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Simple Summary: In patients with adnexal masses, classification into benign or malignant tumors
is essential for optimal treatment planning, but remains challenging. In the search for new models
applicable in a routine clinical setting, we compared classical single parameters to multiparameter
predictive models.

Abstract: Discrimination between benign and malignant adnexal masses is essential for optimal
treatment planning, but still remains challenging in a routine clinical setting. In this retrospective
study, we aimed to compare albumin as a single parameter to calculate models by analyzing laboratory
parameters of 1552 patients with an adnexal mass (epithelial ovarian cancer (EOC): n= 294; borderline
tumor of the ovary (BTO): n = 66; benign adnexal mass: n = 1192) undergoing surgery. Models
comprising classical laboratory parameters show better accuracies (AUCs 0.92–0.93; 95% CI 0.90–0.95)
compared to the use of single markers, and could easily be implemented in clinical practice by
containing only readily available markers. This has been incorporated into a nomogram.

Keywords: adnexal mass; ovarian cancer; benign cyst; BTO; classification; model

1. Introduction

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and the
fifth most frequent cause of cancer-related mortality in women. The majority of women
undergoing surgery for an adnexal mass are diagnosed with a benign histology. In patients
with adnexal masses, classification into benign, malignant, or borderline tumors is essential
for optimal treatment planning [1]. In a routine clinical setting, primarily transvaginal
ultrasound is used to further characterize adnexal masses. Even though specific ultrasound
criteria help to improve the predictive accuracy [2], the precise preoperative classification
remains challenging, particularly if expertise in ultrasonography is lacking. Thus, treatment
and particularly surgery planning should always be based on a combination of factors,
including clinical and radiological findings as well as laboratory markers [3].

Cancer antigen 125 (CA125) remains the most used laboratory marker in the diagnostic
workup of suspicious adnexal masses [4,5]. Still, the accuracy of this biomarker is limited,
as elevated levels of CA125 can also be associated with a variety of benign conditions [6],
particularly in premenopausal women and it underperforms in early-stage disease [7], as
well as in endometrioid or clear cell histology [8].

In the search for other predictive serum markers, preoperative hypoalbuminemia
was described as a prognostic parameter in ovarian cancer [9] and other gynecologic
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malignancies [10,11]. Likewise, C-reactive protein (CRP), gamma glutamyl transferase
(GGT), and lactate dehydrogenase (LDH) were identified to be promising in the differential
diagnosis of adnexal masses [12–14], whereby CRP seems to have a stronger predictive
potential with a sensitivity and specificity of 80.1% and 90.8%, respectively, in combination
with CA125, whereas GGT showed a sensitivity and specificity of 54.5% and 83.8%. A
variety of biomarker panels has been proposed, but none have been comprehensively used
in clinical routine thus far.

The aim of the study was, thus, to evaluate the strength of the single parameters
albumin, CRP, CA125, and LDH in comparison to models estimated from easily accessible
parameters used in clinical routine to differentiate between benign and nonbenign adnexal
masses. We performed a relaxed lasso model building procedure using standard laboratory
data derived from a routine clinical setting (albumin, erythrocyte, platelet and leucocyte
count, hemoglobin, CRP, GGT, alkaline phosphatase (AP), LDH, and fibrinogen), common
tumor markers (CA125, cancer Antigen 19-9 (CA19-9), and carcinoembryonic antigen
(CEA)) and patients’ age at diagnosis.

2. Materials and Methods
2.1. Patients

In this retrospective study, all patients who underwent surgery for adnexal masses
(epithelial ovarian cancer (EOC), borderline tumor of the ovary (BTO), and benign adnexal
masses) were screened. Thereof, all patients with pretherapeutic available albumin serum
levels, adequate preoperative diagnostic workup, and final histologic report were included
in the study. The study was approved by the institutional review board (1062/2015 Medical
University of Vienna). All patients underwent surgery at the Department of General
Gynecology and Gynecologic Oncology, Gynecologic Cancer Unit, Comprehensive Cancer
Center, Medical University of Vienna, Austria, between January 2000 and December 2012.

