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Simple Summary: Cancer develops due to the expression of genes that promote cell growth and the
repression of genes that limit growth. Epigenetics is a mechanism that regulates gene expression via
the chemical modification of DNA and histones. Proteins that regulate this process have emerged as
potential therapeutic targets. Here, we investigate the role of the epigenetic regulatory protein CBX2
in aggressive forms of breast cancer, which have few therapeutic options. We show that functioning
CBX2 is crucial for cancer cell growth and viability. By analysing gene expression patterns in CBX2-
depleted cells, we show that CBX2 activates signalling pathways that promote cell growth (mTORC1
signalling) and inhibits the activity of a protein complex that limits cell growth (the DREAM complex)
by repressing the expression of key tumour suppressor genes. We have therefore identified novel
mechanisms by which CBX2 promotes breast cancer growth and provide evidence that inhibition of
CBX2 may be a novel therapeutic strategy.

Abstract: Chromobox 2 (CBX2) is a chromatin-binding component of polycomb repressive complex
1, which causes gene silencing. CBX2 expression is elevated in triple-negative breast cancer (TNBC),
for which there are few therapeutic options. Here, we aimed to investigate the functional role of
CBX2 in TNBC. CBX2 knockdown in TNBC models reduced cell numbers, which was rescued by
ectopic expression of wild-type CBX2 but not a chromatin binding-deficient mutant. Blocking CBX2
chromatin interactions using the inhibitor SW2_152F also reduced cell growth, suggesting CBX2
chromatin binding is crucial for TNBC progression. RNA sequencing and gene set enrichment analysis
of CBX2-depleted cells identified downregulation of oncogenic signalling pathways, including
mTORC1 and E2F signalling. Subsequent analysis identified that CBX2 represses the expression of
mTORC1 inhibitors and the tumour suppressor RBL2. RBL2 repression, in turn, inhibits DREAM
complex activity. The DREAM complex inhibits E2F signalling, causing cell senescence; therefore,
inhibition of the DREAM complex via CBX2 may be a key oncogenic driver. We observed similar
effects in oestrogen receptor-positive breast cancer, and analysis of patient datasets suggested CBX2
inhibits RBL2 activity in other cancer types. Therapeutic inhibition of CBX2 could therefore repress
mTORC1 activation and promote DREAM complex-mediated senescence in TNBC and could have
similar effects in other cancer types.

Keywords: epigenetics; breast cancer; TNBC; CBX2; polycomb; PRC1; mTORC1; RBL2

1. Introduction

Multiple subtypes of breast cancer (BCa) exist with tumours clinically stratified by the
presence of oestrogen receptor (ER), progesterone receptor (PR) and HER2 proteins. For ER-
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and HER2-positive (+ve) subtypes, therapeutics that target the activity of these proteins
have been very successful in reducing overall BCa deaths in the last 30 years [1,2]. For
BCa that does not express ER, PR or HER2 (triple-negative breast cancer-TNBC), there is a
paucity of therapeutic options. TNBC accounts for approximately 15% of all BCa cases, has
a higher chance of recurrence within the first 3 years, is more aggressive, and has higher
metastatic potential than other BCa subtypes [3]. The aggressive nature of TNBC, coupled
with a lack of targeted therapeutics, means patients with this disease have a relatively poor
prognosis (mortality rate within 5 years ~40%) [3]. There is, therefore, a crucial need for
new and effective interventions to treat TNBC.

Polycomb group (PcG) proteins repress gene expression via two polycomb repressive
complexes (Polycomb repressive complex 1 and 2; PRC1/PRC2) that modulate epigenetic
post-translational histone modifications. PRC1 is comprised of different combinations of
the polycomb (CBX2/4/6/7/8), polycomb group factor (PCGF1-6), human polyhomeotic
homolog (HPH1-3) and E3-ligase (RING1/2) family of proteins. Canonical-PRC1 (cPRC1)
contains one of each protein subunit; therefore, a diverse range of potential PRC1 complex
compositions can be assembled. Classically, cPRC1 recognises histone H3 lysine (K) 27 tri-
methylation (me3) (H3K27me3) via chromodomains within CBX proteins and catalyses
mono-ubiquitination of H2AK119, resulting in chromatin compaction and silencing of
target genes [4]. H3K27me3 is deposited by EZH2, which is a component of PRC2 [4].
Importantly, different cPRC1 complexes regulate distinct transcriptomic profiles, and the
composition of the active form of cPRC1 is cell context-specific [4–6]. This suggests that
different and specific cPRC1 complexes may be involved in cancer development and could
therefore be targeted for therapy.

Expression of the cPRC1 protein chromobox 2 (CBX2) is elevated in a number of solid
tumours, including colon, prostate, breast, stomach, glioblastoma (GBM), and lung cancer;
indicating a potential oncogenic role for this protein [7–12]. In BCa, CBX2 is elevated
in aggressive tumours with a poor prognosis, and high CBX2 expression is associated
with reduced overall survival [7,13,14]. CBX2 gene expression is highest in the basal-
like breast cancer (BLBC) molecular subtype, of which 60–90% are TNBC [3,7,15]. Gene
expression analysis of patient data sets has implicated CBX2 in metabolic reprogramming
via regulation of mTORC1 signalling and PI3K/AKT pathway activation [15,16]; however,
little mechanistic or functional study of CBX2 in TNBC has been reported [14–16].

Here we show that CBX2 is required for cell growth in multiple models of BCa.
Through CBX2 knockdown rescue experiments and CBX2 chromodomain inhibitor treat-
ment, we show that the chromatin-binding activity of CBX2 is crucial for TNBC growth
and viability. RNA-sequencing analysis of CBX2-depleted cells has identified oncogenic
processes promoted by CBX2 expression, and we show for the first time that CBX2 represses
the expression of the tumour suppressor gene RBL2. We provide evidence that depletion
of CBX2 increases RBL2 expression, which, in turn, enhances RBL2 recruitment to key
pro-proliferative E2F-target genes to mediate gene silencing via dimerisation partner (DP),
retinoblastoma (RB) link, E2F and MuvB (DREAM)-complex activity. Overall, this study
provides mechanistic insights into the oncogenic role of CBX2 in TNBC and promotes CBX2
as a promising therapeutic target.

