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Simple Summary: This study deals with the identification of signature genes through a model using
four machine learning algorithms for two cohorts of bulk and single cell RNA seq to predict immune
checkpoint blockade (ICB) response in gastric cancer. Through LASSO feature selection, we identified
VCAN as a marker gene signature that distinguishes responders from non-responders.

Abstract: Predicting responses to immune checkpoint blockade (ICB) lacks official standards despite
the discovery of several markers. Expensive drugs and different reactivities for each patient are the
main disadvantages of immunotherapy. Gastric cancer is refractory and stem-like in nature and
does not respond to immunotherapy. In this study, we aimed to identify a characteristic gene that
predicts ICB response in gastric cancer and discover a drug target for non-responders. We built and
evaluated a model using four machine learning algorithms for two cohorts of bulk and single-cell
RNA seq to predict ICB response in gastric cancer patients. Through the LASSO feature selection, we
discovered a marker gene signature that distinguishes responders from non-responders. VCAN, a
candidate characteristic gene selected by all four machine learning algorithms, had a significantly
high prevalence in non-responders (p = 0.0019) and showed a poor prognosis (p = 0.0014) at high
expression values. This is the first study to discover a signature gene for predicting ICB response
in gastric cancer by molecular subtype and provides broad insights into the treatment of stem-like
immuno-oncology through precision medicine.

Keywords: immune checkpoint blockade; gastric cancer; machine learning; VCAN; stem-like type;
precision medicine

1. Background

Immunotherapy is a revolutionary method that uses the immune system to suppress
tumors [1], and it has improved the quality of life of patients with cancer by reducing the
side effects of anti-cancer treatment. A more comprehensive perspective of a patient with
cancer causes fundamental changes in the assessment of therapeutic efficacy and toxic-
ity [2]. However, the high cost of drugs and their ineffectiveness in some patients are major
drawbacks. To overcome these limitations, many studies were conducted to find markers
predicting immune checkpoint blockade (ICB) response [3]. Although T lymphocytes have
long been recognized for their function in cancer immunosurveillance, the revelation that
cancer cells may eventually evade a response from tumor-reactive T cells has sparked
efforts to improve the effectiveness of anti-tumor immune response [4]. The most effective
molecules of T cell immunological checkpoints are cytotoxic T lymphocyte antigen 4 and
programmed cell death 1 [2]. Tumor-associated macrophages and fibroblasts are critical for
immunosuppression in relation to the inflammatory tumor microenvironment [5]. Marge-
tuximab, ZW25, and combination strategies involving chemotherapy, human epidermal
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growth factor receptor 2-targeted treatments, and programmed cell death protein 1 are
among the new medications being investigated for gastric cancer treatment [6].

Recently, using machine learning, multi-omics data were used to predict drug re-
sponses [7], and gastric cancer data were used to predict ICB responses using a patient
stratification algorithm [8]. We previously predicted intra-tumoral heterogeneity with
machine learning algorithms using multi-omics data [9]. Machine learning algorithms
provide a unique approach for integrating and analyzing omics data, which enables the
development of new biomarkers [10]. Owing to its predictive performance and capacity to
capture nonlinear and hierarchical characteristics, deep learning algorithms have recently
emerged as one of the most promising approaches in multi-omics data analysis [11].

The disadvantage of machine learning studies is that they are limited to bulk omics
data; therefore, identifying the cell type as the key to predicting ICB response at the single-
cell level is not possible. In this study, we attempted to predict the ICB response using a
basic machine learning algorithm and used the approach of a global big data analysis to
determine which cell type and ICB response predictions are related at the single-cell level.
Our results suggest an effective treatment method by predicting the immune-cancer drug
response of patients with gastric cancer through precision medicine.