Pretherapeutically, the following measurements were performed: blood tests and
physical examination as well as transvaginal ultrasound by an expert sonographer special-
ized in gynecologic ultrasound. In the case of a suspicious process, further imaging, such
as computer tomography or magnetic resonance imaging, was initiated.

Surgery included cystectomy or unilateral/bilateral salpingo-oophorectomy according
to standards of our institution. Patients with EOC or BTO received adequate staging surgery
according to AGO guidelines.

In all cases, pathology assessment was performed by a pathologist specialized in
gynecologic oncology. The cases with an inexplicit result were discussed and presented to
a second expert pathologist for final pathologic results.

The following parameters were obtained in preoperative blood tests at our department:
erythrocyte, platelet and leucocyte count, hemoglobin, albumin, CRP, GGT, AP, LDH, and
fibrinogen, as well as the markers CA 19-9, CEA, and CA125. Not all values were available
in all patients; thus, missing values were imputed as described in the methods section.

2.2. Statistics

All datasets with present albumin values (n = 1552) were selected in all three groups
of patients, i.e., patients with benign (n = 1192), borderline (n = 66), or malignant disease
(n = 294) (Figure 1). The following parameters were considered: age at diagnosis, albu-
min, CRP, GGT, AP, LDH, erythrocytes, hemoglobin, thrombocytes, leucocytes, fibrinogen,
CA125, CA199, and CEA. Missing values are shown in Supplementary Figure S1, plotted
with the vis_miss function from R-package naniar 0.6.1. The character of missing val-
ues (missing completely at random (MCAR) or not) was tested for each group with the
mcar_test (naniar). Missing data were MCAR in the groups borderline (p = 0.857) and
malignant disease (p = 0.883), but not in the benign group (p < 0.001). In this group, there
were many significant correlations between missingness for nearly all parameters, but
missingness of the four most relevant parameters (i.e., age and albumin, as they were
complete, and CA125 with LDH) was not correlated. For detailed analyses of correlations
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of missingness, see file “Missing.txt” in the zip-file of the R-script). There were multiple
missing values (n = 20) imputed in each group (benign, BOT, and EOC) using function
mice of R-package mice 3.14.0 (method = “pmm”; maxit = 50) using all variables to inform
the imputation, including histology (which was not used for model building). For model
building, all values were log2 transformed (offset 0.01 for zero values) to obtain as good as
possible pseudonormal distributions (Q–Q plots are shown for all groups and variables
in Supplementary Figure S2). All following analyses and model building processes were
performed with the complete dataset (n = 525 in total, 342 benign, 31 BOT, and 152 EOC)
and the 20 imputed datasets and results of all 21 datasets were presented. For all analyses,
both nonbenign samples, borderline (BTO), and malignant (n = 360) were put together and
compared to all benign samples (n = 1192).
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Figure 1. CONSORT diagram describing the identification process and reasons for exclusion of the
present retrospective analysis.

Aiming for as sparse as possible models, the relaxed lasso method as implemented in
the R-package glmnet 4.1-4 was employed (relax = TRUE; family = “binomial”) [15] on log2
transformed (offset 0.01 for zero values) data. To tune the lambda and gamma parameter,
10-fold cross-validation was performed, and for each imputed dataset, the lambda.1se and
the gamma.1se values (each the largest value, such that error was within one standard error
of the minimum) were used for building of the final model. Four parameters were always
selected by the relaxed lasso procedure with all 20 imputed datasets and the complete
dataset, i.e., age, LDH, CA125, and albumin. CRP was selected in 13 models due to being
known to be a good diagnostic marker for malignancy, and was, therefore, also analyzed in
more detail. Parameters CEA (15×), thrombocytes (1×), and AP (1×) were also selected
for some models.