2. Materials and Methods
2.1. Cell Culture

MCF-7, T47D, MDA-MB-231, and Hs578T cells were provided by Dr. Luke Gaughan
(Newcastle University) and the MDA-MB-468 cell line by Dr. Isabel Pires (University of
Hull). All cell lines were authenticated by short tandem repeat analysis. MCF-7, T47D and
MDA-MB-231 cells were cultured in RPMI-1640 media (Gibco) containing 10% foetal calf
serum (FCS) (Gibco) and 1% penicillin/streptomycin (Merck). Hs578T and MDA-MB-468
cells were cultured in DMEM (Gibco) containing 10% foetal calf serum (FCS) (Gibco) and
1% penicillin/streptomycin (Merck).
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2.2. Cell Line Transfection and CBX2 Inhibitor Treatments

For knockdown experiments, three CBX2-targeting siRNAs (siCBX2#1/2/3) and a non-
silencing control siRNA (siSCR) were transfected into cells using Lipofectamine RNAiMAX
(Invitrogen) to a final concentration of 25 nM, according to manufacturer recommendations.
For overexpression experiments, cells were transfected 24 h after plating with 1 µg of
plasmid using Lipofectamine 3000 (Invitrogen), according to manufacturer recommenda-
tions. For knockdown rescue experiments, cells were co-transfected 24 h after plating with
25 nM siRNA and 0.25 µg of plasmid using Lipofectamine 3000 (Invitrogen). For CBX2
inhibitor experiments, cells were treated at the time of plating with a DMSO vehicle control
or SW2_152F (5 or 50 µM), ensuring that the final percentage of DMSO in culture media
was consistent across all arms of the experiment.

2.3. Protein and Gene Expression Analysis

To assess the expression of CBX2, RBL2 and α-tubulin proteins, cells were harvested in
SDS-sample buffer (10% β-mercaptoethanol, 125 mM Tris–HCl (pH 6.8), 2% SDS, 10% glyc-
erol, 0.005% bromophenol blue) and assessed by Western blot as previously described [17]
(antibody details Supplementary Table S2). Band intensity ratios for Western blot images
were determined using ImageJ software and are detailed in Supplementary Information.

For gene expression analysis, RNA was extracted from transfected cells using the
RNeasy Mini Kit (Qiagen) and cDNA was generated for analysis by quantitative-PCR
(qPCR) using SYBR Green JumpStart TaqReady Mix (Merck) and a StepOne Plus Real-Time
PCR machine (Applied Biosystems) (primer sequences in Supplementary Table S3). Gene
expression relative to the siSCR control sample was calculated using the ∆∆−Ct method
using RPL13A gene expression as the normalisation control.

2.4. Cell Growth and Cell Cycle Analysis

Cells were grown for at least 72 h post transfection or SW2_152F treatment and
monitored for cell growth by cell counts using a haemocytometer. The cell cycle phase was
assessed by propidium iodide flow cytometry using a FACSCalibur (BD Biosciences) as
previously described [18].

2.5. RNA Sequencing and Gene Set Enrichment Analysis

MDA-MB-231 and MCF-7 cells were transfected with either siSCR (both cell lines),
siCBX2#2 (MDA-MB-231 only) and siCBX2#3 (both cell lines) as described above and
grown for 72 h prior to RNA extraction using the RNeasy Mini Kit (Qiagen). Library
preparation and sequencing using the Illumina NovaSeq 6000 platform were performed by
Novogene Co. Ltd. (Cambridge, UK). Read alignment was performed using the HISAT2
algorithm and FPKM calculated to estimate gene expression in each sample [19]. Gene
expression data from the siSCR transfected samples were used as the reference gene ex-
pression data set. Differential gene expression analysis was performed using read counts
obtained from gene expression analysis and the DESeq2 R package [20]. Gene expression
change in cells transfected with siCBX2#2/3 compared to cells transfected with siSCR
was log2 transformed, and the p-values calculated were adjusted using the Benjamini and
Hochberg approach for controlling the false discovery rate (padj). Only genes significantly
(padj < 0.05) up- or downregulated 1.5-fold (log2 fold change = ±0.585) with a gene sym-
bol/ID annotation were used in subsequent analysis (classified as “CBX2-regulated genes”).
All RNA sequencing data discussed in this publication have been deposited in NCBI’s
Gene Expression Omnibus (GEO-https://www.ncbi.nlm.nih.gov/geo/ accessed 11 March
2022) and are accessible through the GEO Series accession number (GSE198420).

CBX2 regulated genes were analysed using gene set enrichment analysis (GSEA)
software (Broad Institute, Cambridge, MA, USA; [21,22]). Genes were ranked based on
their log2 fold change (most positive to most negative). Ranked lists were then compared
against the “Hallmark”, “GO”, and “Oncogenic” curated gene sets from the Molecular
Signatures Database v6.2 (MSigDB, Broad Institute).

https://www.ncbi.nlm.nih.gov/geo/
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2.6. Chromatin Immunoprecipitation-qPCR (ChIP-qPCR) and Cleavage under Targets and Release
Using Nuclease (CUTandRUN)-qPCR

For ChIP-qPCR experiments, the ChIP procedure as described in [23] was followed.
Briefly, MDA-MB-231 and MDA-MB-468 cells were transfected with 25 nM siSCR or
25 nM of a siCBX2 pool consisting of equal amounts of siCBX2#1/2/3 and grown for
48 h. Chromatin was harvested and sonicated using a Bioruptor (Diagenode). ChIP
was performed on 10 µg of chromatin using 10 µL of anti-RBL2 antibody (Cat#13610;
Cell Signaling Technologies). The ChIP protocol comprised of a 6 h antibody coating of
Dynabeads (Invitrogen) and a 10 h immunoprecipitation incubation. DNA from ChIP
samples and input samples (chromatin from the original sonicated sample) were purified,
and qPCR was performed using primers specific to CCNA2, CCNB1 and UBE2C gene
promotors (primer sequences in Supplementary Table S3). Data were presented as mean
fold difference in percentage input relative to the percentage input calculated for siSCR
transfected cells.