2. Methods
2.1. Machine Learning Algorithms

We used four machine learning algorithms to build a model for predicting ICB re-
sponse. We used R version 4.0.5 with the R package. The labels of tumors of the responder
and non-responder groups were assigned 1 and 0, respectively, to classify the tumors
according to their ICB response in stomach adenocarcinoma (STAD). For the random forest
model [12], glmnet [13], randomForest, ROCR, caret, and e1071 were used. In order to
improve the accuracy of classification of the decision trees, the random forest algorithm
was used. This is a structure in which multiple trees are created, and a conclusion is
reached by combining the predictions of each tree. For the naïve Bayes model [14], glmnet,
ROCR, caret, and klaR were used. A naïve Bayes classifier is an algorithm that classifies
properties using Bayes’ theorem. Naïve Bayes classifiers are based on the assumption of
substantial or naïve independence amongst data point properties. For the neural network
model, glmnet, ROCR, and caret were used; for the support vector machine model [15],
glmnet, ROCR, caret, e1071, and kernlab were used. A neural network is a series of algo-
rithms that evaluates the relationships between data points, mimicking a network or circuit
of biological neurons, or an artificial neural network made up of artificial neurons [16].
A suitable model was found using parameter tuning, and the lambda coefficient was
calculated using LASSO [17] feature selection. A 10-fold cross validation was used. To
provide a more stabilized result (or one that is more representative of the real-world result),
more than 100 iterations were performed, and the average value was used for the AUC
value. A 10-fold cross validation was used because (1) the accuracy of data sets can be
improved with a small total amount of data; (2) there are more training data sets when
classifying only training and testing data than when classifying data into three groups
of training/validation/testing; and (3) if the amount of data is small and validation and
testing are omitted, a model with poor performance, such as underfitting, is trained.

2.2. Single-Cell Analysis

We used Seurat version 4.0 for meta-analysis of single-cell data and classified cell
types using marker genes from previous studies [18]. The number of cells (n = 5927) used
in previously published protocols was maintained, and imputation was performed using
Markov Affinity-based Graph Imputation of Cells (MAGIC) [19].

2.3. Bulk Sample Meta-Analysis

We predicted ICB response using bulk expression data sets and Tumor Immune
Dysfunction and Exclusion (TIDE). METASCAPE [20] was used for gene ontology analysis.
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For differential gene expression, the “limma” R package was used, and a significant gene
with a false discovery rate < 0.001 was selected. For the survival probability in the bulk
sample, the web-based tool gepia2 [21] was used, and the drug of the target gene was
predicted using the Genomics of Drug Sensitivity in Cancer (GDSC) database [22]. We used
the String app [23] in cytoscape [24] for protein–protein interactions (PPIs).

3. Results
3.1. Prediction of ICB Response of Machine Learning Algorithms

Predicting the ICB response in gastric cancer is critical. We used bulk expression and
single-cell data from two cohorts of gastric cancer and one validation set and the TIDE
algorithm [25] for ICB response results (Figure 1A). To build the model, we used four
machine learning algorithms (support vector machine, random forest, neural network, and
naïve Bayes) and selected the most important genes through LASSO feature selection [9].
The machine learning algorithm was adapted from our previous study [9]. We found a
gene signature of 85 genes that can predict the ICB response of patients with gastric cancer,
performed validation using 45 Samsung Medical Center (SMC) expression data [26], and
evaluated the molecular subtype of our cohort Y497 [27]. Our model showed the highest
performance in random forest among the four machine learning algorithms (Figure 1B,C).
The Cancer Genome Atlas (TCGA) STAD data set showed excellent performance in compar-
ison with Y497. The TCGA data set had a greater number of genes at 18816 than Y497 had,
which was consistent with this trend (Figure 1C). As the number of feature genes increased,
an increase in the performance was noticed. Each molecular subtype of gastric cancer had
a varied ratio of non-responders to responders (Figure 1D). The stem-like type had the
lowest responder ratio, whereas the gastric and intestinal types had similar percentages
of responders and non-responders. We investigated the responders and non-responders
by the American Joint Committee on Cancer (AJCC) stage and found that stage 4 had the
highest number of non-responders (Figure 1E). Depending on the molecular subtype and
tumor development and progression, these factors may alter the ICB response. Finally, we
examined five different molecular subtypes of gastric cancer to analyze the performance of
our machine learning model (Figure 1F). Overall, the performance of each molecular sub-
type seemed to decrease compared with that of the entire sample; however, the intestinal
type showed similar results. In the analysis by molecular subtype, the random forest model
showed the best performance. In summary, our machine learning algorithm showed an
enhanced performance as the number of gene features and samples increased, particularly
in the intestinal molecular subtype.