To characterize the predictive values and qualities of the four single parameters
(Albumin, CA125, CRP, and LDH) and the corresponding relaxed lasso models (comprised
of four to seven parameters), sensitivities, specificities, and accuracies after optimal cutoff
definition using the cutpointr function of R-package cutpointr 1.1.2 maximizing the sum of
the sensitivity and the specificity (method = maximize_metric; metric = sum_sens_spec) and
the area under the receiver operating characteristic (ROC) curves (AUC) with confidence
intervals were plotted for each dataset. To compare the AUC of CA125 (the best single
diagnostic marker) with the corresponding lasso model, the function roc.test from R-
package pROC 1.18.0 (method = “bootstrap”; boot.n = 10,000; boot.stratified = TRUE;
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ties.method = “first”; conf.level = 0.95) was used. Confidence intervals for AUCs were
computed with the ci.auc function from R-package pROC using 2000 stratified bootstrap
replicates. Additionally, to assess the accuracy of the predictions of the single parameters
and the lasso models, the Brier score was calculated from all 20 imputations and the
complete dataset was shown as box plots. Calibration curves of all 20 lasso models were
estimated and revealed to look very similar. In Supplementary Figure S3, two of them
are shown (each plotted using the functions val.prob from R-package rms 6.3-0 (left plot)
and val.prob.ci.2 from R-package CalibrationCurves 0.1.2 (right plot), one from a model
with four parameters (the smallest ones) and one from a model with seven parameters (the
largest ones). All models seemed to underestimate the risk for malignancy a little bit, the
larger model less so compared with the smaller model. Finally, to compare specificities
of CA125, the best diagnostic single parameter and the lasso models at set sensitivities
of 90%, 95%, and 99% are shown. The R-script and the raw data were provided in the
Supplementary Materials.

A final logistic regression model was built from a combined dataset (all data from
the 20 imputed samples were averaged) employing the four parameters always called age,
albumin, CA125, and LDH. This model was provided as an interactive nomogram (built
with R-package DynNom 5.0.1) and hosted at the https://www.shinyapps.io/ homepage
(accessed on 21 June 2022) under the link https://pils.shinyapps.io/AROMA/ (accessed
on 21 June 2022) (using the R-package rsconnect 0.8.26).

3. Results
3.1. Patients’ Characteristics

Of the total 1552 included cases, 294 (18.9%) patients were diagnosed with EOC, 66
(4.2%) with BTO, and 1192 (76.8%) had a benign adnexal mass. Within the EOC group,
the histologic subtype was as follows: 176 (59.8%) high-grade serous, 14 (4.8%) low-grade
serous, 38 (12.9%) high-grade endometrioid, 16 (5.4%) low-grade endometrioid, 15 (5.1%)
mucinous, 9 (3.1%) clear cell, and 20 (6.8%) others. FIGO stage I, II, III, and IV accounted
for 46 (15.6%), 36 (12.2%), 173 (58.8%), and 39 (13.3%) cases, respectively.

Within the group of benign adnexal masses, the most common final histologic re-
sults included endometrioma (n = 254; 21.3%), differentiated teratoma (n = 166; 13.9%),
simple benign cyst (n = 173; 14.5%), serous cystadenoma (n = 170; 14.3%), and muci-
nous cystadenoma (n = 136; 11.4%), followed by functional ovarian cyst (n = 102; 8.6%),
sacto/hydrosalpinx (n = 75; 6.3%); ovarian fibroma (n = 71; 6.0%), pseudocyst (n= 17; 1.4%),
hydatid cyst (n = 12; 1.0%), benign Brenner tumor (n = 7; 0.6%), and other benign ovarian
masses (n= 9; 0.7%).

Patients’ characteristics dependent on histologic type are shown in Table 1.

