excluded due
to occult primary foci (n = 2), small lesions (n = 6), oversized lesions (n = 3), incomplete
NAC cycle (n = 3), change in chemotherapy regimen (n = 6), and undergoing surgery at an
external institution (n = 2). Based on their admission time, the remaining 140 patients were
split into a training cohort and a validation cohort at a ratio of 7:3 (98 patients for training
and 42 patients for validation).
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mic contrast-enhanced.

2.2. DCE-MRI Data Acquisition

Pretreatment MRI was performed within one week before NAC. Follow-up MRI af-
ter the first cycle of NAC was performed within 72 h before the second cycle of NAC.
Both breast MRI examinations were performed using a 3 T MR scanner (SIGNATM Pio-
neer, GE Healthcare, Milwaukee, WI, USA) with an 8-channel phased-array breast coil.
T1-weighted DCE-MRI sequence (one pre-contrast phase and 20 post-contrast phases with
temporal resolution of 19.4 s) was obtained using three-dimensional (3D) DISCO and
fat suppression technique (GE Healthcare). The scanning parameters were as follows:
TR = 4.9 ms, TE = 1.7 ms, flip angle = 90◦, FOV = 360 × 360 mm, matrix = 256 × 256,
section thickness = 1.4 mm, intersection gap = 1.4 mm, number of sections = 120/phase,
acceleration factors = 2. After the first pre-contrast scanning followed by a pause of 20 s,
the contrast agent was injected intravenously as a bolus (0.1 mmol/kg body weight) by
a power injector at 2 mL/s followed by a 20 mL saline flush. Subsequently, 20 phase
post-contrast images were acquired.

2.3. Clinicopathologic Features

Estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth
factor receptor 2 (HER2) were evaluated according to ASCO/USCAP guidelines [27,28]
using an avidin–biotin immunohistochemistry technique for biopsy specimens before NAC.
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The Ki-67 index was assessed with a cut-off value of 20% [29]. The molecular subtype
was categorized according to the 2017 St. Gallen guidelines [30]. Patients with hormone
receptor (HR)-positive, low Ki-67, and HER2-negative in breast tumors were defined as
luminal A subtype. Luminal B subtype included patients with HR-positive, high Ki-67,
or HER2-positive. If HR-negative, HER2-enriched subtype patients were distinguished
by HER2 overexpression or overamplification, whereas those with HER2-negative breast
tumors were classified as triple-negative subtype patients. For multi-lesion patients, the
receptor state of the largest lesion was selected for assessment.

2.4. NAC Regimen and Criteria for pCR

According to the National Comprehensive Cancer Network guideline [31], all partici-
pants received the standard six or eight cycles of NAC before surgery. The NAC regimens
were based on taxane, anthracycline, or both anthracycline and taxane. For HER2-positive
tumors, anti-HER2-targeted trastuzumab or trastuzumab + pertuzumab were added to the
chemotherapy drugs (8 mg/kg as the loading dose and 6 mg/kg as the maintenance dose).

Treatment response was evaluated after all NAC cycles based on surgical speci-
mens. pCR was defined as the absence of residual invasive tumor (Miller–Payne grade
5, residual ductal carcinoma in situ could be present) and the absence of lymph node
invasion in the ipsilateral sentinel node or lymph nodes removed during axillary dissection
(ypT0/isN0) [3,8,13,14,18,32].

2.5. Tumor Segmentation and Repeatability Analysis

The radiomics workflow is illustrated in Figure 2. For the pre-treatment and post-
treatment DCE-MRI for all patients, the open-source ITK-snap software (www.itksnap.org,
version 3.8.0) (accessed on 28 July 2020) was imported to segment the volume of interest
(VOI) [33]. Each tumor lesion was semi-automatically segmented on the peak contrast
phase (8th post-contrast phase according to time intensity curve [TIC]) of DCE-MRI (CEp).
By using region growing methods, the tumor VOIs covered the tumor areas. If deemed
necessary, manual adjustments were made dominantly in the axial position, auxiliary by
the coronal and sagittal positions. Necrosis and blood areas were included in the tumor
VOIs. If the tumor was a unilateral multifocal and multicentric lesion, the largest one was
selected as the object. The tumor VOIs on the CEp images were propagated with slight
adjustment to the early contrast phase of DCE-MRI (CEe; 5th post-contrast phase according
to TIC) and the delay contrast phase of DCE-MRI (CEd; 18th post-contrast phase according
to TIC) (Supplementary Figure S1).