3.2. Prediction of ICB Response According to Single-Cell Types

We applied the ICB prediction model built in bulk to compare the performance of
single-cell data by cell type. A sample of 23 patients with early and advanced intestinal and
diffuse types of gastric cancers was studied [18]. We classified this sample into eight cell
types using marker genes from previously published studies (Figure 2A). Non-responders
and responders were predicted using TIDE [25] and bulk simulation of single-cell data.
More than 60% of the single-cell samples and 70% of the diffuse types were non-responders
(Figure 2B). We compared the performance of eight cell types using the four machine
learning algorithms and evaluated whether cells other than immune cells were effective for
predicting the ICB response in relation to cell types. It showed the highest performance
in the random forest of proliferating cells (Figure 2C), and a similar performance pattern
was observed in pit mucous cells (Figure 2D). We confirmed the lowest performance in
endothelial cells, but the association with ICB response prediction was weak, and the
performance was not high in tumor cells. These results are able to extract important
cell-type signatures in ICB response prediction. We selected signature genes predicting
ICB response through LASSO feature selection in several cells, including fibroblasts (HBB,
SHOC2, HBA2), gland mucous cells (C2orf88, IGLL5, ANGPTL4), metaplastic stem-like cells
(SMIM7, TMEM80, GGPS1), proliferative cells (ARL14, PIM3, IFRD1), and pit mucous cells
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(E4F1, TDRD3, MTRNR2L1) (Table S1). In addition, we directly compared the immune
checkpoint target genes according to the ICB response of each cell type and confirmed
that the difference according to the cell type was larger than the difference between the
responder and non-responder. CXCR4 was highly expressed in most cell types (Figure 2E).
We selected 20 signature genes that can predict ICB responses from eight cell types and
performed PPI analysis through MCODE, except for the overlapping genes, and vesicle-
mediated transport and response to hydrogen peroxide and reactive oxygen species (ROS)
were analyzed (Figure 2F). The cancer hallmarks of eight cell types according to the ICB
response were different depending on the cell type (Figure 2G).
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son of classifiers in Y497 and the Cancer Genome Atlas (TCGA) stomach adenocarcinoma (STAD) 
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NR, non-responder). (E) Bar graph of tumor stage of ICB response (Blue, R, responder; Yellow, NR, 

Figure 1. Machine learning predicts immune checkpoint blockade (ICB) response. (A) Overview
of the study workflow and analysis pipeline. (B) Receiver operating characteristic curve of predictive
performance on random forest in the Yonsei hospital cohort (Y497). (C) Performance comparison of
classifiers in Y497 and the Cancer Genome Atlas (TCGA) stomach adenocarcinoma (STAD) dataset.
(D) Bar graph of molecular subtype for ICB response in Y497 (Blue, R, responder; Yellow, NR,
non-responder). (E) Bar graph of tumor stage of ICB response (Blue, R, responder; Yellow, NR,
non-responder). (F) Performance comparison of classifiers in molecular subtype of Y497. Molecular
subtype: IFL: Inflammatory, ITS: Intestinal, STM: Stem-like, MIS: Mixed stroma, GAS: Gastric.
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Figure 2. Comparison of single-cell type-specific ICB response. (A) Uniform manifold approxi-
mation and projection of single-cell types. (B) Bar graph of single-cell data of non-responders and
responders. (C) Receiver operating characteristic curve of predictive performance on random forest
in proliferation cells. (D) Performance comparison of classifiers in single-cell type. (E) Heat map of
ICB target genes for ICB response. (F) PPI network of LASSO feature selection genes of single cells.
(G) Heat map of cancer hallmarks of ICB response.
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These results confirmed the common mechanism of ICB response in various cell types.