3.2. Correlation

Correlations between the four most relevant markers included from the final model
building process (see below; albumin, CRP, CA125, and LDH) were studied in two of the
20 imputed datasets (Figure 2, yielding one of the smallest models with four parameters;
yielding one of the largest model with seven parameters). Overall, a significant moderate
negative correlation was seen between albumin and CRP and significant weak negative
correlations to both other markers (Figure 2). The highest correlation was consistently
seen in the EOC group of patients (red color), but in the BOT group (dark red), a similar
correlation was only seen between albumin and CRP and not with the other markers or the
other markers with each other.

https://www.shinyapps.io/
https://pils.shinyapps.io/AROMA/
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Table 1. Patients’ characteristics dependent on final histopathological result.

Benign (1192) BTO (66) EOC (294) q-Value 1

Age (years), median (IQR) 42.0 (32.0–54.0) 49 (40.5–63.75) 61.0 (52.0–70.0) 1.04 × 10−55

GGT (U/L), median (IQR) 15 (11–24) 17 (10–24) 20 (13–33) 1.17 × 10−07

AP (U/L), median (IQR) 65 (52–82) 77 (59–90) 80 (65–103) 2.91 × 10−18

LDH (U/L), median (IQR) 167 (143–199) 182 (160–225) 223 (181–298) 7.31 × 10−44

Hemoglobin (g/L), median (IQR) 13.3 (12.6–14.1) 13.1 (12.4–14.1) 12.6 (11.4–13.5) 1.15 × 10−11

Platelets (G/L), median (IQR) 257 (222–306) 255 (226–318) 340 (258–423) 4.26 × 10−29

Leucocytes (G/L), median (IQR) 6.8 (5.6–8.4) 5.7 (4.6–7.9) 7.4 (6.1–9.5) 1.26 × 10−05

Fibrinogen (mg/dL), median (IQR) 324 (294–401) 388 (331–448) 486 (384–581) 3.20 × 10−46

CA19-9 (U/mL), median (IQR) 11.0 (5.9–22.3) 12.0 (6.1–46.7) 12.7 (5.7–37.4) 0.112
CEA (ng/mL), median (IQR) 1.4 (0.9–2.6) 2.1 (1.0–4.7) 1.6 (0.9–3.1) 6.52 × 10−07

CRP (mg/dL), median (IQR) 0.5 (0.2–0.6) 0.5 (0.5–1.0) 1.7 (0.5–5.7) 3.47 × 10−47

CA125 (kU/L), median (IQR) 19.8 (12.0–37.7) 36.0 (20.75–102.1) 455.9 (130.5–1389.0) 1.44 × 10−114

Albumin (mg/dL), median (IQR) 43.4 (41.0–45.8) 42.7 (39.9–44.7) 39.1 (34.6–42.5) 4.90 × 10−46

1 Kruskal–Wallis test corrected for multiple testing according to Bonferroni–Holm. BTO, borderline tumor of the
ovary; EOC, epithelial ovarian cancer.
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3.3. Model Building

Primarily, 20 imputed datasets were generated by multiple group wise imputations of
missing values. Thereafter, all analyses were performed using the complete dataset and
these 20 imputed datasets. The model building process using the relaxed lasso procedure
(aiming at as sparse as possible models) with the complete dataset revealed a model with
albumin, CA125, LDH, patients’ age, and thrombocyte count, and using the 20 imputed
datasets revealed 20 models (one model comprising four, ten models comprising five, seven
models six, and two models seven parameters; Figure 3B). The remaining parameters
included in the final models were albumin, CA125, LDH, and patients’ age in all models,
followed by CEA (n = 15), CRP (n = 13), thrombocyte count (n = 1 and the complete dataset),
and AP (n = 1) in descending order. In Figure 3A, it is shown how often each singular
parameter was included in the respective models, whereby four parameters were used
in every model, i.e., age, LDH, CA125, and albumin. Calibration curves of all 20 lasso
models were estimated and revealed to look very similar. Supplementary Figure S3 shows
two models: one model with four parameters (A; one of the smallest models) and one
model with seven parameters (B; one of the largest models). All models seemed to slightly
underestimate the risk for malignancy, the larger model less so compared with the smaller
model. The Brier scores for the four most relevant single parameters and the 20 models of
the imputed datasets and the model of the complete dataset are shown in Supplementary
Figure S4. The Brier scores (dependent on sample size) showed that CA125 was by far
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the best single predictor compared to albumin, CRP, and LDH, but also that the models
comprising of four to seven parameters were slightly (mean 0.177 compared to mean 0.191
for CA125), but significantly (p = 1.9 × 10−9; t-test), better than CA125 alone.
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Accuracies, sensitivities, and specificities with cut points optimized for the highest
sum of sensitivity and specificity of the models compared to the most relevant single
parameters are visualized in Figure 3C–E, respectively. The highest sensitivities were seen
for albumin, the highest specificities were seen for CA125, and the highest accuracies were
seen for the models.