Two radiologists with two and five years of experience in breast cancer diagnosis
independently performed VOI delineation to test intra-observer reproducibility. They inde-
pendently segmented the pretreatment MRI CEp images of breast cancer in 30 randomly
selected samples. The radiomic features extracted from the above two VOIs were com-
pared using the intra-class correlation coefficient (ICC). An ICC value of 0.8 or greater was
considered to indicate almost perfect consistency, and the feature was retained. Features
with ICC values less than 0.8 were initially eliminated. Then, the VOIs delineated by the
radiologist with two years of experience were used as the final segmentation.

www.itksnap.org
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2.6. Radiomic Features and Their Changes

The radiomic features of the DCE-MRI images before NAC and after the first cycle were
extracted using Analysis Kit software (A.K., GE Healthcare). For each VOI, the extracted
features included seven categories of original image features: (1) first-order features (n = 18);
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(2) 2D and 3D shape features (n = 14); (3) gray-level co-occurrence matrix features (GLCM;
n = 24); (4) gray-level run length matrix features (GLRLM, n = 16); (5) gray-level size zone
matrix features (GLZSM, n = 16); (6) neighboring gray-tone difference matrix features
(NGTDM, n = 5); (7) gray-level dependence matrix features (GLDM, n = 14); and (8) their
wavelet-transformed type (n = 744). There is a total of 851 radiomic features, which have
been used in previous studies [18,24,25,32,34]. Detailed names and definitions of all features
can be found in Supplementary Data S1.

The changes in the radiomic features (delta-radiomics features) between CEe, CEp,
and CEd were calculated from the differences between the pre-NAC features values (pre-
radiomics features) and the 1st-NAC features values (1st-radiomics features):

Delta-radiomics features = (pre-radiomics features) − (1st-radiomics features) (1)

2.7. Feature Selection

All patients in the training cohort were used to select features and build the prediction
model. Separate pre-, 1st-, and delta-radiomics features under different contrast phases
were selected. Before dimensionality reduction, features with variance ≤ 1 were excluded
from analyses. The data were standardized (Z-score) using the following equation:

Standardized value = (original value − average value)/standard deviation (2)

To obtain the features that were most strongly associated with pCR in the training
cohort, we first performed Student’s t-test and univariate logistic regression analysis, and
features with p < 0.1 were used for subsequent analysis. Spearman correlation analysis
was then used to remove the features highly correlated with other features (the Spearman
|p| ≥ 0.9). Finally, the least absolute shrinkage and selection operator (LASSO), was used
for fine feature selection. A 5-fold cross-validation was used to tune the parameters to
find the best λ value. Since LASSO is a regularization method, it can reduce the regression
coefficients of features that are considered as attribute noise to zero and identify features
that are non-redundant and robust. Thus, LASSO can overcome overfitting and improve
the generalization capability of the proposed machine learning model [35].

2.8. Establishment and Performance of Models
2.8.1. Separate Radiomic Models

In the training cohort, nine separate models under pre-, 1st-, delta-radiomics and
different contrast phases were trained using multivariate logistic regression and 5-fold
cross-validation, including model 1: pre-radiomics based on CEe; model 2: pre-radiomics
based on CEp; model 3: pre-radiomics based on CEd; model 4: 1st-radiomics based on CEe;
model 5: 1st-radiomics based on CEp; model 6: 1st-radiomics based on CEd; model 7: delta-
radiomics based on CEe; model 8: delta-radiomics based on CEp; model 9: delta-radiomics
based on CEd. The 5-fold cross-validation was used to optimize the tuning parameters
to construct the multivariate logistic regression model. The validation cohort was used
to evaluate the model performance. The radiomic score (Rad-score) for each patient in
the training and validation cohort was computed. To assess the prediction performance,
the receiver operating characteristic (ROC) curves were constructed, and the area under the
ROC curves (AUCs) were calculated using the Rad-score. The performances of the separate
pre-, 1st-, and delta-radiomics models under different contrast phases were compared
using DeLong tests. The model with the largest AUC values and the AUC value more than
0.80 in the validation cohort was identified as the optimal model. The contrast phase of the
optimal model was considered the optimal contrast phase for pCR classification.

2.8.2. Longitudinal Fusion Radiomic Models

Longitudinal fusion radiomic models were established by combining longitudinal
radiomic features based on the optimal contrast phases with the purpose of enhancing
the predictive performance. After feature fusion, the methods of feature selection, model
establishment, and model validation were the same as those for the separate models.
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2.8.3. Clinical-Radiomics Models

The clinical-radiomic model was established based on the Rad-scores of the sepa-
rate and longitudinal fusion radiomic models under optimal contrast phase along with
significant clinical indicators to explore any improvement resulting from feature fusion.
The models were trained, and validated using the same strategy used to develop the sepa-
rate radiomic models as described above. The AUC, sensitivity, specificity, and accuracy of
clinical-radiomics models will be calculated and presented.