3.3. Molecular Characteristics of ICB Response According to Subtypes of Gastric Cancer

In this study, we extracted a gene signature from the ICB response group and explored
its drug resistance mechanism. First, through a gene ontology analysis in the responder and
non-responder groups of Y497, the naba core matrix, integrin1 pathway, and blood vessel
development were enriched in the non-responder group (Figure 3A). Most of these genes
were enriched in collagen chain trimerization, naba collagens, syndecan 1 pathway, the
regulation of insulin-like growth factor (IGF), and naba core matrix [28] through MCODE
PPI [20] (Figure 3B). These genes were found to be regulated by TFAP2A, RELA, NFKB1,
and SP3 (Figure 3C). We aimed to determine the different mechanisms involved in ICB
response for each molecular subtype. Immune checkpoint target genes were classified into
responders and non-responders of molecular subtypes of gastric cancer. The inflammatory
type showed a higher ICB target gene expression than other molecular types, and the
stem-like type responder group showed a higher expression than the non-responder group
(Figure 3D). The intestinal type showed a low ICB target gene expression. We found
enrichment in tube morphogenesis, the response to tumor necrosis factor, response to zinc
ion, and naba core matrix through the gene ontology analysis of signature genes extracted
through machine learning algorithms and LASSO feature selection (Figure 3E) (Table S2).
The association between the matrisome with metabolism and immune responses in the
refractory type of gastric cancer was determined in our previous study [28]. In the group
with a high matrisome, poor prognosis and increased drug resistance were associated with
metabolic reprogramming. We analyzed the PPI of the signature that can predict the ICB
response through MCODE, which was related to three core genes, GOLM1, IGFBP4, and
VCAN (Figure 3F). We analyzed the PPI of signature genes in the ICB response group
of stem-like molecular subtypes in the same way, and the four key genes were LSM8,
SNRPG, PATL1, and DDX46 (Figure 3G) (Table S3). In the TCGA dataset, the ICB signature
in Y497 demonstrated a poor prognosis at high expression (p = 0.011) (Figure 3H). After
finding the ICB signatures in five molecular subtypes, we confirmed the prognosis in the
TCGA data set. The signatures found in the stem-like and mixed stroma type groups
significantly classified patient prognosis in the TCGA data (Figure 3I,J). For signatures of
the remaining three molecular subtypes, patient prognosis was not significantly divided in
the TCGA dataset (Figure 3L–N). Interestingly, in the intestinal type, genes from the non-
responder group were enriched for cholesterol metabolism, regulation of cellular response
to stress, and adherens junctions (Figure 3K). In summary, our results indicate signatures
for predicting ICB response and each molecular subtype acting towards suppression of the
immune response.

3.4. Evaluation and Validation of ICB Response Signature Genes

We performed LASSO feature selection of responders and non-responders through
parameter adjustment using the four machine learning algorithms. Of the original list
of 85 genes, 77 genes were identical to the TCGA STAD data set embedded in GEPIA2
(http://gepia2.cancer-pku.cn/#index) (accessed on 29 March 2022), and 8 genes were
excluded. Therefore, we analyzed 77 signature genes found through machine learning
and the hub genes through the PPI network of 20 clinically targeted ICB genes (Figure 4A).
Interleukin 6 (IL6) and IL10 were linked to several candidate target genes, and VCAN
particularly interacted with the major hub genes. VCAN improves cancer cell survival, pro-
liferation, migration, invasion, angiogenesis, treatment resistance, and metastasis in vitro
and in vivo [29–31].

http://gepia2.cancer-pku.cn/#index
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A. Y497: Non-Responder

C.

B. D.

Y497
LASSO feature selection

E. F.

G.

H.

