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SUPPLEMENTAL METHODS 
Section 1. Cell culture 
The AML cell lines HL-60, HEL, MV4-11 and OCI-AML3 were maintained in culture in RPMI-1640 

medium supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY), 

penicillin/streptomycin (BioWhitaker, Walkersvill, MD) at 37 °C in a humid atmosphere 

containing 5% CO2. All cell lines were tested for mycoplasma (MycoAlert Sample Kit, Cambrex) 

and were authenticated by performing a short tandem repeat allele profile. 

Section 2. Cell transfection 
Cells were passaged 24 hours before nucleofection, and cells for nucleofection were in their 

logarithmic growth phase. The transfection of siRNAs was done with the Nucleofector II device 

(Amaxa GmbH, Köln, Germany) following the Amaxa guidelines. Briefly, 1×106 of HL-60, HEL, 

MV4-11 and OCI-AML3 cells were resuspended in 100 µL of supplemented culture medium or 

solution V in the case of HL-60 cells, with 75nM of NRAS or PTPN11 siRNAs or Silencer Select 

Negative Control-1 siRNA (Ambion, Austin, TX) and nucleofected with the Amaxa nucleofector 

apparatus using programs A030 (HEL, MV4-11 and OCI-AML3) or T019 (HL-60). We used two 

different siRNAs against NRAS target (siNRAS A: GAACCACUUUGUAGAUGAA; siNRAS B: 

AAGGACAGTTGATACAAAA) and PTPN11 (siPTPN11 A: AGAUGUCAUUGAGCUUAAA; siPTPN11 B: 

GAAAGAAGCAGAGAAAUUA) to demonstrate that the results obtained with siRNA nucleofection 

are not due to a combination of inconsistent silencing and sequence specific off-target effects. 

Silencer Select Negative Control-1 siRNA was used to demonstrate that the nucleofection did 

not induce non-specific effects on gene expression. Nucleofection was performed twice with a 

24 hours interval. 48 h after the second nucleofection, the NRAS and PTPN11 mRNA expression 

was analyzed by Q-PCR (GUSB was employed as the reference gene). Cell proliferation was 

analyzed 0, 2 ,4 and 6 days after two repetitive transfections. Transfection efficiency was 

determined by flow cytometry using the BLOCK IT Fluorescent Oligo (Invitrogen Life 

Technologies, Paisley, UK). 

Section 3. Cell proliferation assay 
Cell proliferation was analyzed using the CellTiter 96 Aqueous One Solution Cell Proliferation 

Assay (Promega, Madison, W). This is a colorimetric method for determining the number of 

viable cells in proliferation. For the assay, 100 µL of nucleofected cells were plated in 96 wells 

plates 0, 2, 4 and 6 days after the last nucleofection. Plates with suspension cells were 

centrifuged at 800 g for 10 minutes and medium was removed. Then, cells were incubated with 

100 L/well of medium and 20 L/well of CellTiter 96 Aqueous One Solution reagent. The plates 

were incubated for 1-4 hours, depending on the cell line at 37 ºC in a humidified, 5 % CO2 

atmosphere. The absorbance was recorded at 490 nm using 96-well plate readers until 

absorbance of control cells without treatment was around 0.8. The background absorbance was 

measured in wells with only cell line medium and solution reagent. First, the average of the 

absorbance from the control wells was subtracted from all other absorbance values. Data were 

calculated as the percentage of total absorbance of siRNA transfected cells/absorbance of 

control cells.  

Section 4. Quantitative-PCR (Q-PCR) 
The expression of NRAS and PTPN11 was analyzed by Q-PCR in HL-60, HEL, MV4-11 and OCI-

AML3 AML cell lines. First, total mRNA was extracted with Trizol©  Reagent 5791 (Life 
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Technologies, Carlsbad, CA, USA) following the manufacturer instructions. RNA concentration 

was quantified using NanoDrop Specthophotometer (NanoDrop Technologies, USA). cDNA was 

synthesized from 1 µg of total RNA using the PrimeScript RT reagent kit (Perfect Real Time) (Cat 

No RR037A, TaKaRa) following the manufacturer’s instructions. The quality of cDNA was checked 

by a multiplex PCR that amplifies PBGD, ABL, BCR and β2-MG genes. Q-PCR was performed in a 

