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Simple Summary: Cancer is the leading cause of death worldwide, and the overall aging of the
population results in an increased risk of a cancer diagnosis during a person’s lifetime. Diagnosis
and treatment at an early stage will typically increase the chances of survival. Tumors can develop
therapy resistance, and it is difficult to predict how individual patients will respond to therapy. Most
studies that aim to resolve this problem have focused on studying the composition and characteristics
of dissociated tumors, while ignoring the role of cell localization and interactions within the tumor
microenvironment. In the past decade, technological innovations have enabled multiplex imaging
analyses of intact tumors to study localization and interaction parameters, which can be used as
biomarkers, or can be correlated with treatment responses and clinical outcomes.

Abstract: The tumor microenvironment is a complex ecosystem containing various cell types, such
as immune cells, fibroblasts, and endothelial cells, which interact with the tumor cells. In recent
decades, the cancer research field has gained insight into the cellular subtypes that are involved in
tumor microenvironment heterogeneity. Moreover, it has become evident that cellular interactions in
the tumor microenvironment can either promote or inhibit tumor development, progression, and
drug resistance, depending on the context. Multiplex spatial analysis methods have recently been
developed; these have offered insight into how cellular crosstalk dynamics and heterogeneity affect
cancer prognoses and responses to treatment. Multiplex (imaging) technologies and computational
analysis methods allow for the spatial visualization and quantification of cell–cell interactions and
properties. These technological advances allow for the discovery of cellular interactions within
the tumor microenvironment and provide detailed single-cell information on properties that define
cellular behavior. Such analyses give insights into the prognosis and mechanisms of therapy resistance,
which is still an urgent problem in the treatment of multiple types of cancer. Here, we provide
an overview of multiplex imaging technologies and concepts of downstream analysis methods to
investigate cell–cell interactions, how these studies have advanced cancer research, and their potential
clinical implications.

Keywords: tumor microenvironment; multiplex imaging; spatial analysis; PhenoImager; PhenoCycler;
MIBI; MALDI-MSI; imaging mass cytometry; single-cell data analysis; cancer

1. Introduction

Tumors and their microenvironments often comprise complex and heterogeneous
tissues made up of multiple cell types, mainly tumor cells, immune cells, fibroblasts, and
endothelial cells. Interactions between these heterogeneous subsets in the tumor microen-
vironment (TME) are required for stepwise tumor evolution and tumor progression [1].
In recent years, insights into the TME have increased rapidly due to the development of
single-cell multiplex measurements, such as single-cell transcriptomics and proteomics [2].
Many single-cell proteome and transcriptome studies have been performed on single-cell
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suspensions from dissociated tumors in order to analyze the heterogeneity of the immune
microenvironment and how it relates to therapy responses [3]. For example, multiple
single-cell studies, employing RNA sequencing and flow cytometry of isolated tumor
infiltrating T cells, have demonstrated that T cell exhaustion in the TME can predict the
response to immune checkpoint inhibition [4,5]. These single-cell approaches have led to
the discovery of various tumor-specific cell types and activated transcriptional programs in
the TME relevant to cancer evolution, cancer progression, or patients’ treatment responses.
While these studies bring valuable and novel insights, single-cell isolation can cause the
loss of cell types and proteins that are sensitive to dissociation methods, and disregards the
extracellular matrix. Moreover, single-cell suspension analyses inevitably overlook tissue
organization and specific cell–cell interactions in pathology. To overcome these limitations,
spatial analysis technologies have been developed over the last decade to analyze the
intact TME, which have, for example, revealed B cell and T cell co-localization in organized
tertiary lymphoid structures (TLS) [6]. Some of the multiplex spatial technologies that
have been developed utilize fluorescence-based microscopy [7–9], and others make use of
antibody-targeted sequencing [10] or mass spectrometry-based detection to generate spatial
expression data [11–13]. Spatial data has opened up new possibilities for studying specific tis-
sue regions and cell subtypes, local cellular behavior marked by active signal transduction or
receptor expression, and interactions between diverse cell types in the TME. Here, we review
spatial imaging technologies that have been developed for multiplex targeted transcriptome
analyses, and both targeted and untargeted proteome analyses. Then, we discuss how these
data can be studied using tools in open-access software to explore TME organization and
heterogeneity [14–16]. This review highlights insights into cancer biology and prognosis
that have been generated in the last decade by applying different spatial multiplex imaging
methods and analysis methods, as summarized in Figure 1.
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Fig 1 
  