Akaike information criterion (AIC) values for the 20 models from the imputed dataset
were median −801.1 (IQR −813.4 −785.6; range −841.4 −763.0) and −312.3 for the model
from the complete dataset. The small models (with four or five parameters) showed smaller
AIC values compared to the larger ones (six to seven parameters).

In the next step, the AUCs with confidence intervals of albumin and the other single
laboratory parameters (using all 20 imputed and the complete datasets) were estimated.
Albumin with an AUC of 0.74 (95% CI 0.71–0.77) performed better than CRP or LDH, but
not better than CA125 (Figure 4A and Supplementary Figure S5). Finally, the AUCs of the
most relevant single parameter CA125 and the models were compared (Figure 4B), whereby
all 20 lasso models were significantly better (AUCs 0.92–0.93; 95% CI 0.90–0.95) than CA125
alone (AUCs 0.88–0.89; 95% CI 0.85–0.91) and also the results from the complete dataset.

In clinical routine, we need to correctly identify all patients with malignancy prior
to surgery; thus, we aimed at reaching the highest sensitivities. Therefore, we set the
sensitivity to the values 90%, 95%, and 99%, respectively, and estimated the corresponding
specificities, comparing the strongest single parameter, CA125, and the models (Figure 5).
We observed that at 90% sensitivity, the specificities of the models were approximately
76%, much better than CA125 showing specificities of only approximately 60%. At 95%
sensitivity, specificities were already too low for a reliable multimarker diagnostic tool.

Albumin was particularly sensitive and CA125 had a high specificity; the models com-
prising the combined parameters showed a better specificity compared to albumin alone.

Using the standard clinical cut-off of 35 mg/dl for albumin, the sensitivity and speci-
ficity between benign/BOT and malign samples were 98.1% and 23.1%, respectively, and
using the standard clinical cut off of 35 kU/L for CA125, the sensitivity and specificity
between benign/BOT and malign samples were 25.3% and 15.3%, respectively.

The median optimal cut offs of the four single diagnostic predictors over the 20 imputations
and maximizing the sum of the specificities and the sensitivities were 40.26 mg/dl for
albumin (no range, because this marker was not imputed), 84.80 (82.20–87.20; IQR 84.80–
84.80) kU/L for CA125, 205.0 (182.0–205.0; IQR 203.8–205.0) U/L for LDH, and 0.80 (0.78–
0.80; IQR 0.80–0.80) mg/dl for CRP. The corresponding sensitivities, specificities, and
accuracies are shown in Figure 3C–E.

The abundant values in the three groups of the single predictors are shown in Figure 6.