2.9. Statistical Analysis

Clinicopathological characteristics and pretreatment MRI findings were compared be-
tween pCR and non-pCR using independent t-test or Mann–Whitney U test for continuous
variables and chi-square test or Fisher’s exact test for categorical variables. The ROC curve
was constructed to determine model performance based on the AUC, accuracy, sensitivity,
and specificity. Calibration curves were used for each model to depict the agreement be-
tween the predicted probability of pCR and the observed outcomes. The Hosmer–Lemeshow
test was used to determine the goodness of fit of the models, and p values of more than
0.05 were considered well calibrated. Decision curve analysis (DCA) was used to evaluate
clinical utility by quantifying the net benefits of the training and validation cohort. The De-
Long test was applied to compare the differences in the AUC values of different models.
Heatmaps were generated to show the distribution between pCR and non-pCR. All statis-
tical analyses were performed with R 4.1.1 and Python 3.70 (https://www.python.org/)
(accessed on 28 July 2020). The R packages used in this study include “caret,” “glmnet,”
“pROC,” “InformationValue,” “leaps,” and “bestglm.” A two-tailed p-value < 0.05 indicated
statistical significance.

3. Results
3.1. Clinical Characteristics

A total of 140 lesions from 140 women (mean age, 50.51 years; age range, 28–73 years)
were ultimately evaluated. Out of the 98 patients in the training cohort, 28 (28.6%) achieved
pCR, while 12/42 patients (28.6%) in the validation cohort achieved pCR. For the classifica-
tion of pCR, estrogen receptors, HER2 status, and molecular subtypes in both training and
validation cohort, and progesterone receptors in training cohort were significantly different.
The differences in the other clinical features and MRI morphology parameters were not
statistically significant (Table 1).

Table 1. Comparison of clinicopathological characteristics in the training and validation cohort.

Characteristics

Training Cohort (n = 98)
p

Validation Cohort (n = 42)

pCR
(n = 28)

Non-pCR
(n = 70)

pCR
(n = 12)

Non-pCR
(n = 30) p

Age (years) 51.0 ± 9.1 51.7 ± 10.5 0.601 50.7 ± 7.2 47.3 ± 10.7 0.242

Tumor size (cm) 4.2 (3.1, 5.6) 4.8 (3.4, 6.1) 0.276 3.4 (2.5, 5.2) 5.0 (3.1, 5.7) 0.177

Enhancement type (%) 0.442 0.657

Mass-like 15 (53.6) 42 (60) 7 (58.3) 14 (46.7)

Non-mass-like 6 (21.4) 8 (11.4) 2 (16.7) 4 (13.3)

Mass + non-mass 7 (25.0) 20 (28.6) 3 (25.0) 12 (40.0)

Type (%) 0.236 0.469

Multi-lesion 8 (28.6) 29 (41.4) 3 (25.0) 11 (36.7)

https://www.python.org/
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Table 1. Cont.

Characteristics

Training Cohort (n = 98)
p

Validation Cohort (n = 42)

pCR
(n = 28)

Non-pCR
(n = 70)

pCR
(n = 12)

Non-pCR
(n = 30) p

Single-lesion 20 (71.4) 41 (58.6) 9 (75.0) 19 (63.3)

TNM (%) 0.276 0.368

II A 7 (25.0) 9 (12.9) 3 (25.0) 7 (23.3)

II B 5 (17.9) 18 (25.7) 5 (41.7) 5 (16.7)

III A 2 (7.1) 11 (15.7) 2 (16.7) 5 (16.7)

III B 9 (32.1) 26 (37.1) 2 (16.7) 10 (33.3)

III C 5 (17.9) 6 (8.6) 0 (0.0) 3 (10.0)

Grades (%) 0.104 0.205

2 13 (46.4) 45 (64.3) 10 (83.3) 19 (63.3)

3 15 (53.6) 25 (35.7) 2 (16.7) 11 (36.7)

ER status (%) 0.001 * 0.002 *

Positive 5 (17.9) 46 (65.7) 2 (16.7) 21 (70.0)

Negative 23 (82.1) 24 (34.3) 10 (83.3) 9 (30.0)

PR status (%) 0.001 * 0.554

Positive 7 (25.0) 49 (70.0) 7 (58.3) 17 (56.7)

Negative 21 (75.0) 21 (30.0) 5 (41.7) 13 (43.3)

HER2 status (%) 0.041 * 0.008 *

Positive 15 (53.6) 22 (31.4) 8 (66.7) 7 (23.3)

Negative 13 (46.4) 48 (68.6) 4 (33.3) 23 (76.7)

Ki-67 status (%) 0.092 0.263

≤20% 2 (7.1) 15 (21.4) 1 (8.3) 23 (76.7)

>20% 26 (92.9) 55 (78.6) 11 (91.7) 7 (23.3)

Molecular subtypes (%) <0.001 * 0.046 *

Luminal A 0 (0.0) 5 (7.1) 0 (0.0) 2 (6.7)

Luminal B 7 (25.0) 48 (68.6) 5 (41.7) 19 (63.3)

HER2 enriched 11 (39.3) 5 (7.1) 5 (41.7) 2 (6.7)

TN 10 (35.7) 12 (17.2) 2 (16.7) 7 (23.3)

Age is presented as mean ± SD. Tumor size is presented as median (interquartile range), and the others are
shown as proportions (percentages). * p < 0.05. pCR, pathologic complete response; ER, estrogen receptor; PR,
progesterone receptor; HER2, human epidermal growth factor receptor 2; TN, triple negative.