Figure 1. Spatial analysis of the tumor microenvironment (TME). Methods, results, and implications
in cancer research. This review provides an overview of technologies that are used for TME spatial
analyses in cancer research. These technologies employ microscopy (PhenoImager, PhenoCycler),
mass-spectrometry (imaging mass cytometry (IMC)), multiplexed ion beam imaging by time-of-flight
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(MIBI), and (matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MS)), or
digital spatial profiling (DSP). PhenoImager, PhenoCycler, IMC, and MIBI can be used to investigate
single cells and to explore the cellular composition, heterogeneity, and cellular interactions of the
TME. MALDI-MSI can be employed to investigate the TME metabolome in specific regions, and DSP
can be used to explore the transcriptome in bulk cells of up to three different subsets. These multiplex
spatial methods have provided novel insights into specific biomarkers and TME spatial hallmarks that
can be used for tumor subtype classification. Moreover, these methods have uncovered which TME
characteristics are related to tumor evolution and progression to advanced stages, clinical prognosis
parameters such as overall survival (OS) and progression-free survival (PFS), and prediction of
therapy responses.

2. Discoveries within the TME Using Multiplex Imaging Methods

In recent years, novel technologies have allowed for the development of spatial multiplex
imaging, which enables the simultaneous analysis of >5 markers of interest on a tissue slide while
conserving the spatial context. Multiplex spatial imaging methods allow the generation of large
datasets containing clinically relevant biological data, consisting of multi-layered information.
A schematic overview of each discussed method is provided in Figures 2–7. Additionally,
the technical specifications, advantages, and disadvantages of each multiplex method are
summarized in Table 1. These multiplex spatial methods facilitate in-depth investigation of TME
heterogeneity within and between various cancer types. Reports of multiplex spatial imaging
studies often provide detailed descriptions of differences in cellular composition, novel cellular
phenotypes, or co-localization of specific cell types. Observations made by different multiplex
spatial imaging methods are summarized in Table 2 and will be discussed below. Finally,
data of these multiplex spatial imaging methods are used for tumor classification and grading,
clinical outcomes, therapeutic responses to immune checkpoint inhibitors, or other therapies
like chemotherapy, radiotherapy, or chemoradiotherapy. All clinically relevant applications are
listed per method in Table 3.



Cancers 2022, 14, 3170 4 of 30

Table 1. Summary of technical details, advantages, and disadvantages of each multiplex imaging method.

Technique Ref. Principle Multiplex Tissue Applications Resolution * Advantages Disadvantages

Targeted Multiplex Imaging Approaches Using Antibodies

Pheno-
Imager [9] Spectral immuno-

fluorescence

Up to six fluorophores
(+one nuclear
counterstain) or eight
fluorophores (+one
nuclear counterstain)
using the high
throughput version

FFPE,
FF

TME phenotyping,
prognosis and therapy
response prediction

Adjustable,
max 200 nm

- Allows imaging of large tumor areas
- No spillover
- One round of imaging
- Non-destructive
- Automated or semi-automated
- Adjustable resolution

- Requires PhenoImager system
- Requires pre-designed or self-coupled antibodies

Pheno-
Cycler [7]

Cyclic staining with
oligo-nucleotide-conjugated
antibodies

≈66 makers,
depending on the
number of cycles **

FFPE,
FF

TME phenotyping,
prognosis and therapy
response prediction

Adjustable,
max 200 nm

- Allows imaging of large tumor areas
- Automated or semi-automated assay
- Non-destructive
- Allows generation of single cell data
- Adjustable resolution

- Requires Phenocycler Fusion system
- Multiple cycles of imaging of the same area
- Requires pre-designed or self-coupled antibodies
- Throughput hours to days depending on the cycles

MIBI-
TOF [12] Metal-

labeled antibodies Up to 40 markers ** FFPE,
FF

TME phenotyping,
prognosis and
therapy response
prediction

Adjustable,
max 260 nm # [17]

- Non-destructive
- Adjustable resolution
- Allows generation of single cell data

- Requires a specific machine
- Non-automated or semi-automated assay
- Requires pre-designed or self-coupled antibodies

IMC [13] Metal-
labeled antibodies Up to 40 markers ** FFPE,

FF

TME phenotyping,
prognosis and therapy
response prediction

1000 nm
- No spillover
- One round of imaging
- Allows generation of single cell data

- Requires a specific machine
- Limited resolution (1000 nm)
- ROI selection
- Requires pre-designed or self-coupled antibodies
- Destructive
- Non- or semi-automated

DSP [10]
PC-linked mRNA
hybridization probe or
primary antibody

Up to 800 targets FFPE,
FF

TME phenotyping,
prognosis and therapy
response prediction

10 µm
- Non-destructive
- Allows generation of single cell data
- Conserves spatial transcriptome data