STM

ITSMIS

GAS

STM

IFL ITS

I. J. K.

L. M. N.

Figure 3. Meta-analysis of ICB signature genes via LASSO feature selection genes. (A) Network of
enriched gene ontology in non-responders of Y497. (B) Protein–protein interactions (PPI) in enriched
genes in non-responders of Y497. (C) Bar graph of transcriptome factors in non-responders of Y497.
(D) Heat map of ICB target genes for molecular subtype of ICB response in Y497. (E) Network of
enriched gene ontology in LASSO feature selection genes in Y497. (F) PPI of LASSO feature selected
genes. (G) PPI of LASSO feature selected genes in stem-like type. (H) Kaplan–Meier plots of overall
survival rates for the high- and low-77 signature genes in TCGA STAD (feature selected genes in
Y497). (I) Kaplan–Meier plots of overall survival rates for the high- and low-77 signature genes in
TCGA STAD (feature selected gene in stem-like type). (J) Kaplan–Meier plots of the overall survival
rates for the high- and low-22 signature genes in TCGA STAD (feature selected gene in mixed stroma
type). (K) Network of LASSO feature selected gene ontology in intestinal type of nonresponders
of Y497. (L) Kaplan–Meier plots of overall survival rates for the high- and low-18 signature genes
in TCGA STAD (feature selected gene in inflammatory type). (M) Kaplan–Meier plots of overall
survival rates for the high- and low-26 signature genes in TCGA STAD (feature selected genes in
intestinal type). (N) Kaplan–Meier plots of overall survival rates for the high- and low-21 signature
genes in TCGA STAD (feature selected genes in gastric type).
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Figure 4. Validation of feature-selected genes. (A) PPI network of feature-selected and clinically
targeted ICB genes. (B) Scatter plot of correlation between IL6 and VCAN in the GTEx stom-
ach data set. (C) Bar graph of transcriptional factor in feature selected and ICB target genes.
(D) Kaplan–Meier plots of overall survival rates for the high- and low IL6 expression in TCGA
STAD. (E) Kaplan–Meier plots of overall survival rates for the high and low top four ranked genes in
TCGA STAD. (F) Kaplan–Meier plots of overall survival rates for the high and low VCAN expression
in TCGA STAD. (G) Predicted drugs from Genomics of Drug Sensitivity in Cancer database for IL6,
TGFBI, and VCAN. (H) Violin plot of VCAN expression in each stage. (I) Boxplot of VCAN expression
in non-responders (NR) and responders (R) in Samsung Medical Center data (validation set).
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We confirmed the positive correlation (R = 0.58) between VCAN and IL6 from the
stomach GTEx dataset (Figure 4B). The genes identified through the PPI network were
regulated by a transcriptome factor called STAT3 (Figure 4C). To determine how these
signature genes are clinically related to patient prognosis, we checked the TCGA STAD
data set. A high expression of IL6 (Figure 4D), VCAN, and the top four signature genes
showed a poor prognosis (Figure 4E,F). We compared drug sensitivity in GDSC for several
drug target candidate genes. IL6 was highly sensitive to shikonin, BEZ235, and IPA-3, and
VCAN was predicted to be sensitive to NSC-207895 (Figure 4G). We considered VCAN over
IL6 as a candidate gene because, although it was not a PPI hub gene, it scored high in all
four machine learning algorithms. The parameter selection function in LASSO regression
improves prediction accuracy by lowering the regression coefficient. Using the LASSO
feature selection method, we acquired a list of genes that were related to the categorization
(Table S2). The VCAN gene had the highest coefficient value in the bulk RNA expression
dataset when we evaluated the top ranked genes. VCAN expression in TCGA STAD data
were compared for each stage and was highest in stage 4 (p = 0.00338) (Figure 4H). The
actual ICB response data from the SMC indicated that VCAN was significantly high in the
non-responder group (p = 0.0019) (Figure 4I). VCAN [32] is chondroitin sulfate proteoglycan
core protein 2, a mesenchymal stem cell and lineage-specific marker that acts on chondroitin
sulfate/dermatan sulfate metabolism, ERK signaling, and glycosaminoglycan metabolism.

These results verify that our machine learning model had good performance and
worked well in the validation set.