For cleavage under targets and release using nuclease (CUT&RUN) qPCR experiments,
the CUT&RUN assay kit (Cell Signaling Technologies) was used following the manufac-
turer’s instructions. Briefly, 100,000 MDA-MB-231 cells were used per CUT&RUN reaction
with 2 µg of anti-CBX2 (Cat#C15410339; Diagenode) or isotype IgG control (Diagenode)
antibodies. For each experiment, input samples were generated from the same cell popula-
tion by extracting and sonicating DNA from 100,000 cells. Purified CUT&RUN-DNA and
input samples were subject to qPCR using primers specific to TSC1, PRKAA2 and RBL2
gene promotors (primer sequences in Supplementary Table S3). Data were calculated as
percentage input and presented as the mean fold difference of percentage input relative to
percentage input in the IgG control arm of the experiment.

2.7. CBX2 Correlation Analysis of Patient Data Sets

Breast Invasive Carcinoma, Lung Adenocarcinoma and GBM TCGA PanCancer Atlas
data sets were analysed using the cBio Cancer Genomics Portal [24,25] to identify genes
positively and inversely correlated with CBX2 expression in patient tumours. Genes
were ranked via their Spearman’s correlation value (most positive to most negative), and
genes with a Spearman’s correlation p-value > 0.05 were excluded. The subsequent CBX2
correlated gene lists were analysed using GSEA as described above.

3. Results
3.1. CBX2 Chromatin Interactions Are Required for TNBC Cell Growth and Viability

A pro-proliferative role for CBX2 in TNBC has only been shown in a single cell line
(MDA-MB-231) [15]. Here, we depleted CBX2 in three TNBC cell lines (MDA-MB-231,
Hs578T and MDA-MB-468) using three independent siRNA sequences (siCBX2#1/2/3) to
determine if CBX2 is required for TNBC cell growth across multiple models. Knockdown
of CBX2 gene and protein expression was confirmed in each cell line by qPCR and Western
blot, respectively (Figure 1a). In each case, knockdown of CBX2 mRNA was most efficient
using siCBX2#2 and #3 compared to siCBX2#1; however, protein expression of CBX2 was
reduced below a detectable level following transfection with all three siRNAs.

Knockdown of CBX2 reduced the number of cells in each cell line 72 h post transfection
compared to a non-silencing siRNA control (siSCR) (Figure 1b), indicating a requirement
for cell growth. Cell cycle analysis of MDA-MB-231 and MDA-MB-468 cells showed that
knockdown of CBX2 caused an increase in cells in the sub-G1 phase, indicating an increase
in cell death (Figure 1c). This was observed particularly for cells transfected with siCBX2#2
and #3 compared to siCBX2#1, which may reflect the comparative efficiency of CBX2
mRNA knockdown using these siRNAs (Figure 1a). Knockdown of CBX2 also caused an
accumulation of cells in the G2/M phase of the cell cycle (Supplementary Figure S1).
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Figure 1. CBX2 chromatin interactions are required for TNBC cell growth/viability. MDA-MB-231, 
MDA-MB-468 and Hs578T cells were transfected with either a non-silencing siRNA control (siSCR) 
or one of 3 CBX2 targeting siRNAs (siCBX2#1/#2/#3). Cells were cultured for 72 h, followed by: gene 
and protein expression analysis (a), cell growth analysis (b) and cell cycle analysis (c). (a) CBX2 gene 
and protein expression was assessed by qPCR and Western blot, respectively. α-tubulin protein ex-
pression was assessed to compare protein loading between samples. Lanes on the Western blot im-
ages align with the cell line and experimental arm indicated in the graph above. CBX2 gene expres-
sion data are the mean of 3 repeats ± SEM and are expressed relative to CBX2 expression in siSCR 
transfected cells. (b) Cell growth was assessed by cell counts. Cell count data are the mean of 3 
repeats ± SEM and are expressed relative to cell counts for siSCR transfected cells. (c) The effect of 
CBX2 knockdown on the cell cycle was assessed by propidium iodide flow cytometry. The % of cells 
in the sub-G1 phase of the cell cycle is shown and is an average of 3 repeats ± SEM. (d) MDA-MB-
231 and MDA-MB-468 cells were transfected with 1 µg of either an empty vector control plasmid or 
a plasmid containing a wild-type version of CBX2 (CBX2wt), or a chromodomain-deficient mutant 
(CBX2mut), and grown for 72 h followed by cell counts. Cell count data are the mean of 3 repeats ± 
SEM and are expressed relative to cell counts for empty vector-transfected cells. (e) MDA-MB-231 
cells were co-transfected with combinations of siSCR, siCBX2#2/3 and empty vector (EV) or 
CBX2wt/mut plasmids and grown for 72 h followed by cell counts. Cell count data are the mean of 
3 repeats ± SEM and are expressed relative to cell counts for siSCR and empty vector co-transfected 
cells. (f) MDA-MB-231 and MDA-MB-468 cells were treated with a DMSO control or 5 and 50 µM 
of SW2_ 152F and grown for 72 h (MDA-MB-231) or 96 h (MDA-MB-468) followed by cell counts. 
Cell count data are the mean of 3 repeats ± SEM and are expressed relative to cell counts in the 
DMSO control arms of the experiment. In all experiments p-values were determined by Turkey’s 
multiple comparisons test (* denotes p < 0.05). 