QuantStudio 5 Real-Time PCR System (Applied Biosystems), using 20 ng of cDNA in 2 µL, 1 µL of 

each primer at 5µM (NRAS F: 5’-CGCACTGACAATCCAGCTAA-3’; NRAS R: 5’-

CCAACAAACAGGTTTCACCA-3’; PTPN11 F: 5’-CGGAGCCTGAGCAAGGAG-3’; PTPN11 R: 5’-

CTGCCTCCACACCAGTGATA-3’; GUSB F:5’ gaaaatatgtggttggagagctcatt-3’; GUSB R: 5’- 

ccgagtgaagatccccttttta-3’), 6 µL of SYBR Green PCR Master Mix 2X (Cat No 4334973, Applied 

Biosystems) in 12 µL reaction volume. The following program conditions were applied for Q-RT-

PCR running: 50 ºC for 2 min, 95 ºC for 60 s following by 45 cycles at 95 °C for 15 s and 60 °C for 

60 s; melting program, one cycle at 95 °C for 15 s, 40 °C for 60 s and 95 °C for 15 s. The relative 

expression of each gene was quantified by the Log 2(-ΔΔCt) method using the gene GUSB as an 

endogenous control. 

Section 5. Statistical pipeline 
A statistical pipeline (Figure S1) has been developed to solve the problem of identifying 

subrogate mutation biomarkers of gene essentiality (RNAi target genes).  

Data of RNAi libraries (more than 17,000 knocked-down genes in 412 cancer cell lines) of the 

project Achilles 1 were integrated with their corresponding mutational profiles (mutations in 

~1600 genes; Figure 1A) obtained from the Cancer Cell Line Encyclopedia (CCLE)2 and Shao et al. 
3. We filter out the mutations that meet any of the following criteria: (i) common 

polymorphisms, (ii) allelic fraction < 10%, (iii) putative neutral variants (missenses present in less 

than 2 warm-blooded vertebrates), or (iv) located outside of the coding sequence. We used the 

DEMETER score 4,5 as a measure of gene essentiality of the RNAi libraries of the project Achilles 
1. DEMETER quantizes the competitive proliferation of the cell lines controlling the effect of off-

target hybridizations of siRNAs by solving a complex optimization problem. The more negative 

the DEMETER score is, the more essential the gene is for a cell line. We imputed missing 

elements of DEMETER using the nearest neighbor averaging algorithm 6. In addition, we 

collected gene expression patterns from RNA-seq data 7 to confirm that essential genes are 

expressed when they are essential.  

Based on DEMETER data, we first identified genes that were essential for a selected tumor 

subtype. Essential genes were required to meet several criteria: i) they must be essential for at 

least 20% samples of the selected cancer subtype, ii) they must be specific to the cancer type 

under study, i.e. they must be non-essential for other cancer types and iii) they must be 

expressed before RNAi experiment (>1TPM at least in 75% samples). These filters reduce the 

number of hypotheses in the statistical analysis. 

We developed a statistical algorithm to identify genes whose essentiality is highly associated 

with the mutational status of other genes. Dealing with this statistical issue implies solving a 

large multiple hypotheses problem (more than one million hypotheses). In similar scenarios, 

traditional corrections -such as Benjamini-Hochberg (BH), Bonferroni or Holm- showed very few 

or no gene-biomarker pairs for a given FDR 8. In order to overcome this problem, we developed 

a covariate-based statistical approach -similar to the Independent Hypothesis Weighting 

procedure 8.  

Statistical model: Let e denote the number of RNAi target genes and n denote the number of 

screened samples. Let D be an 𝑒 × 𝑛 matrix of essentiality whose entries 𝑑𝑖𝑗  represent the 
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DEMETER score for the RNAi target i in sample j. Let m be a 𝑚 × 𝑛 dichotomized matrix whose 

entry 𝑚𝑖𝑗  denotes whether sample j is mutant or not according the previous criteria:  

 
𝑚𝑖𝑗 = {

1,   𝑖𝑓𝑚𝑢𝑡𝑎𝑛𝑡(𝑀𝑈𝑇)

0,    𝑖𝑓 𝑤𝑖𝑙𝑑 − 𝑡𝑦𝑝𝑒  (WT)
 , 

(1) 

 

Let s be a subset of n’ cell lines that yields an essentiality vector𝒅𝒔 = (𝑑𝑒𝑠1
, … , 𝑑𝑒𝑠𝑛′ ) for the eth 

RNAi target. Let 𝒎𝒔 = (𝑚𝑠1
… , 𝑚sn

) be the expression vector of a putative gene biomarker. The 

null hypotheses are defined as: 

 𝐻0
𝑔

: 𝐸(𝒅𝒔|𝒎𝒔 ∈ 𝑀𝑈𝑇) = 𝐸(𝒅𝒔|𝒎𝒔 ∈ 𝑊𝑇) (2) 

   

This null hypothesis is therefore: “the expected essentiality of a gene knock-down is identical in 

mutant and wild-type cell lines”. To test this hypothesis, we used a moderated t-test 

implemented in limma9. We applied this test for each RNAi target and all the mutations to get 

the corresponding p-values. Dealing with these p-values implies correcting for multiple 

hypotheses.  