4. Discussion

Studies have been conducted to identify potential therapeutic targets of cancer using
omics data in machine learning algorithms. We used a basic machine learning algorithm
to perform feature selection and predict the ICB response in gastric cancer. The signature
genes [33] have the advantage of predicting the ICB response of patients with gastric
cancer and provide general insights for researchers to study the mechanism. We selected a
signature gene that discriminates between the ICB responses for each algorithm using bulk
and single-cell expression data. In particular, the signature genes from the bulk sample
were related to tumor necrosis factor and naba core matrix. The high expression of these
genes showed poor prognosis. We selected signature genes for each molecular subtype. In
stem-like and mixed stroma types, high expression of the signature gene was associated
with poor prognosis, which did not significantly differ between the groups. Our analysis
predicted ICB response according to single-cell and bulk types. The performance of tumor
cells was not higher than that of other cell types regarding the ICB response, and other cell
types were more suitable for the predictive model. Among single-cell types, the random
forest model of proliferating cells showed the best performance, and the performance of
endothelial cells was poor; however, the relevance to the ICB response prediction model
was weak. We confirmed that the signatures for each cell type were significantly related to
ROS. Upon analyzing the relationship between predicted signatures and ICB target genes,
we confirmed that VCAN significantly interacted with them. VCAN acts as a mesenchymal
stem cell marker, the expression of which was significantly higher in the non-responder
group than in the responder group. In summary, our study selected a signature that
can predict ICB response with a basic machine learning algorithm using gastric cancer
bulk and single-cell expression data. This will enable efficient treatment of patients with
precision medicine.

However, there are some limitations to machine learning studies. One of these is
deterministic problems. For example, a neural network can find links between inputs and
outputs, but it cannot tell you why they are connected. Another issue is the amount of data.
Neural networks are complicated designs that necessitate a large quantity of training data
to provide useful results. As the design of a neural network grows larger, so too does the
amount of data that it requires. Thus, an immunotherapy system’s biology, as well as its
description, are beyond the comprehension and scope of neural networks.
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5. Conclusions

Predicting the immunotherapy response in patients with gastric cancer is an important
issue, particularly in stem-like molecular types, which show drug resistance and several
non-responders. Our results can be used in clinical practice for predictive responses to ICB
in patients with gastric cancer. Moreover, by suggesting drug targets, combination therapy
can be performed according to ICB response, which contributes to drug development and
precision medicine.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14133191/s1, Supplementary Table S1. LASSO feature
selection genes in single-cell data; Supplementary Table S2. LASSO feature selection genes in Y497;
Supplementary Table S3. LASSO feature selection genes in stem-like type.

Author Contributions: J.-Y.S. conceptualized the study, developed the methodology, analyzed the
data, wrote, reviewed, and edited the manuscript, and supervised the study. J.-H.C. acquired funding.
Both authors contributed to the interpretation of the results. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by a grant of the KHIDI, funded by the Ministry of Health
and Welfare, Republic of Korea (HI14C1324).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ICB immune checkpoint blockade
STAD stomach adenocarcinoma
PPI protein–protein interaction
TIDE Tumor Immune Dysfunction and Exclusion
GDSC Genomics of Drug Sensitivity in Cancer
TCGA The Cancer Genome Atlas
IGF insulin-like growth factor
IL interleukin

References
1. Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat.

Rev. Immunol. 2020, 20, 651–668. [CrossRef] [PubMed]
2. Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 2020, 11, 3801. [CrossRef] [PubMed]
3. Sung, J.-Y.; Cheong, J.-H. New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor

Immune Microenvironment. Cells 2022, 11, 768. [CrossRef]
4. Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved

immune checkpoint inhibitors. Int. Immunopharmacol. 2018, 62, 29–39. [CrossRef] [PubMed]
5. Rihawi, K.; Ricci, A.; Rizzo, A.; Brocchi, S.; Marasco, G.; Pastore, L.; Llimpe, F.; Golfieri, R.; Renzulli, M. Tumor-Associated

Macrophages and Inflammatory Microenvironment in Gastric Cancer: Novel Translational Implications. Int. J. Mol. Sci. 2021,
22, 3805. [CrossRef] [PubMed]

6. Ricci, A.; Rizzo, A.; Llimpe, F.R.; Di Fabio, F.; De Biase, D.; Rihawi, K. Novel HER2-Directed Treatments in Advanced Gastric
Carcinoma: AnotHER Paradigm Shift? Cancers 2021, 13, 1664. [CrossRef]

7. Sammut, S.-J.; Crispin-Ortuzar, M.; Chin, S.-F.; Provenzano, E.; Bardwell, H.A.; Ma, W.; Cope, W.; Dariush, A.; Dawson, S.-J.;
Abraham, J.E.; et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature 2021, 601, 623–629.
[CrossRef]