Figure 1. CBX2 chromatin interactions are required for TNBC cell growth/viability. MDA-MB-231,
MDA-MB-468 and Hs578T cells were transfected with either a non-silencing siRNA control (siSCR)
or one of 3 CBX2 targeting siRNAs (siCBX2#1/#2/#3). Cells were cultured for 72 h, followed by:
gene and protein expression analysis (a), cell growth analysis (b) and cell cycle analysis (c). (a) CBX2
gene and protein expression was assessed by qPCR and Western blot, respectively. α-tubulin protein
expression was assessed to compare protein loading between samples. Lanes on the Western blot
images align with the cell line and experimental arm indicated in the graph above. CBX2 gene
expression data are the mean of 3 repeats ± SEM and are expressed relative to CBX2 expression in
siSCR transfected cells. (b) Cell growth was assessed by cell counts. Cell count data are the mean of
3 repeats ± SEM and are expressed relative to cell counts for siSCR transfected cells. (c) The effect of
CBX2 knockdown on the cell cycle was assessed by propidium iodide flow cytometry. The % of cells
in the sub-G1 phase of the cell cycle is shown and is an average of 3 repeats ± SEM. (d) MDA-MB-231
and MDA-MB-468 cells were transfected with 1 µg of either an empty vector control plasmid or a
plasmid containing a wild-type version of CBX2 (CBX2wt), or a chromodomain-deficient mutant
(CBX2mut), and grown for 72 h followed by cell counts. Cell count data are the mean of 3 repeats
± SEM and are expressed relative to cell counts for empty vector-transfected cells. (e) MDA-MB-
231 cells were co-transfected with combinations of siSCR, siCBX2#2/3 and empty vector (EV) or
CBX2wt/mut plasmids and grown for 72 h followed by cell counts. Cell count data are the mean of
3 repeats ± SEM and are expressed relative to cell counts for siSCR and empty vector co-transfected
cells. (f) MDA-MB-231 and MDA-MB-468 cells were treated with a DMSO control or 5 and 50 µM of
SW2_ 152F and grown for 72 h (MDA-MB-231) or 96 h (MDA-MB-468) followed by cell counts. Cell
count data are the mean of 3 repeats ± SEM and are expressed relative to cell counts in the DMSO
control arms of the experiment. In all experiments p-values were determined by Turkey’s multiple
comparisons test (* denotes p < 0.05).



Cancers 2022, 14, 3491 6 of 17

To investigate the effect of CBX2 overexpression on cell growth, MDA-MB-231 and
MDA-MB-468 cells were transfected with previously validated plasmids containing ei-
ther a wild-type CBX2 construct (pCMV-CBX2wt) or a chromodomain-deficient mutant
(pCMV-CBX2mut) [26]. Wild-type CBX2 overexpression increased cell numbers 72 h
post transfection compared to cells transfected with empty vector control (Figure 1d;
Supplementary Figure S2). Conversely, overexpression of the chromodomain-deficient
mutant depleted cell numbers (Figure 1d), which indicated a dominant negative effect and
suggested that the chromatin-binding activity of CBX2 was crucial for cell growth. To vali-
date this, MDA-MB-231 cells were co-transfected with either siSCR, siCBX2#2 or siCBX2#3
and either the empty vector, pCMV-CBX2wt or pCMV-CBX2mut. Cell counts 72 h post
transfection showed that wild-type CBX2 elevated cell numbers in siCBX2#2/3 transfected
cells to the levels observed in siSCR transfected cells (Figure 1e). The chromodomain-
deficient mutant was unable to elevate cell numbers following CBX2 depletion. This rescue
effect was also shown in MDA-MB-468 cells co-transfected with either siSCR or siCBX2#3
and relevant plasmids (Supplementary Figure S3), indicating that CBX2 chromatin interac-
tions were crucial for TNBC cell growth.

As further validation, MDA-MB-231 and MDA-MB-468 cells were treated with the
CBX2 inhibitor SW2_152F, which blocks CBX2 chromatin interactions [27]. SW2_152F treat-
ment did not significantly affect protein expression of CBX2 (Supplementary Figure S4);
however, MDA-MB-231 and MDA-MB-468 cell numbers were reduced 72 and 96 h, re-
spectively, post treatment with 50 µM of inhibitor compared to vehicle control (Figure 1f).
Together with knockdown rescue experiments, the data indicate that CBX2 chromatin
interactions are required for TNBC cell growth/viability and provides, for the first time,
proof of concept that pharmacological inhibition of CBX2-chromatin interactions can inhibit
TNBC cell growth.

3.2. CBX2 Promotes Proliferative and Oncogenic Gene Signatures

CBX2 has been implicated in regulating PI3K/AKT and mTORC1 oncogenic sig-
nalling pathways in BCa; however, these pathways were identified following correlative
analysis of CBX2 gene expression in patient samples rather than by direct transcriptomic
analysis [15,16]. To identify genes and biological processes regulated by CBX2 in TNBC,
MDA-MB-231 cells were transfected with either siSCR or siCBX2#3 and grown for 72 h
prior to RNA sequencing. The CBX2 regulated transcriptome was defined as genes sig-
nificantly differentially expressed 1.5-fold following CBX2 knockdown and consisted of
2884 upregulated and 1060 downregulated genes (padj < 0.05).

Gene Set Enrichment Analysis (GSEA) [21] of the CBX2 regulated transcriptome
identified that downregulated genes were enriched for genes also downregulated when
other components of the PRC1/PRC2 regulatory axis are abrogated (such as EZH2 and
BMI1; Table 1). This validated that knockdown of CBX2 affected PcG-mediated gene
regulation in MDA-MB-231 cells. GSEA also identified that downregulated genes were
involved in cell proliferation and progression through the G2/M cell cycle checkpoint
(Figure 2a; Table 1), which correlates with cell growth and cell cycle effects seen following
CBX2 depletion (Figure 1b; Supplementary Figure S1).

Downregulated genes were also enriched in gene sets associated with oncogenic
pathways, including E2F target genes (NES = −4.22; p < 0.01), genes that are upregulated
through activation of the mTORC1 complex (NES = −1.9; p = 0.01), and MYC target genes
(NES = −1.85; p = 0.01) (Figure 2b,c; Supplementary Figure S5), indicating that CBX2
is required to promote these signalling pathways. To validate these findings, RNA-seq
and GSEA was also performed on cells transfected with siCBX2#2, which identified that
downregulated genes were significantly enriched in similar processes (Supplementary
Table S4), including G2/M checkpoint (NES = −2.62; p < 0.01), E2F targets (NES = −1.77;
p = 0.01), MYC targets (NES = −2.22; p < 0.01) and mTORC1 signalling (NES = −2.43;
p < 0.01).
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Table 1. Significantly enriched gene sets for genes downregulated following CBX2 depletion using
siCBX2#3 in MDA-MB-231 cells. The 10 most significantly enriched gene sets from the Hallmark,
Gene Ontology, and Oncogenic signature curated gene set database are shown. Gene sets are inversely
ranked by normalised enrichment score (NES). SIZE = number of differentially expressed genes
enriched in the gene set. NOM p-val = nominal p-value, FDR q-val = false discover rate q-value.