3.2. Repeatability Analysis

The ICCs for all radiomic features and their changes were greater than 0.80 between
the two radiologists.

3.3. Separate Radiomic Models

Table 2 shows the performances of the separate radiomic models under different
contrast phases.
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Table 2. Diagnostic performance of separate models.

CEe CEp CEd

Pre-radiomics model

No. of selected features

LASSO_ CV 9 9 2

Logistic_ CV 3 5 1

AUC (training/validation) 0.759/0.617 0.827/0.694 0.649/0.539

95% CI of AUC 0.647, 0.871/0.403, 0.830 0.723, 0.922/0.533, 0.856 0.527, 0.770/0.319, 0.759

Sensitivity (training/validation) 0.643/0.667 0.679/0.917 0.857/0.250

Specificity (training/validation) 0.800/0.633 0.857/0.500 0.386/0.967

Accuracy (training/validation) 0.755/0.643 0.806/0.619 0.520/0.762

1st-radiomics model

No. of selected features

LASSO_ CV 10 9 13

Logistic_ CV 5 4 4

AUC (training/validation) 0.803/0.775 0.816/0.650 0.826/0.703

95% CI of AUC 0.694, 0.913/0.627, 0.923 0.717, 0.915/0.432, 0.868 0.738, 0.914/0.514, 0.892

Sensitivity (training/validation) 0.756/0.667 0.786/0.667 0.821/0.417

Specificity(training/validation) 0.771/0.800 0.771/0.800 0.700/0.967

Accuracy (training/validation) 0.776/0.762 0.776/0.667 0.735/0.810

Delta-radiomics model

No. of selected features

LASSO_ CV 13 11 3

Logistic_ CV 9 7 1

AUC (training/validation) 0.917/0.842 0.803/0.764 0.708/0.697

95% CI of AUC 0.861, 0.974/0.709, 0.974 0.64, 0.913/0.592, 0.936 0.594, 0.821/0.512, 0.883

Sensitivity (training/validation) 0.929/0.667 0.786/0.917 0.750/0.833

Specificity (training/validation) 0.829/0.900 0.771/0.667 0.629/0.700

Accuracy (training/validation) 0.857/0.833 0.776/0.738 0.663/0.738

Pre-radiomics features, the features from DCE-MRI before neoadjuvant chemotherapy (NAC); 1st-radiomics
features, the features from DCE-MRI after the first cycle of NAC. CV, cross validation. AUC, area under receiver
operating characteristic curve; CI, confidence intervals.

The detailed features selected are described in Supplementary Data S2. For all models,
the optimal performance appeared in the delta-radiomics model, which gave AUC values
of 0.917 (95% CI: 0.861, 0.974) for the training cohort and 0.842 (95% CI: 0.709, 0.974) for the
validation cohort using nine selected features under CEe. The delta-radiomics model per-
formed better than the pre-radiomics model, which achieved AUC values of 0.759 (95% CI:
0.647, 0.871) for the training cohort and 0.617 (95% CI: 0.403, 0.830) for the validation cohort
(DeLong test: p = 0.011/0.047 for training/validation cohort). The performance of 1st-
radiomics models under different contrast phases was moderate; the optimal AUC values
were 0.803 (95% CI: 0.694, 0.913) for the training cohort and 0.775 (95% CI: 0.627, 0.923)
for the validation cohort under CEe. The delta-radiomics model under CEe performed
better than the optimal 1st-radiomics model under CEe (DeLong test: p = 0.054/0.500 for
the training/validation cohort). Figure 3 shows the LASSO selection process, and Figure 4a
presents the results of logistic regression for the delta-radiomics model.
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Figure 3. Feature selection for LASSO of the delta-radiomics features. (a) Tuning parameter (λ)
selection by 5-fold cross-validation with minimum criteria. Binomial deviance (y-axis) was plotted
against log(λ) (x-axis). The left dotted vertical line was at the optimal lambda value point by using
the minimum criteria, and the right line was at the optimal lambda value point by using one standard
error of the minimum criteria (the 1-SE criteria). The optimal value of λ was 0.054 (minimum),
and the corresponding value of log(λ) = −2.919. (b) The least absolute shrinkage and selection
operator coefficient profiles of the 80 radiomic features after univariate analysis. For the optimal λ,
nine features with non-zero coefficients were selected.
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features are in the delta-radiomics model, which is the optimal separate radiomic model. (b) The
selected 5 features were 2 baseline and 3 delta-radiomics features in the fusion radiomic model of
pre-radiomics features and delta-radiomics features. (c) The fusion radiomic model of 1st-radiomics
features and delta-radiomics features retains 7 features, 6 from delta-radiomics features and 1 from 1st-
radiomics features. (d) A total of 5 features of the fusion radiomic-models of all features based on CEe,
and 1 from pre-radiomics features, 1 from 1st- radiomics features, and 3 from delta-radiomics features.