3.4. Interactive Dynamic Nomogram

To provide a clinically usable model, all imputed datasets were averaged and used
to build a model, including the four parameters, which were always selected during the
relaxed lasso model building procedure, i.e., age, albumin, CA125, and LDH. This model is
interactive and can be accessed here: https://pils.shinyapps.io/AROMA/ (accessed on 3
June 2022). Two typical cases are shown in Figure 7. The model summary can be accessed
at the “Model Summary” link from inside the homepage. This model shows an AUC of
0.930 (95% CI 0.913–0.947) and specificities of 77.2%, 54.6%, and 19.0% for sensitivities of
90%, 95%, and 99%, respectively. Supplementary Figure S6 shows the ROC curves for the
single predictor CA125, a model with albumin and CA125, and the four-parameter model
used in the nomogram built with the averaged dataset, and compared the AUCs between
albumin+CA125 and the four-parameter model.

https://pils.shinyapps.io/AROMA/
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vs. the models (red), performed with all 20 imputed datasets and the complete dataset (blue back-
ground). The first p-values compared the AUC estimates to 0.5 (as by chance). The last p-value (red) 
in (B) compared the CA125 AUC with the models AUC. Y-axis, number of imputed datasets; 0, the 
complete dataset. 

Figure 4. (A) The estimated AUCs (95% CI) of albumin (black) vs. CA125 (red) and (B) CA125
(black) vs. the models (red), performed with all 20 imputed datasets and the complete dataset (blue
background). The first p-values compared the AUC estimates to 0.5 (as by chance). The last p-value
(red) in (B) compared the CA125 AUC with the models AUC. Y-axis, number of imputed datasets; 0,
the complete dataset.
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Figure 5. Specificities (95% CI) of CA125 (black) vs. the models (red) at a set sensitivity of (A) 90%,
(B) 95%, and (C) 99%, respectively. Y-axis, number of imputed datasets; 0, the complete dataset.
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Figure 6. Characteristics of the single predictors compared between benign, BTO, and EOC. Y-axis:
values are linear of log2 transformed, as indicated by the word “Log2”. Units of analytes are as
provided in Table 1.
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4. Discussion

The current ESGO/ISUOG/IOTA/ESGE Consensus Statement on the preoperative
diagnosis of ovarian tumors highlights that decision making should never be based only
on one modality [3], and that besides adequate ultrasound expertise, accurate biomarkers
are valuable in the treatment planning of patients with adnexal masses. Using labora-
tory parameters derived from a routine clinical setting, this study compared albumin to
calculated models in 1552 patients undergoing surgery because of an adnexal mass. The
final new models comprised four to seven parameters out of albumin, CA125, LDH, CRP,
thrombocyte count, CEA, erythrocytes, AP, and patients’ age.

Accurate biomarkers have been demonstrated to greatly improve the effectiveness
of treatment and, thus, patient’s quality of life. The risk of ovarian malignancy algorithm
(ROMA) comprising CA-125, HE-4, and menopausal status was investigated in a variety
of clinical studies [5,16,17], but has not yet found its way into standard clinical use. Still,
meta-analyses showed its superiority compared to single markers, such as CA-125 or HE-4
alone [18]. Carreras-Dieguez et al. only recently compared the role of the Copenhagen-index
(CPH-I) and ROMA for the preoperative assessment of adnexal tumors in a large sample of
more than 1000 patients, showing a consistent sensitivity and specificity (ROMA: 91.1%
and 84.6%; CPH-I: 91.1% with 79.2%, respectively) with other reported studies [16,18,19].
Generally, the comparison of the sensitivity and specificity of biomarkers and probability
indexes with the literature remains difficult, as the compared groups are often different (in
some cases, BTO is included; in some cases, only EOC is included) and the selected cut-off
points differ.