Hallmark Gene Set

NAME SIZE NES NOM p-val FDR q-val

HALLMARK_G2M_CHECKPOINT 49 −4.395 <0.001 <0.001

HALLMARK_E2F_TARGETS 45 −4.221 <0.001 <0.001

HALLMARK_XENOBIOTIC_METABOLISM 48 −2.373 <0.001 0.005

HALLMARK_ESTROGEN_RESPONSE_LATE 48 −2.173 0.004 0.018

HALLMARK_APOPTOSIS 46 −2.106 0.006 0.023

HALLMARK_MITOTIC_SPINDLE 46 −1.989 0.006 0.037

HALLMARK_MTORC1_SIGNALING 45 −1.902 0.012 0.050

HALLMARK_ESTROGEN_RESPONSE_EARLY 56 −1.866 0.010 0.054

HALLMARK_UV_RESPONSE_UP 33 −1.864 0.008 0.048

HALLMARK_MYC_TARGETS_V1 19 −1.853 0.010 0.046

Gene Ontology Gene Set

NAME SIZE NES NOM p-val FDR q-val

GO_NEUROGENESIS 288 −3.522 <0.001 <0.001

GO_CHROMOSOME_ORGANIZATION 184 −3.492 <0.001 <0.001

GO_POSITIVE_REGULATION_OF_RESPONSE_TO_STIMULUS 390 −3.478 <0.001 <0.001

GO_CELL_CYCLE 233 −3.416 <0.001 <0.001

GO_REGULATION_OF_CELL_PROLIFERATION 336 −3.369 <0.001 <0.001

GO_POSITIVE_REGULATION_OF_GENE_EXPRESSION 347 −3.362 <0.001 <0.001

GO_CELL_PROLIFERATION 134 −3.360 <0.001 <0.001

GO_NEGATIVE_REGULATION_OF_DEVELOPMENTAL_PROCESS 168 −3.295 <0.001 <0.001

GO_POSITIVE_REGULATION_OF_CELL_PROLIFERATION 185 −3.286 <0.001 <0.001

GO_CELL_DIVISION 96 −3.240 <0.001 <0.001

Oncogenic Signature Gene Set

NAME SIZE NES NOM p-val FDR q-val

RPS14_DN.V1_DN 32 −3.631 <0.001 <0.001

E2F3_UP.V1_UP 45 −3.291 <0.001 <0.001

PRC2_EZH2_UP.V1_DN 46 −2.782 <0.001 0.002

LEF1_UP.V1_UP 47 −2.593 <0.001 0.005

CSR_LATE_UP.V1_UP 47 −2.565 <0.001 0.005

NFE2L2.V2 87 −2.331 <0.001 0.015

HOXA9_DN.V1_DN 43 −2.244 <0.001 0.024

BMI1_DN.V1_DN 37 −2.179 0.004 0.031

CORDENONSI_YAP_CONSERVED_SIGNATURE 20 −2.140 0.002 0.035

KRAS.600_UP.V1_DN 53 −2.099 0.004 0.040
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which code for proteins that repress mTORC1 [29], were significantly upregulated follow-
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Figure 2. The CBX2 regulated gene signature is associated with pro-proliferative and oncogenic
signalling pathways. (a–d) MDA-MB-231 cells were transfected with either a non-silencing control
siRNA (siSCR) or siCBX2#3 and grown for 72 h (n = 3). RNA was extracted, and RNA sequencing
analysis was performed. GSEA of the CBX2-regulated transcriptome (defined as genes significantly
(padj < 0.05) up (n = 2884) or down (n = 1060) regulated 1.5-fold after knockdown compared to the
siSCR control) against the “Hallmark” curated data set identified significant negative enrichment of
genes associated with HALLMARK_G2M_CHECKPOINT (a), HALLMARK_E2F_TARGETS (b) and
HALLMARK_MTORC1_SIGNALING (c) gene sets. NES = Normalised Enrichment Score. p = nomi-
nal p-value. (d) RNA-seq gene expression analysis of TSC1 and PRKAA2 in cells transfected with
siCBX2#2 and #3 compared to siSCR transfected cells. Data are presented as log2 fold change in ex-
pression. The red line represents a 1.5-fold increase (log2 fold change = 0.585) in expression compared
to siSCR transfected cells. Both genes are significantly differentially expressed in CBX2 depleted cells
compared to siSCR transfected cells (padj < 0.05). (e) Correlation of CBX2 and PRKAA2/TSC1 gene
expression in the TCGA, PanCancer Atlas Breast Invasive Carcinoma data set. Values = Spearman
co-efficient. p < 0.05. (f) CUT&RUN qPCR analysis of promoter regions of TSC1 and PRKAA2 in
MDA-MB-231 cells using antibodies specific to CBX2 and isotype control (IgG). Data are an average
of 2 independent experiments ± SEM and are expressed relative to the level of enrichment measured
in the IgG control.
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mTORC1 activation promotes tumour formation, proliferation and metastasis and is
predominantly associated with cell growth and metabolism [28]. Downregulation of an
active mTORC1 gene signature in CBX2 depleted MDA-MB-231 cells supports previous
analysis of patient datasets that suggested CBX2 promotes mTORC1-signalling [28]. This
previous study also showed that CBX2 knockdown in MDA-MB-231 decreased phospho-
rylation of ribosomal S6 protein, a downstream target of mTORC1. The precise role of
CBX2 in mTORC1 signalling, however, has not been determined. Considering the classic
transcriptional repressive role of cPRC1, we analysed the RNA-seq data set for upregulation
of genes that code for known inhibitors of mTORC1 activation. PRKAA2 and TSC1, which
code for proteins that repress mTORC1 [29], were significantly upregulated following
CBX2 knockdown (Figure 2d). CBX2 expression is also inversely correlated with PRKAA2
and TSC1 expression in BCa patient data sets (Figure 2e). This led to the hypothesis that
CBX2 may repress PRKAA2 and TSC1 expression in TNBC to promote mTORC1 signalling.
CUT&RUN qPCR using an anti-CBX2 antibody in MDA-MB-231 cells showed enrichment
of CBX2 at the promoter regions of these genes compared to an IgG control, suggesting that
CBX2 may directly cause repression of PRKAA2 and TSC1 via cPRC1-mediated activity
(Figure 2f). The effect of CBX2 knockdown on PRKAA2 and TSC1 protein expression
still needs to be evaluated; however, this analysis has potentially identified a previously
unknown mechanism for CBX2-mediated activation of mTORC1 signalling.