- Requires a specific machine
- ROI selection
- Requires pre-designed or self-coupled antibodies

Untargeted Multiplex Imaging

MALDI-

MSI
[18]

Labeling-free technique
used for (relative and
absolute) quantitative and
spatial analysis of the
distribution of molecules

Global identification of
thousands of
biomolecules

FFPE,
FF

Tumor subtyping,
tumor grading,
biomarker discovery
for therapeutic
response or prognosis
prediction

600 nm

- Identify unknown biomolecules
(glycans, proteins, lipids, and
metabolites)

- Does not require antibody labeling
- High sensitivity and specificity

- requires a specific machine
- limited resolution
- ROI selection
- Destructive

* This includes the theoretical maximum resolution. # A resolution limit of 260 nm is mentioned in a recent publication; however, the data are acquired with a resolution of 500 nm.
** Theoretically, there is no upper limit, but published data currently show a limit of 40 markers for MIBI-TOF and IMC, mainly due to reagent availability. Published data for the
PhenoCycler currently show a limit of 66 markers. Abbreviations: DSP: digital spatial analysis, FF: fresh frozen, FFPE: formalin-fixed paraffin-embedded, IMC: imaging mass cytometry,
MALDI-MSI: matrix-assisted laser desorption ionization mass spectrometry imaging, MIBI-TOF: multiplexed ion beam imaging by time-of-flight, PC: photocleavable, ROI: region of
interest, TME: tumor microenvironment.
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Table 2. Summary table of multiplex imaging studies that describe tumor microenvironment hetero-
geneity, specific cell types, novel immune cell subsets, cellular interactions, or (disease) comparisons.

Category Method Ref Year Cancer Type Described Observations

TME
Heterogeneity

Pheno-
Imager [19] 2020 Breast and

lung cancer Different (immune) cell compositions within the TME

MIBI-
TOF [20] 2019 Breast

cancer
Immune cell subset balances and compartmentalization within
TNBC TME

MIBI-
TOF [21] 2018 Breast

cancer
Different immune cell compositions and immune cell subset
balance within the TNBC TME

IMC [22] 2020 Breast
cancer Various (immune) cell compositions within the TNBC TME

IMC [23] 2021 Lung
cancer Various (immune) cell compositions within the NSCLC (SCC) TME

IMC [24] 2021 OSCC Various (immune) cell compositions within the TME

IMC [25] 2021 Bladder
cancer Different immune cell compositions within the TME

DSP [26] 2019 Prostate
cancer

Different (immune) cell compositions and signaling pathways
within the TME of lytic and blastic bone metastasis

DSP [27] 2021 Prostate
cancer

Inter- and intra-tumoral differences in (immune) cell compositions
in metastatic prostate cancer

Specific
Cell Types

Pheno-
Imager [9] 2019 Colorectal

cancer
FAP-expressing CAFs in the invasive tumor front in stroma-high
tumors

Pheno-
Imager [28] 2021 Melanoma Enrichment of innate immune cells, specific DC subset and STAT3

expression Stage IV with leptomeningeal disease

Pheno-
Imager [29] 2020 Colorectal

cancer TAMs subsets in stromal and epithelial compartments

MIBI-
TOF [17] 2020 cSCC Specific keratinocyte population within the TME

IMC [30] 2022 Lung
cancer Enriched PD-L1+CD8+ T cell subset in NSCLC

IMC [31] 2021 Breast
cancer

High p-eIF4E expression in tumor cells and change immune cell
composition

IMC [32] 2021 Colorectal
cancer

Elevated proliferating and cytotoxic CD8+ T cell subsets in
hypermutated CRC

(Disease)
Comparisons

Pheno-
Imager [33] 2017 Prostate

cancer
P300 increase and SIRT2 decrease when comparing BPH, prostate
cancer to metastatic disease

Pheno-
Imager [34] 2018 Esophageal

cancer
High Notch Intracellular Domain expression in ESCC compared to
benign or reactive epithelium

MIBI-
TOF [35] 2022 Breast

cancer
Comparing fibroblast composition in healthy breast tissue, DCIS,
and IBC.

IMC [31] 2021 Breast
cancer

Comparing Immune cell composition before, during and after
pregnancy

IMC [32] 2021 Colorectal
cancer Comparing Immune cell composition in DB-CRC and nDB-CRC

IMC [36] 2018 Prostate
cancer Comparing bone marrow, prostate, and metastatic tissue

DSP [26] 2019 Prostate
cancer

Different (immune) cell compositions and signaling pathways
when comparing the TME of lytic and blastic bone metastasis

DSP [37] 2020 Endocrine
tumors

Comparing the TME of neuroendocrine tumors and
neuroendocrine carcinomas
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Table 2. Cont.