3.4. Determination of the Optimal Contrast Phase

By comparing the model performance, we found that the delta-radiomics model based
on the changes in radiomic features achieved superior performance compared to the other
models, and CEe was the optimal contrast phase for pCR classification. The ROC curves of
all the separate radiomic models are shown in Supplementary Figure S2.

3.5. Longitudinal Fusion Radiomic Model under the Optimal Contrast Phase

Under the optimal contrast phase (CEe), the delta-radiomics features were separately
fused with the pre- and 1st-radiomics features to build longitudinal fusion models. Table 3
shows the performances of the longitudinal fusion models. For the fusion of delta- and
pre-radiomics features, the selected five features were three delta-radiomics features and
two pre-radiomics features, which achieved AUC values of 0.866/0.750 for the train-
ing/validation cohort. The corresponding OR values and coefficients of key features for
the fusion radiomic models are shown in Figure 4b.

Table 3. Predictive performance of the longitudinal fusion radiomic models and clinical-radiomics
models based on the early phase.

AUC Sensitivity Specificity Accuracy

Longitudinal fusion radiomic-models (training/validation)

Pre + delta 0.866/0.750 0.929/0.833 0.623/0.700 0.723/0.738

1st + delta 0.903/0.839 0.821/0.667 0.871/0.933 0.857/0.857

Pre + 1st + delta 0.871/0.869 0.750/0.667 0.871/0.900 0.837/0.833

Clinical-radiomic model (training/validation)

Pre + clinical 0.762/0.569 0.679/0.333 0.757/0.900 0.735/0.738

1st + clinical 0.801/0.767 0.786/0.833 0.771/0.633 0.776/0.691

Delta + clinical 0.934/0.864 0.927/0.750 0.829/0.867 0.857/0.833

Pre + delta + clinical 0.870/0.736 0.821/0.667 0.757/0.800 0.776/0.762

1st + delta + clinical 0.908/0.828 0.821/0.667 0.900/0.967 0.878/0.881

Pre + 1st + delta + clinical 0.866/0.864 0.714/0.667 0.886/0.900 0.837/0.833

When the delta- and 1st-radiomics features were fused, six of the selected seven
features were delta-radiomics features (Figure 4c). The resulting fusion model achieved
AUC values of 0.903/0.839 for the training/validation cohort. This fusion model did not
show improved performance compared to the delta-radiomics model (AUC = 0.917/0.842
for the training/validation cohort).

A total of five features were conserved from the fusion model of the pre-, 1st-, and delta-
radiomics features. Compared with the delta-radiomics model (AUC = 0.917/0.842 for the
training/validation cohort), the AUC values (AUC = 0.871/0.869 for the training/validation
cohort) showed a slight improvement for the validation cohort. Among the selected features,
three were delta-radiomics features, one was a 1st-radiomics feature, and one was a pre-
radiomics feature. The corresponding OR values and coefficients are shown in Figure 4d.
The longitudinal fusion model showed good agreement between the actual observations
and classifications in both the training cohort (Figure 5a) and validation cohort (Figure 5b).
Nonsignificant statistics were achieved in the Hosmer–Lemeshow test in the training cohort
(p = 0.388) and validation cohort (p = 0.185). DCA showed that the radiomic model would
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add more benefit in distinguishing pCR and non-pCR when the threshold probability was
at any threshold in the training cohort (Figure 5c) or between 15% to 82% in the validation
cohort (Figure 5d).
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Figure 5. Calibration curves and decision curve analysis (DCA) for the optimal delta-radiomics
model, longitudinal fusion-radiomics model, and clinical-radiomics model. (a) Calibration curves
for the training cohort. (b) Calibration curves for the validation cohort. The dotted line represents a
perfect classification. (c) DCA results for the training cohort. (d) DCA results for the validation cohort.
The y-axis represents the net benefit. The solid gray line represents the scenario that all patients
were included in the pCR group. The solid black line represents the scenario that no patients were
included in the pCR group. The x-axis represents the threshold probability (i.e., where the expected
benefit of the treatment is equal to the expected benefit of avoiding treatment).

3.6. Clinical-Radiomics Models

After adding significant clinical features (HR and HER2) to the radiomic models,
the delta-radiomics model still produced the highest AUC (AUC = 0.934/0.864, sensi-
tivity = 0.927/0.750, specificity = 0.829/0.867, accuracy = 0.857/0.833 for the training/validation
cohort). Figure 6 shows the ROC curves for the optimal separate radiomic models, lon-
gitudinal fusion radiomic models, and clinical-radiomics model. The calibration curves
and DCA results of the training set for the clinical-radiomics models are shown in Figure 5.
The clinical-radiomics model showed good diagnostic performance based on the actual
observations and classifications in the training cohort (Figure 5a) and validation cohort
(Figure 5b). Nonsignificant statistics were achieved in the Hosmer–Lemeshow test in
the training cohort (p = 0.910) and validation cohort (p = 0.410). DCA indicated that the
clinical-radiomics model was most beneficial in distinguishing pCR and non-pCR when
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the threshold probability was between 0 and 0.82 in the training cohort (Figure 5c) or at
any given threshold probability in the validation cohort (Figure 5d).
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3.7. Changes in Radiomic Features in the Delta-Radiomics Model