3.3. CBX2 Inhibits RBL2 Expression and DREAM Complex Activity to Promote TNBC Cell Growth

E2F activity promotes cell growth and progression through the cell cycle, and expres-
sion of E2F target genes is elevated in many cancers [30]. E2F target genes were significantly
downregulated following CBX2 depletion, as were genes repressed by the tumour suppres-
sor RBL2 (p130) (Supplementary Figure S6). RBL2 (or its paralogue RBL1 (p107)) are part of
the dimerisation partner (DP), retinoblastoma (RB)-link, E2F and MuvB (DREAM)-complex,
which binds to E2F binding sites to repress E2F target gene expression and cause cell cycle
arrest [31]. Activation of RBL2-DREAM complex activity following CBX2 depletion was
therefore hypothesised to inhibit E2F target gene expression and TNBC cell growth.

RNA-seq analysis showed that expression of RBL2 was elevated in CBX2-depleted
MDA-MB-231 cells alongside downregulation of known RBL2-DREAM complex target
genes (Figure 3a) [32]. qPCR analysis of CBX2-depleted MDA-MB-468 cells also showed a
decrease in RBL2-DREAM complex target gene expression, indicating that CBX2 knock-
down may activate the DREAM complex in different TNBC models (Figure 3b). Western
blot analysis showed upregulation of RBL2 protein expression in both cell lines following
CBX2 knockdown (Figure 3c). CUT&RUN qPCR analysis showed that CBX2 was enriched
at the RBL2 promoter in MDA-MB-231 cells compared to IgG control (Figure 3d). Together,
these data indicated that CBX2 may directly repress RBL2 expression. In support of this,
CBX2 expression is inversely correlated with RBL2 expression in BCa patient samples
(Figure 3e), and GSEA of the TCGA PanCancer BCa patient data set showed that CBX2 ex-
pression positively correlates with E2F target gene expression (Supplementary Figure S7).

To investigate if knockdown of CBX2 and subsequent upregulation of RBL2 may
directly cause repression of RBL2-DREAM complex target genes and contribute to observed
phenotypic and gene expression changes in TNBC, ChIP-qPCR using an anti-RBL2 antibody
was performed at promotors of RBL2 target genes involved in G2/M cell cycle progression
that were downregulated following CBX2 depletion (CCNA2, CCNB1 and UBE2C; Figure 3f).
CBX2 depletion increased RBL2 enrichment at CCNA2 (2.0-fold; p = 0.03), and CCNB1
(2.9-fold; p = 0.01) promotors in MDA-MB-231 cells and CCNA2 (1.5-fold; p = 0.03), UBE2C
(1.3-fold; p = 0.03) and CCNB1 (1.5-fold; p = 0.06) promotors in MDA-MB-468 cells (Figure 3f).
This indicates that upregulation of RBL2 caused by CBX2 knockdown may increase DREAM
complex recruitment to target gene promoters, which could subsequently inhibit cell cycle
progression. This analysis has therefore identified a mechanism by which the tumour
suppressor RBL2 is repressed in TNBC and proposes that CBX2 promotes TNBC cell
growth via inhibition of DREAM complex activity.
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Figure 3. CBX2 inhibits expression of the tumour suppressor gene RBL2 to promote cell growth in
TNBC. (a) RNA-seq analysis of RBL2-DREAM complex target genes in MDA-MB-231 cells transfected
with siCBX2#2 and #3 compared to siSCR transfected cells (n = 3). Data are presented as log2 fold
change in expression. The red line represents a 1.5-fold increase or decrease in expression compared
to siSCR transfected cells. All genes are significantly differentially expressed in CBX2 depleted
cells compared to siSCR transfected cells (padj < 0.05). (b) MDA-MB-468 cells were transfected
with either a non-silencing control siRNA (siSCR) or siCBX2#2/#3 and grown for 72 h, followed
by RNA extraction and qPCR analysis of RBL2-DREAM complex target genes. qPCR data are an
average of 3 repeats ± SEM and are expressed relative to gene expression in siSCR transfected cells.
p-values were determined by Student’s t-test comparing CBX2 depleted cells to siSCR transfected
cells (* denotes p < 0.05). (c) MDA-MB-231 and MDA-MB-468 cells were transfected with siRNA and
grown for 72 h, followed by protein extraction and Western blot analysis using antibodies specific
to RBL2, CBX2 and α-tubulin. α-tubulin was used to compare protein loading between samples.
(d) CUT&RUN qPCR analysis of the promoter region of RBL2 in MDA-MB-231 cells using antibodies
specific to CBX2 and isotype control (IgG). Data are an average of 2 independent experiments ± SEM
and are expressed relative to the level of enrichment measured in the IgG control. (e) Correlation
of CBX2 and RBL2 gene expression in the TCGA, PanCancer Atlas Breast Invasive Carcinoma data
set. Value = Spearman co-efficient. p < 0.05. (f) ChIP-qPCR analysis of RBL2-DREAM complex
target gene promotors in MDA-MB-231 and MDA-MB-468 cells transfected with either siSCR or a
siCBX2 targeting pool using an antibody specific to RBL2. Data are an average of 3 independent
experiments ± SEM and are expressed relative to the level of enrichment measured in the siSCR
transfected cells. p-values were determined by Student’s t-test comparing CBX2 depleted cells to
siSCR transfected cells (* denotes p < 0.05).
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3.4. The CBX2-RBL2 Regulatory Axis May Be Common across Multiple Cancer Types