In order to face these challenges, we followed a methodology similar to the IHW (Independent 

Hypothesis Weighting) procedure 8, which increases the power of a test by grouping the results 

using covariates. We show in the main manuscript that the number of positives returned by IHW 

is larger for all the cancer datasets and therefore, this method outperforms the standard FDR 

estimation both in sensitivity and specificity (as shown in the lemma of the following section in 

the supplementary material).  

In our case, we divided the p-values corresponding to all the tests into 2n groups, where n is the 

number of knock-down genes. 

For each of these groups, we computed the local false discovery rate (local fdr) 10. The local fdr 

estimates, for each test, the probability of the null hypothesis to be true, conditioned on the 

observed p-values. The formula of the local fdr is the following: 

 𝑃(𝐻0|𝑧) = 𝑙𝑜𝑐𝑎𝑙𝑓𝑑𝑟(𝑧) =
𝜋0𝑓0(𝑧)

𝑓(𝑧)
 , (3) 

where z are the observed p-values, π0 is the proportion of true null hypotheses –estimated from 

the data-, 𝑓0(𝑧) the empirical null distribution –usually a uniform (0,1) distribution for well-

designed tests- and 𝑓(𝑧) the mixture of the densities of the null and alternative hypothesis, also 

estimated from the data. 

As stated in [47], “the advantage of the local fdr is its specificity: it provides a measure of belief 

in gene i’s ‘significance’ that depends on its p-value, not on its inclusion in a larger set of possible 

values” as it occurs, for example with q-values or the standard False Discovery Rate. The local 

fdr and π0 were estimated using the Bioconductor’s R Package qvalue 11.  

For a selected cohort of cells, the algorithm outputs a ranking of significant gene pairs (GPs) that 
consist of a couple of genes in which the first one is essential depending on the mutational status 
of the other. For the final ranking, we selected those GPs that showed a p-value < 0.05 and local 

FDR ≤ 0.6, |DEMETER| > 2. Additionally, we interrogated which of these pairs had direct 
relationships (co-expressed, annotated in the same pathway database or contained in a 
common experiment) in the STRING database 12 to ensure there is an established biological 
relationship between the essential gene and the subrogate biomarker. This biological double-
check is not necessary and can be omitted when the researcher looks for novel relationships. 
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Section 6. A larger number of positives outperforms specificity and sensitivity 
Lemma: Let us consider two methods that correct multiple hypothesis test, and let us consider 
that both methods provide a different number of positives for the same FDR. Then, the method 
that provides a larger number of positives has more statistical power. It is also more specific and 
sensitive. 

The power or sensitivity of a statistical test is the probability that the test correctly rejects the 

null hypothesis 𝐻0 when the alternative hypothesis 𝐻1 is true. Its value is TP/(TP+FN).  

Let’s consider that the estimation of the FDR is performed by two tests A and B and both tests 

have the same False Discovery Rate (20% for example). The FDR will be 

𝐹𝐷𝑅 =
𝐹𝑃𝐴

𝑇𝑃𝐴 + 𝐹𝑃𝐴
= 1 −

𝑇𝑃𝐴

𝑇𝑃𝐴 + 𝐹𝑃𝐴
=

𝐹𝑃𝐵

𝑇𝑃𝐵 + 𝐹𝑃𝐵
= 1 −

𝑇𝑃𝐵

𝑇𝑃𝐵 + 𝐹𝑃𝐵
(1𝑎) 

The power of each test will be  

𝑃𝑊𝐴 = 1 − 𝛽𝐴 =
𝑇𝑃𝐴

𝑇𝑃𝐴 + 𝐹𝑁𝐴
(1𝑏) 

𝑃𝑊𝐵 = 1 − 𝛽𝐵 =
𝑇𝑃𝐵

𝑇𝑃𝐵 + 𝐹𝑁𝐵
(1𝑐) 

Since both tests are performed on the same dataset, the number of true null hypothesis 𝐻0  (FP 

+ TN) and true alternative hypothesis 𝐻1 (TP+FN) will be identical, i.e.,  

𝐹𝑃𝐴 + 𝑇𝑁𝐴 = 𝐹𝑃𝐵 + 𝑇𝑁𝐵(1𝑑) 

𝑇𝑃𝐴 + 𝐹𝑁𝐴 = 𝑇𝑃𝐵 + 𝐹𝑁𝐵(1𝑒) 

Notice that the denominators of the expression of the power (eq (1b) and (1c)) are identical 

according to (1e).  