The nine selected radiomic features in the delta-radiomics model and their values
before NAC and after the first cycle of NAC are shown in Table 4. The nine radiomic fea-
tures included two describing the heterogeneity of the high-gray region, one describing the
heterogeneity of the low-gray region, two describing the local homogeneity of the image,
one measuring the skewness and asymmetry of GLCM, one measuring the average gray-
level intensity within the VOI, one reflecting the similarity between gray-level intensity
values, and one gray value–voxel correlation parameter. The feature reflecting the similarity
between the gray intensity values (wavelet—LLH_ glrlm_ Gray Level Non-Uniformity Nor-
malized) was upregulated after early treatment, and have higher levels in the pCR group.
All other characteristics were downregulated after early treatment, with a greater decrease
in the pCR group. Eight of the nine features were wavelet-transformed types. Four features
(wavelet—HHH_ glszm_ Large Area Low Gray Level Emphasis, wavelet—HLH_ gldm_
Large Dependence High Gray Level Emphasis, and wavelet—LHH_ gldm_ Large Depen-
dence High Gray Level Emphasis and wavelet—LLH_ first order_ Mean) from wavelet-
transformed type describing the information of gray level. An example of a wavelet-
transformed feature wavelet—HLH_ gldm_ Large Dependence High Gray Level Emphasis
(OR = 2.164), which is also retained in the longitudinal fusion radiomic models and is an
important feature in the fusion model of pre- and delta-radiomics features (OR = 3.213),
the fusion radiomic model of 1st- and delta-radiomics features (OR = 3.213), and the fusion
radiomic models of pre-, 1st-, and delta-radiomics features (OR = 3.936). Figure 7 shows
the changes in this feature between pre-NAC and 1st-NAC.
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Table 4. The nine key radiomic features in the delta-radiomics model and their pre-radiomics and
1st-radiomics features.

Median (IQR)
pCR Non-pCR

Trend
Pre 1st Delta Pre 1st Delta

First order-related features

LLH_Mean (×101) −7.2 (−9.5, 4.5) −7.2 (−14.8, −5.2) 2.6 (−0.5, 5.0) −6.7 (−9.0, −5.0) −7.7 (−10.6, 5.5) 0.8 (−1.0, 2.6) Down

GLCM-related features

Correlation (×10−1) 7.2 (6.2, 8.0) 6.2 (5.2, 7.5) 0.9 (0.03, 1.7) 7.4 (6.5, 8.0) 7.0 (6.0, 7.8) 0.3 (−0.3, 0.8) Down

HHH_Idmn (×10−1) 9.9 (9.9, 10.0) 9.8 (9.8, 9.9) 0.1 (0.03, 0.2) 9.9 (9.9, 10.0) 9.9 (9.8, 10.0) 0.06 (−0.09, 0.08) Down

HLH_ Cluster
Prominence (×104) 3.0 (0.9, 6.2) 1.73 (0.4, 3.0) 1.1 (0.1, 3.4) 2.3 (1.1, 4.2) 2.0 (0.8, 4.2) 0.2 (−1.2, 1.4) Down

LLH _ Idn (×10−1) 9.2 (9.1, 9.3) 9.1 (8.9, 9.2) 0.1 (0.04, 0.2) 9.2 (9.1, 9.3) 9.2 (9.1, 9.3) 0.05 (−0.02, 0.13) Down

GLDM-related features

HLH_ LDHGLE (×103) 8.5 (6.0, 12) 4.7 (2.8, 7.6) 3.5 (0.9, 6.0) 9.5 (5.9, 16.0) 6.6 (4.2, 11.2) 2.4 (−0.6, 4.9) Down

LHH_ LDHGLE (×104) 1.0 (0.6, 1.6) 0.6 (0.3, 1.0) 0.3 (0.003, −1.1) 1.2 (0.7, 1.8) 0.7 (0.6, 2.7) 0.3 (0.03, −0.7) Down

GLSZM-related features

HHH_ LALGLE (×103) 0.9 (0.2, 6.3) 0.4 (0.05, 6.1) 0.2 (0.04, 1.1) 1.6 (0.4, 5.9) 0.9 (0.2, 5.0) 0.1 (−0.9, 1.3) Down