To determine if CBX2 represses RBL2 expression in other BCa subtypes, we assessed
the effect of CBX2 knockdown in ER+ve BCa cell lines (MCF-7 and T47D). As for TNBC,
CBX2 knockdown increased RBL2 protein expression (Figure 4a), reduced cell numbers
(Figure 4b) and caused an increase in sub-G1 cells, indicative of cell death (Figure 4c).
Knockdown also reduced the number of cells in S-phase in both MCF-7 and T47D cell
lines showing a growth inhibitory effect (Supplementary Figure S8). RNA-seq analy-
sis of CBX2-depleted MCF-7 cells confirmed that RBL2 was significantly upregulated
and that RBL2-DREAM complex regulated genes were downregulated following CBX2
knockdown (Figure 4d). GSEA analysis of the MCF-7 CBX2-regulated transcriptome
(2973 upregulated genes and 2011 downregulated genes) also showed that the E2F target
gene set (NES = −7.1; p < 0.01) was downregulated following CBX2 depletion, as in TNBC,
(Figure 4e; Supplementary Table S5), suggesting that the observed phenotypic effects may
also be mediated by enhanced DREAM complex activity.
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Figure 4. CBX2 is associated with DREAM complex activity in other cancer types. MCF-7 and T47D
cells were transfected with either a non-silencing siRNA control (siSCR) or CBX2 targeting siRNAs
(siCBX2#1/#2/#3) and grown for 72 h followed by protein expression analysis (a), cell growth analysis
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(b) and cell cycle analysis (c). (a) CBX2 and RBL2 protein expression was assessed by Western blot.
α-tubulin protein expression was assessed to compare protein loading between samples. (b) Cell
growth was assessed by cell counts. Cell count data are the mean of 3 repeats ± SEM and are
expressed relative to cell counts for siSCR transfected cells. (c) The effect on the cell cycle was
assessed by propidium iodide flow cytometry. Data show the % of cells in the sub-G1 phase of the cell
cycle and are an average of 3 repeats ± SEM. p-values for (b,c) were determined by Turkey’s multiple
comparisons test (* denotes p < 0.05). (d) RNA-seq analysis of RBL2-DREAM complex target genes in
MCF-7 cells transfected with siCBX2#3 compared to siSCR transfected cells. Data are presented as
log2 fold change in expression. The red line represents a 1.5-fold increase or decrease in expression
compared to siSCR transfected cells. All genes are significantly differentially expressed (padj < 0.05).
(e) GSEA of the CBX2-regulated transcriptome (defined as genes significantly (padj < 0.05) up
(n = 2973) or down (n = 2011) regulated 1.5-fold after knockdown compared to siSCR controls) against
the “Hallmark” curated data sets identified significant negative enrichment of genes associated
with HALLMARK_E2F_TARGETS. NES = normalised enrichment score. p = nominal p-value.
(f) GSEA of genes significantly positively and inversely correlated (Spearman’s p < 0.05) with CBX2
expression from TCGA PanCancer Database for Lung Adenocarcinoma and GBM. NES = normalised
enrichment score. p = nominal p-value.

It is also worth noting that downregulation of the mTORC1-activated gene signature
was observed following CBX2 knockdown in MCF-7 cells, as was a significant increase in ex-
pression of the mTORC1 inhibitor TSC1 (Supplementary Table S5; Supplementary Figure S9).
Both of these effects were also seen in TNBC, as has been discussed previously (Figure 2).

In addition to BCa, CBX2 expression is elevated in GBM and lung adenocarcinoma
compared to normal tissue [10,33]. GSEA of genes that correlate with high CBX2 expression
in the TCGA PanCancer database for these cancer types shows positive enrichment for E2F
target genes and for genes upregulated when expression of RBL2 is low (Figure 4f). In turn,
genes downregulated when expression of RBL2 is low inversely correlates with high CBX2
expression (Figure 4f). While further investigation is required, these data do suggest that
CBX2 may inhibit the expression of the tumour suppressor RBL2 in multiple cancer types
and, therefore, may repress RBL2-DREAM complex activity across multiple malignancies
to promote cell growth.

4. Discussion

CBX2 is upregulated and implicated in the growth of a number of cancer types, sug-
gesting it may be a potential therapeutic target [7–12,15,33–35]. In BCa, CBX2 is particularly
upregulated in TNBC, which is an aggressive BCa subtype with a poor prognosis and
few therapeutic options. Previous work has shown a growth inhibitory effect of CBX2
knockdown in single cell lines from both ER+ve (MCF-7 cells) and TNBC (MDA-MB-231
cells) BCa subtypes [14–16]; however, the mechanistic and functional role of CBX2 in TNBC
has not yet been extensively studied. Our study has shown across multiple TNBC models
that knockdown of CBX2 reduces cell number, can cause arrest in the G2/M phase of the
cell cycle, and causes cell death, providing further evidence that CBX2 is required for TNBC
cell growth and viability. Importantly, the dominant negative effect observed after overex-
pression of a chromodomain-deficient CBX2 mutant, coupled with experiments showing
that reduction in cell numbers in CBX2-depleted cells could be rescued by the ectopic
expression of the wild type, but not mutant, form of CBX2, has determined the importance
of CBX2 chromatin binding for TNBC cell growth for the first time. Demonstrating a direct
relationship between CBX2-chromatin interactions and TNBC cell growth or viability is
a crucial target validation step for the potential therapeutic use of inhibitors that block
this interaction.

Evidence suggests that CBX2 may play a more prominent role in cancer progression
compared to other CBX paralogues. For example, CBX2 and CBX7 have been shown to
have contrasting roles in BCa metabolism and cell growth, with CBX2 being associated with
aggressive tumour subtypes and poorer patient outcomes [16]. Targeting CBX2 specifically
may therefore be of clinical benefit. We have shown for the first time that treatment of
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TNBC cells with a selective CBX2 inhibitor, SW2_152F, reduces cell numbers. SW2_152F
is cell permeable, targets the CBX2 chromodomain, and shows 24- to 1000-fold selective
inhibition over other CBX proteins [27]. SW2_152F has been shown to inhibit the growth
of neuroendocrine prostate cancer cells and to abrogate CBX2 chromatin interactions.
The development of this inhibitor provides proof of principle that CBX2 can be targeted
specifically. This study shows for the first time that pharmacological inhibition of CBX2-
chromatin interactions can inhibit TNBC cell growth. Analysis of the effect of CBX2
inhibitors in in vivo and ex vivo BCa models would provide further validation of selective
CBX2 inhibition as a therapeutic approach.