The total number of positives returned by each test is 𝑇𝑃𝐴 + 𝐹𝑃𝐴 and 𝑇𝑃𝐵 + 𝐹𝑃𝐵. Let’s assume 

that method A, returns more positives than method B, i.e.  

𝑇𝑃𝐴 + 𝐹𝑃𝐴 > 𝑇𝑃𝐵 + 𝐹𝑃𝐵(2) 

Using eq. (1a), and (2) 

𝑇𝑃𝐴 = (1 − 𝐹𝐷𝑅)(𝑇𝑃𝐴 + 𝐹𝑃𝐴)(3𝑎) 

And, 

𝑇𝑃𝐵 = (1 − 𝐹𝐷𝑅)(𝑇𝑃𝐵 + 𝐹𝑃𝐵)(3𝑏) 

Since (2), the righthand member of equation (3a) is larger than the righthand member of 

equation (3b) and therefore, 

𝑇𝑃𝐴 > 𝑇𝑃𝐵(4) 

As a result, 

𝑃𝑊𝐴 > 𝑃𝑊𝐵∎ 

Corolary I. Since 𝑃𝑊𝐴 = 1 − 𝛽𝐴 the type II error using A is smaller than using B. 

𝛽𝐴 < 𝛽𝐵 

Corolary II. The type I error is 



7 
 

𝛼𝐴 =
𝐹𝑃𝐴

𝐹𝑃𝐴 + 𝑇𝑁𝐴
 

And the sensitivity is: 

1 − 𝛼𝐴 =
𝑇𝑁𝐴

𝐹𝑃𝐴 + 𝑇𝑁𝐴
 

By (1e) and (4), it is straightforward to conclude that 

𝛼𝐴 < 𝛼𝐵 

Therefore, the method that provides a larger number of positives outperforms the other both 

in terms of specificity and sensitivity (or type I and type II errors).  

  



8 
 

  



9 
 

SUPPLEMENTARY REFERENCES 
1. Cowley GS, Weir BA, Vazquez F, et al. Parallel genome-scale loss of function screens in 

216 cancer cell lines for the identification of context-specific genetic dependencies. Sci. 
data. 2014;1:140035.  

2. Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables 
predictive modelling of anticancer drug sensitivity Supp. Nature. 2012;483(7391):603–7.  

3. Shao DD, Tsherniak A, Gopal S, et al. ATARiS: Computational quantification of gene 
suppression phenotypes from multisample RNAi screens. Genome Res. 2013;23(4):665–
678.  

4. McFarland JM, Ho Z V., Kugener G, et al. Improved estimation of cancer dependencies 
from large-scale RNAi screens using model-based normalization and data integration. 
Nat. Commun. 2018;9(1):1–13.  

5. Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a Cancer Dependency Map. Cell. 
2017;170(3):564-576.e16.  

6. Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB. Missing value estimation methods 
for DNA microarrays. Bioinformatics. 2001;17(6):520–525.  

7. Tatlow PJ, Piccolo SR. A cloud-based workflow to quantify transcript-expression levels in 
public cancer compendia. Sci. Rep. 2016;6:39259.  

8. Ignatiadis N, Klaus B, Zaugg JB, Huber W. Data-driven hypothesis weighting increases 
detection power in genome-scale multiple testing. Nat. Methods. 2016;13(7):577–580.  

9. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for 
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.  

10. Efron B, Tibshirani R. Empirical Bayes methods and false discovery rates for microarrays. 
Genet. Epidemiol. 2002;23(March):70–86.  

11. Storey JD. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 
2002;64(3):479–498.  

12. Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks 
with increased coverage, supporting functional discovery in genome-wide experimental 
datasets. Nucleic Acids Res. 2019;47(D1):D607–D613.  

13. Romero JP, Ortiz-Estévez M, Muniategui A, et al. Comparison of RNA-seq and microarray 
platforms for splice event detection using a cross-platform algorithm. BMC Genomics. 
2018;  

 

 