GLRLM-related features

LLH_ GLNUN (×10−2) 0.9 (0.7, 1.2) 1.0 (0.8, 1.3) −0.1 (−0.3, 0.02) 0.9 (0.7, 1.1) 0.9 (−0.8, 1.2) −0.03 (−0.2, 0.1) Up

HHH, HLH, LHH, and LLH indicate that the feature type is a wavelet transform feature. IQR, interquartile range.
LALGLE, large area low gray level emphasis; LDHGLE, large dependence high gray level emphasis; GLNUN,
gray level non-uniformity normalized.
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Figure 7. Examples feature of wavelet—HHL_ gldm_ Large Dependence High Gray Level Emphasis
(LDHGLE) in non-pCR and pCR. (A) Images from a non-pCR breast cancer patient (aged 57 years
old with invasive ductal carcinoma of the triple negative subtype. The first line is: (a) the image of
pre-NAC, (b) ROI, and (c) a LDHGLE map of tumor ROI (mean LDHGLE value = 4268). The second
line is: (d) the image of the first cycle of NAC(1st-NAC), (e) ROI, and (f) a LDHGLE map of tumor
ROI (mean LDHGLE value = 4240). (B) Images from a pCR breast cancer patient (aged 51 years old
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with invasive ductal carcinoma of luminal B subtype). The first line is: (g) the image of pre-NAC,
(h) ROI, and (i) a LDHGLE map of tumor ROI (mean LDHGLE value = 16,530). The second
line is: (j) the image of 1stNAC, (k) ROI, and (l) a LDHGLE map of tumor ROI (mean LDHGLE
value = 10,343). (C) Boxplot represents the feature of wavelet-HHL_ gldm_ LDHGLE distribution
among patients of non-pCR and pCR in the training cohort. (D) The heatmap of selected feature in
delta-radiomics model based on early phase. Demonstrates overall distribution of key delta-radiomics
features among patients with pCR and non-pCR in the training cohort, which shows the obvious
difference between the two groups. LDHGLE, large dependence high gray level emphasis.

4. Discussion

The early prediction of treatment response of locally advanced breast cancer to NAC
is important for optimizing and adjusting the treatment plan. Our study demonstrated
that DCE-MRI-based delta-radiomics after the first cycle of NAC can quantify changes in
tumor heterogeneity at the earliest time point. It improved prediction ability using single
time-point images (e.g., pre-NAC). Additionally, by comparing the early, peak, and delayed
DCE-MRI radiomic models, the optimal contrast phase was preliminarily confirmed to
be the early contrast phase, providing a reference for extracting reliable and comparable
DCE-MRI data for subsequent radiomics studies.

Many studies [18–20] have focused on pre-NAC radiomics for pCR prediction in
breast cancer. In studies on multimodal radiomics, pre-radiomics models based on contrast-
enhanced T1-weighted images did not show surprising performance for pCR classifica-
tion [18–20]. In a large multi-center study [18], Liu et al. found that the AUC achieved by
DCE-MRI in the peak phase was less than 0.60. DCE-MRI remains the most essential among
a wide range of technologies because its high spatial resolution allows it to precisely reveal
tumor size, shape, and internal heterogeneity, thus facilitating the tumor segmentation.
Breast DCE-MRI for evaluating the treatment response is recommended every two NAC
cycles by expert consensus [36]. The changes in tumor size [8,9,37] and functional param-
eters [7,11] based on DCE-MRI after two NAC cycles and even after one cycle strongly
predicted the final therapeutic response. Recent studies extended the longitudinal changes
to texture [14–16] and radiomic features [25,26]. Delta-radiomics features after early treat-
ment reflect therapy-induced changes in tumor morphology and heterogeneity, which may
improve the performance of single pre-NAC images. Eun et al. [14] found that DCE-MRI
texture-based models from a single time-point (after three or four cycles of NAC) had the
highest diagnostic performance (AUC, 0.82; 95% CI: 0.74, 0.8). However, the middle stage
of the NAC treatment is too late to make changes to the regimen in patients for whom NAC
is ineffective. In another small-sample study [16], Nadrljanski et al. found that DCE-MRI
performed after two NAC cycles could reveal the differences in texture features between
patients that respond and do not respond to NAC. Advancing scanning time point after the
first cycle of NAC, we extracted comprehensive radiomic features from DCE-MRI before
and after the first cycle, analyzed their differences, and built an optimal model for the ear-
lier and more accurate prediction of patient outcomes. Recent studies [38,39], which used
deep learning and transfer learning for feature extraction and selection without human
intervention, have been already successfully applied on pre-treatment and early-treatment
DCE-MRI and achieved a good performance. Some difficulties have been recently overcome
thanks to deep learning, such as time-consuming manual labeling, inconsistent DCE-MRI
protocols, etc. Furthermore, fully automatic segmentation is not restricted to intratumoral
features, breast tissue [40] and peritumoral [41] can also give an early prediction. This is
the direction of our further efforts.