CBX2, as part of cPRC1, is involved in epigenetic regulation of gene expression, classi-
cally causing chromatin compaction and silencing of target genes [4]. CBX2 is implicated in
regulating PI3K/AKT and mTORC1 oncogenic signalling pathways in BCa; however, these
pathways were identified following correlative analysis of CBX2 gene expression in patient
samples rather than by direct transcriptomic analysis [15,16]. In this study, we identified
a putative CBX2-regulated transcriptome by RNA-seq analysis of CBX2-depleted cells.
Downregulation of genes involved in cell proliferation and cell cycle progression correlated
with changes to cell phenotype observed following CBX2 knockdown. Downregulation
of genes expressed when mTORC1-signalling is active supported previous observations
that CBX2 regulates mTORC1 activity [16]. For the first time, we identified that CBX2
knockdown upregulates expression of the mTORC1 inhibitors TSC1 and PRKAA2 and
that CBX2 is bound to TSC1 and PRKAA2 promoters in MDA-MB-231 cells. TSC1 and
TSC2 form a GTPase-activating protein complex that inhibits RHEB, a crucial activator
of mTORC1 signalling [29]. Inactivating TSC1 mutations are associated with tumour for-
mation due to mTORC1 overactivity [36]. Silencing of TSC1 expression by CBX2 could
therefore have similar oncogenic properties. PRKAA2 codes for the catalytic subunit of
the AMP-activated protein kinase (AMPK), which also inhibits mTORC1 activity via phos-
phorylation of both TSC2 (activating its GTPase activity) and RAPTOR, a key component
of the active mTORC1 complex, phosphorylation of which prevents its association with
mTORC1 [37,38]. Downregulation of AMPK activity has been reported to be a driver of can-
cer growth, and re-activation of AMPK signalling has been touted as a therapeutic option
for BCa [39]. We, therefore, propose a novel mechanism by which CBX2 promotes mTORC1
activity via repression of mTORC1 inhibitors and the possibility that inhibition of CBX2
could reduce BCa cell growth and viability through downstream inhibition of mTORC1.

GSEA did not identify PI3K/AKT-signalling as a pathway significantly affected by
CBX2 depletion in our study. This was surprising given the fact that PI3K/AKT-signalling
has also been associated with CBX2 in advanced prostate cancer and GBM [8,33]. We did
not look specifically at biomarkers of PI3K/AKT-signalling in our study, and we cannot rule
out that this pathway is affected by CBX2 depletion; however, we found no transcriptomic
evidence that this pathway was altered. PI3K/AKT is a positive regulator of mTORC1
signalling [40]; therefore, if CBX2 does promote the PI3K/AKT pathway in BCa, this may
be another mechanism by which CBX2 regulates mTORC1 activity.

RNA sequencing analysis also identified that E2F target gene expression was down-
regulated following CBX2 depletion. E2F signalling is required for transition between all
phases of the cell cycle and, therefore, cell growth [30]. In addition, an RBL2-regulated
gene signature was activated upon CBX2 depletion in MDA-MB-231 cells, and RBL2 gene
and protein expression increased following CBX2 knockdown. RBL2 is a putative tumour
suppressor gene that constitutes part of the DREAM complex. The DREAM complex
represses E2F target gene expression and inhibits cell cycle progression, ultimately causing
cell senescence [31]. RBL2 has been shown to suppress tumour growth in vivo [41], and
downregulation of RBL2 has been reported in a number of cancers [42–46]. In BCa, epige-
netic silencing at the RBL2 transcriptional start site has been reported, although the proteins
mediating this repression have not been identified [45,46]. We found an enrichment of CBX2
at the RBL2 gene promoter, which suggests that CBX2-associated cPRC1 could directly
repress RBL2 expression. This study has therefore potentially identified a novel mechanism
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of RBL2 silencing in BCa. Knockdown of CBX2 also increased RBL2 enrichment at a subset
of DREAM complex target genes, indicating that repression of RBL2 expression by CBX2
inhibits DREAM complex activity to promote cell cycle progression and cell proliferation.
Inhibition of CBX2 may therefore prevent tumour growth via re-activation of DREAM
complex-mediated cell senescence.

Despite the relatively suitable therapeutic provision for hormone receptor-positive
breast cancers, resistance to targeted therapy is common, after which tumours are difficult
to treat [1,2]. We also assessed the effect of CBX2 knockdown in ER+ve BCa cell models and
identified that CBX2 depletion reduced cell numbers and increased cell death, as has been
seen previously [15,16]. Interestingly, through global transcriptomic investigation of MCF-7
cells, we also identified that mTORC1 and E2F-signalling pathways were downregulated
following CBX2 knockdown and that in MCF-7 and T47D cells, RBL2 expression was
elevated following CBX2 depletion. This suggests that the pro-oncogenic role of CBX2 may
have commonalities across BCa subtypes. Investigation of patient gene expression data sets
also identified a potential role for CBX2 inhibiting RBL2 expression and, therefore, DREAM
complex activity in other cancer types, again suggesting a common CBX2-associated
oncogenic function.

5. Conclusions

In summary, this study has shown that CBX2 plays a crucial role in TNBC cell growth
and viability. For the first time in BCa, we have directly identified a putative CBX2-
regulated gene signature that has highlighted oncogenic signalling pathways reliant on
CBX2 expression in both TNBC and ER+ve subtypes. In addition, we have provided
putative mechanisms through which CBX2 promotes these oncogenic pathways, most
notably, the inhibition of DREAM complex activity via repression of the tumour suppres-
sor gene RBL2. Identification of the mechanisms by which CBX2 promotes BCa growth
will provide biomarkers of CBX2 activity and further our understanding of cPRC1 as an
oncogenic complex. Aggressive disease such as TNBC, which has few therapeutic options,
desperately requires novel therapeutic targets, for which CBX2 is a promising candidate.
Although ER+ve disease has targeted therapeutic options, many cancers become resistant
to first-line therapy [1]; therefore, additional target proteins, such as CBX2, could still
be efficacious in treating this BCa subtype. Importantly we have also demonstrated the
requirement for CBX2–chromatin interactions for cell growth and provided data for the first
time, showing the utility of a selective CBX2 inhibitor to slow TNBC cell growth. Future use
of CBX2 inhibitors and definition of the global CBX2-binding profile in BCa will advance
our understanding of the oncogenic role of CBX2 and further validate CBX2 as a genuine
therapeutic target.
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