8. Cheong, J.-H.; Wang, S.C.; Park, S.; Porembka, M.R.; Christie, A.L.; Kim, H.; Kim, H.S.; Zhu, H.; Hyung, W.J.; Noh, S.H.; et al.
Development and validation of a prognostic and predictive 32-gene signature for gastric cancer. Nat. Commun. 2022, 13, 1–9.
[CrossRef]

https://www.mdpi.com/article/10.3390/cancers14133191/s1
https://www.mdpi.com/article/10.3390/cancers14133191/s1
http://doi.org/10.1038/s41577-020-0306-5
http://www.ncbi.nlm.nih.gov/pubmed/32433532
http://doi.org/10.1038/s41467-020-17670-y
http://www.ncbi.nlm.nih.gov/pubmed/32732879
http://doi.org/10.3390/cells11050768
http://doi.org/10.1016/j.intimp.2018.06.001
http://www.ncbi.nlm.nih.gov/pubmed/29990692
http://doi.org/10.3390/ijms22083805
http://www.ncbi.nlm.nih.gov/pubmed/33916915
http://doi.org/10.3390/cancers13071664
http://doi.org/10.1038/s41586-021-04278-5
http://doi.org/10.1038/s41467-022-28437-y


Cancers 2022, 14, 3191 11 of 11

9. Sung, J.-Y.; Shin, H.-T.; Sohn, K.-A.; Shin, S.-Y.; Park, W.-Y.; Joung, J.-G. Assessment of intratumoral heterogeneity with mutations
and gene expression profiles. PLoS ONE 2019, 14, e0219682. [CrossRef]

10. Reel, P.S.; Reel, S.; Pearson, E.; Trucco, E.; Jefferson, E. Using machine learning approaches for multi-omics data analysis: A review.
Biotechnol. Adv. 2021, 49, 107739. [CrossRef]

11. Kang, M.; Ko, E.; Mersha, T.B. A roadmap for multi-omics data integration using deep learning. Brief. Bioinform. 2021, 23, bbab454.
[CrossRef] [PubMed]

12. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
13. Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat.

Softw. 2010, 33, 1–22. [CrossRef] [PubMed]
14. Domingos, P.; Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Mach. Learn. 1997,

29, 103–130. [CrossRef]
15. Scholkopf, B.; Sung, K.-K.; Burges, C.; Girosi, F.; Niyogi, P.; Poggio, T.; Vapnik, V. Comparing support vector machines with

Gaussian kernels to radial basis function classifiers. IEEE Trans. Signal. Process. 1997, 45, 2758–2765. [CrossRef]
16. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA

1982, 79, 2554–2558. [CrossRef]
17. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 1996, 58, 267–288. [CrossRef]
18. Kim, J.; Park, C.; Kim, K.H.; Kim, E.H.; Kim, H.; Woo, J.K.; Seong, J.K.; Nam, K.T.; Lee, Y.C.; Cho, S.Y. Single-cell analysis of gastric

pre-cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity. NPJ Precis. Oncol. 2022, 6, 1–11.
[CrossRef]

19. Van Dijk, D.; Sharma, R.; Nainys, J.; Yim, K.; Kathail, P.; Carr, A.J.; Burdziak, C.; Moon, K.R.; Chaffer, C.L.; Pattabiraman, D.; et al.
Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell 2018, 174, 716–729.e27. [CrossRef]

20. Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a
biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [CrossRef]

21. Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive
analysis. Nucleic Acids Res. 2019, 47, W556–W560. [CrossRef] [PubMed]

22. Qin, Y.; Conley, A.P.; Grimm, E.A.; Roszik, J. A tool for discovering drug sensitivity and gene expression associations in cancer
cells. PLoS ONE 2017, 12, e0176763. [CrossRef] [PubMed]

23. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.;
Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [CrossRef] [PubMed]

24. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape:
A software environment for integrated models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]
[PubMed]

25. Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; et al. Signatures of T cell dysfunction and
exclusion predict cancer immunotherapy response. Nat. Med. 2018, 24, 1550–1558. [CrossRef]

26. Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.-M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; et al. Comprehensive
molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 2018, 24, 1449–1458.
[CrossRef]