Although albumin showed a high sensitivity in the preoperative differentiation be-
tween benign and nonbenign adnexal masses, we confirmed that combined models resulted
in a higher accuracy (AUC 0.88–0.89; 95% CI 0.85–0.91) compared to the use of single mark-
ers. Of note, we could also demonstrate that optimally dichotomized albumin had a higher
sensitivity and specificity compared to dichotomization at the standard upper limit of nor-
mal. The following cut-off value was calculated to best dichotomize albumin: 40.26 mg/dl.
Still, in the model building process, only continuous values were used to enhance repro-
ducibility [20]. As albumin was particularly sensitive and CA125 had the highest specificity,
the final calculated models all comprised both parameters and, thus, showed a better
specificity compared to albumin alone. We compared specificities of the models at set
sensitivities of 90%, 95%, and 99%. We observed that at 90% sensitivity, the specificities of
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the models were only at approximately 76%, still better than CA125 as a single parameter
showing specificities of only approximately 60%. At 95% sensitivity, specificities were
already too low, even worse at 99%.

We primarily focused on albumin, as hypoalbuminemia is often diagnosed in cancer
and associated with poor outcome [9,11]. In cancer patients, an increased catabolism and
following cachexia seem to cause hypoalbuminemia [21]. Moreover, increased vascular
permeability leads to a shift of albumin from the intravascular sector towards the intersti-
tium, resulting in decreased serum albumin levels [22]. Besides the classic marker CA125
as the most utilized laboratory marker in the diagnostic workup of suspicious adnexal
masses [5], we also looked at CRP, as its production during carcinogenesis indicates tu-
mor cell growth, an immune-mediated host-defense reaction against malignant cells, or
both [23,24]. Moreover, a correlation with tumor biology, i.e., reflecting tumor load and tu-
mor aggressiveness [25], as well as the association of elevated serum levels and an increased
risk for the presence of EOC/BTO were shown [12]. Additionally, LDH was selected in all
final models. LDH was measured in patients with suspected organ damage or dysfunction,
such as myocardial infarction, as it is released in the case of cell damage. Elevated LDH
levels are associated with poorer prognosis in a variety of cancer types [26], and also seem
to be useful in the discrimination of adnexal masses [14]. An elevated platelet count is
frequently seen in cancer patients compared to healthy controls [27], and this finding could
be confirmed in our study.

The good performance of the final combined models may be explained by the fol-
lowing reasons: first, patient selection. Our population included patients with suspicious
adnexal masses resulting in an EOC/BTO prevalence of 31.2%. This fact strongly affected
the test performance of the included biomarkers. Second, patient number. This study
included 1552 consecutive patients with adnexal masses, thus, more than other biomarker
studies [5,16,28,29]. Third, we included both EOC and BTO as the primary endpoints.
We merged these two groups, as the type of surgery is similar and included in contrast
to surgery for a benign adnexal mass: the maximum effort to prevent spillage, thorough
an exploration of the whole abdomen, and in most centers, the mandatory presence of a
gynecologic oncologist.

A limiting factor was the retrospective study’s design, although all patients were
collected in a consecutive manner and all patients scheduled for surgery due to an adnexal
mass were included in this study to avoid selection bias. Due to the retrospective character
of the study, only laboratory parameters presented in our institutional standard preopera-
tive work-up could be included in the study. Thus, HE-4 was not available for this analysis
and multiple imputations had to be performed for missing values.

By developing combined scores, we were able to improve the accuracy compared to
selected single parameters in the preoperative differentiation between benign and nonbe-
nign adnexal masses. The included parameters were chosen due to their good performance.
Additionally, in other already available predicting scores, the combination of parameters
improved the discrimination of adnexal masses [30,31]. Compared to a variety of biomarker
studies [12–14,32], these new models are applicable in a routine setting, as only routinely
available parameters were included in the model building process. Besides classic labora-
tory parameters, patient age was included as a clinical parameter as to be found also in
other classifiers such as the Copenhagen index (CA125, HE-4, and age) [31].

5. Conclusions

In the search for a more precise preoperative classification of adnexal masses, models using
routinely available parameters and patients’ age showed a higher accuracy compared to selected
single parameters. A final interactive model was provided, accessible at https://pils.shinyapps.
io/AROMA/, (accessed on 21 June 2022) which could be used in a routine setting after
respective validation.
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