Although the DCE-MRI scanning sequence varied among studies, the early
phase [14,19,20,37] and peak phase [18,19,25] are the most commonly used phases for
extracting DCE-MRI radiomic features. Based on DCE-MRI under the peak contrast
phase, Fan et al. [25] explored the delta-radiomics features after the second NAC cycle.
The diagnostic power obtained using the first cycle data in our study (AUC = 0.764 for
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delta-radiomics) was similar to that achieved by the second cycle data of Fan et al. [25]
(AUC = 0.726 for delta-radiomics). We extracted features under multiple contrast phases
and found that the early phase performed better than the peak or delay phases. The reason
may be that our DCE-MRI used the DISCO protocol. DISCO provides higher temporal and
comparable spatial resolution compared with clinical standard protocol [26,42]. This advan-
tage is beneficial for detection and classification of breast lesions with high accuracy [43,44].
High temporal resolution makes the phase capture more accurate, especially for malignant
tumors with rapid early enhancement. High spatial resolution guarantees the accuracy of
radiomic features because high spatial resolution leads to better classification compared
with low spatial resolution [34]. Despite the noted strengths, the clinical application of
DISCO is still in its infancy and remains exploratory. The first issue to address is the
storage and transmission difficulties caused by big data volumes. The absence of clear
guidelines for quantitative measurement is another current issue. Tumor segmentation in
the different contrast phases influences DCE-MRI parameter measurement, and the early
phase is optimal for the extraction of reliable DCE-MRI kinetic parameters [45]. The early
phase of DCE-MRI is recommended for response monitoring following chemotherapy and
pCR prediction [46]. Our findings further confirm that the early phase should be used in
radiomics studies. The most informative feature values for tumor characterization should
be available at two minutes or less after the injection of contrast agent [47]. A possible
explanation for this might be that the cumulative difference of the contrast agents for
each voxel in early phase highlighted tumor heterogeneity, while these differences tend to
balance in the peak/delay phases. Thus, peak- or delayed-phase imaging may not provide
the most valuable feature information for predicting pCR.

Features from delta-radiomics account for the largest proportion of longitudinal fusion
radiomic models. This is consistent with our hypothesis: the delta-radiomics features
reflected the therapy-induced changes in tumor heterogeneity, allowing the prediction of
pCR. After adding clinical factors (HR and HER2 status) to the delta-radiomics model,
the clinical-radiomics model achieved an AUC of 0.934/0.864 in the training/validation
cohort. Thus, combining clinicopathological information with delta-radiomics is effective
in predicting the performance of pCR in breast cancer patients. Focusing on the meanings
of radiomic features, Zhou et al. [32] found that the features of wavelet-transformed feature
showed promise for predicting pCR in response to NAC for patients with breast cancer,
which supports our results. Among the key wavelet-transformed features based on the
delta-radiomics model in our study, the three most important features were wavelet—LLH_
glcm_ Idn, wavelet—LLH_ firstorder _ Mean, and wavelet—HLH_ gldm_ Large Depen-
dence High Gray Level Emphasis. All of these features were downregulated after early
treatment and were significantly higher in pCR patients than in non-pCR patients. This can
be explained by the different changes in tumor heterogeneity observed in the two response
groups. Among the three most important wavelet-transformed features, two reflect the
gray level of the entire tumor. The feature wavelet—HLH_ gldm_ Large Dependence
High Gray Level Emphasis was important in all longitudinal fusion radiomic models and
showed good robustness for predicting pCR. This further indicates that heterogeneous
changes of high proliferative activity area with high-gray in DCE-MRI better cast light
upon pCR. The large dependence high gray-level emphasis of Jacobian maps (a registered
map that reflects the level of voxelwise volumetric shrink or expansion) in Fan et al. [25]
also found to be higher in non-responders than responders after the second cycle of NAC.
In the current study, considering that Jacobian map did not show better performance than
the delta-radiomics models, we analyzed feature-level delta-radiomics features without
voxelwise-level changes. Jahani et al. [48] reported the changes in voxelwise first-order
features resulted in better pCR prediction compared with feature-level changes. It is worth
applying radiomics to maps of voxelwise features changes in future research. We also found
that the feature original— glcm_ Correlation, which reflects the correlation of local gray
levels in the image, was also important in the delta-radiomics model and the fusion models.
The value of this feature was downregulated after early treatment and was significantly
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higher in pCR patients than in non-pCR patients. Thus, gray scale related features also play
an important role in predicting pCR.

Despite the considerable diagnostic power of delta-radiomics using longitudinal im-
ages, several limitations of this pilot study should be acknowledged. First, the sample
size of the prospective cohort was relatively small. Further studies with large numbers
of patients from multiple centers should be conducted to confirm our findings. Second,
the different cancer subtypes included in our study are treated by different NAC regimens,
although we affirmed that all NAC regimens were standard. Third, we only detected
feature-level changes; we did not evaluate voxel-level changes. Fourth, DISCO protocol
with high spatiotemporal resolution is conducive to quantitative and semi-quantitative
measurements, while we did not compare or combine radiomics with quantitative parame-
ters. Finally, there is no clear biological explanation for radiomic features and their changes,
and interpretability remains the biggest limitation of current radiomics studies.

5. Conclusions

Delta-radiomics characterizing the change in feature values by applying radiomics
to multiple time points, is a promising strategy for predicting pCR after NAC. Using
DCE-MRI evaluations before and after one NAC cycle, delta-radiomics under the early
contrast phase combined with clinicopathological information has excellent predictive
power for pCR prediction.
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