27. Cheong, J.-H.; Yang, H.-K.; Kim, H.; Kim, W.H.; Kim, Y.-W.; Kook, M.-C.; Park, Y.-K.; Kim, H.-H.; Lee, H.S.; Lee, K.H.; et al.
Predictive test for chemotherapy response in resectable gastric cancer: A multi-cohort, retrospective analysis. Lancet Oncol. 2018,
19, 629–638. [CrossRef]

28. Sung, J.-Y.; Cheong, J.-H. The Matrisome Is Associated with Metabolic Reprograming in Stem-like Phenotypes of Gastric Cancer.
Cancers 2022, 14, 1438. [CrossRef]

29. Du, W.W.; Yang, W.; Yee, A.J. Roles of versican in cancer biology-tumorigenesis, progression and metastasis. Histol. Histopathol.
2013, 28, 701–713.

30. Gao, R.; Cao, C.; Zhang, M.; Lopez, M.-C.; Yan, Y.; Chen, Z.; Mitani, Y.; Zhang, L.; Zajac-Kaye, M.; Liu, B.; et al. A unifying gene
signature for adenoid cystic cancer identifies parallel MYB-dependent and MYB-independent therapeutic targets. Oncotarget
2014, 5, 12528–12542. [CrossRef]

31. Yang, W.; Yee, A.J. Versican V2 isoform enhances angiogenesis by regulating endothelial cell activities and fibronectin expression.
FEBS Lett. 2012, 587, 185–192. [CrossRef] [PubMed]

32. Fujii, K.; Karpova, M.; Asagoe, K.; Georgiev, O.; Dummer, R.; Urosevic-Maiwald, M. Versican upregulation in Sezary cells alters
growth, motility and resistance to chemotherapy. Leukemia 2015, 29, 2024–2032. [CrossRef] [PubMed]

33. Sung, J.Y.; Cheong, J.H. Prognosis-related gene signature is enriched in cancer-associated fibroblasts in the stem-like subtype of
gastric cancer. Clin. Transl. Med. 2022, 12, e930. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0219682
http://doi.org/10.1016/j.biotechadv.2021.107739
http://doi.org/10.1093/bib/bbab454
http://www.ncbi.nlm.nih.gov/pubmed/34791014
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.18637/jss.v033.i01
http://www.ncbi.nlm.nih.gov/pubmed/20808728
http://doi.org/10.1023/A:1007413511361
http://doi.org/10.1109/78.650102
http://doi.org/10.1073/pnas.79.8.2554
http://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://doi.org/10.1038/s41698-022-00251-1
http://doi.org/10.1016/j.cell.2018.05.061
http://doi.org/10.1038/s41467-019-09234-6
http://doi.org/10.1093/nar/gkz430
http://www.ncbi.nlm.nih.gov/pubmed/31114875
http://doi.org/10.1371/journal.pone.0176763
http://www.ncbi.nlm.nih.gov/pubmed/28453553
http://doi.org/10.1093/nar/gky1131
http://www.ncbi.nlm.nih.gov/pubmed/30476243
http://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://doi.org/10.1038/s41591-018-0136-1
http://doi.org/10.1038/s41591-018-0101-z
http://doi.org/10.1016/S1470-2045(18)30108-6
http://doi.org/10.3390/cancers14061438
http://doi.org/10.18632/oncotarget.2985
http://doi.org/10.1016/j.febslet.2012.11.023
http://www.ncbi.nlm.nih.gov/pubmed/23201264
http://doi.org/10.1038/leu.2015.103
http://www.ncbi.nlm.nih.gov/pubmed/25915825
http://doi.org/10.1002/ctm2.930
http://www.ncbi.nlm.nih.gov/pubmed/35754321

	Background 
	Methods 
	Machine Learning Algorithms 
	Single-Cell Analysis 
	Bulk Sample Meta-Analysis 

	Results 
	Prediction of ICB Response of Machine Learning Algorithms 
	Prediction of ICB Response According to Single-Cell Types 
	Molecular Characteristics of ICB Response According to Subtypes of Gastric Cancer 
	Evaluation and Validation of ICB Response Signature Genes 

	Discussion 
	Conclusions 
	References