Category Method Ref Year Cancer Type Described Observations

DSP [38] 2021 Glioblastoma Comparing immune-oncology proteins in methylated and
unmethylated isocitrate dehydrogenase wild-type glioblastoma

DSP [39] 2021 Breast cancer Comparing immune cell profiles in luminal and basal-like breast
cancer

DSP [40] 2021 Colorectal
cancer

Comparing the TME after neoadjuvant chemotherapy alone or in
combination with ICPI in CRC patients

Cellular
Interactions

Pheno-
Imager [41] 2018 Lung cancer Tumor–T cell interactions in tumor core and CD8+ T cell–Treg cells

associated with overall survival in NSCLC

Pheno-
Cycler [42] 2022 Breast cancer Increased interaction between CD4+ and CD8+ T cells after cPLA2

treatment in mice

Novel
Immune IMC [23] 2021 Lung cancer

Identification of
CD3−CD4+FOXP3+CD25−CD127−TNFα+IFNγ−TdT+ cells in
NSCLC (SCC)

Subtypes IMC [43] 2020 Hodgkin
lymphoma

CD4+LAG3+ T cells in MHC-II negative classic Hodgkin
Lymphoma

IMC [44] 2019 Colon cancer CD4+EpCAM+PD-L1+ T cells with upregulated
p38-MAPK-MAPKAPK2 pathway

Abbreviations: BPH: benign prostatic hyperplasia, CD3: cluster of differentiation 3, CD4: cluster of differentiation
4, CD8: cluster of ddifferentiation 8, CD25: cluster of differentiation 25, CD127: cluster of differentiation 127,
CAF: cancer-associated fibroblast, cPLA2: cytosolic phospholipase A2, CRC: colorectal cancer, cSCC: cutaneous
squamous cell carcinoma, DB: durable benefit, DC: dendritic cell, DCIS: ductal carcinoma in situ, DSP: digital
spatial analysis, EpCAM: epithelial cell adhesion molecule, ESCC: esophageal squamous cell carcinoma, FAP:
fibroblast activation protein, FOXP3: forkhead box P3, ICPI: immune checkpoint inhibition, IBC: invasive
breast cancer, IFNγ: interferon gamma, IMC: imaging mass cytometry, LAG3: lymphocyte activation gene 3,
MAPK: mitogen-activated protein kinase, MAPKAPK2: mitogen-activated protein kinase-activated protein kinase
2, MHC-II: major histocompatibility complex II, MIBI-TOF: multiplexed ion beam imaging by time-of-flight,
nDB: non-durable benefit, NSCLC: non-small cell lung cancer, OSCC: oral squamous cell carcinoma, PD-L1:
programmed death-ligand 1, p-eIF4E: phospho-eukaryotic translation initiation factor 4E, SCC: squamous cell
carcinoma, SIRT2: sirtuin 2, STAT3: signal transducer and activator of transcription 3, TAM: tumor-associated
macrophages, TdT: terminal deoxynucleotidyl transferase, TME: tumor microenvironment, TNBC: triple-negative
breast cancer, TNFα: tumor necrosis factor alpha, Treg: regulatory T cell.

Table 3. Summary table of multiplex imaging studies that describe clinical outcomes, treatment
responses, biomarkers, and tumor classification and grading.

Category Method Ref Year Cancer Type Described Observations

Clinical
Outcome

Pheno-
Imager [41] 2018 Lung

cancer
Tumor–T cell interactions in tumor core and CD8+ T cell: Treg cell ratios were
associated with overall survival in NSCLC

Pheno-
Imager [45] 2021 Ovarian

cancer
High ratios of CD8:FOXP3 and CD8: PD-L1 T cells ratios were associated with
favorable overall survival in high-grade serous OC

Pheno-
Imager [34] 2018 Esophageal

cancer
High-notch intracellular domain-expressing ESCC tumors have a decreased
overall survival rate

Pheno-
Imager [46] 2017 Renal cell

carcinoma
PD-1+LAG3+CD8+ T cells were associated with poorer 36 month overall
survival and higher relapse risk

Pheno-
Imager [47] 2015 Prostate

cancer
Lowest quartile nuclear SBP1 expression levels were associated with a higher
recurrence risk after radical prostatectomy

Pheno-
Imager [48] 2022 Ovarian

cancer
Increased PD-L1 macrophages, ICOS+ Th > Treg numbers post-therapy, and
decreased proximity ICOS+ Th to Treg cells in high-grade serous OC

Pheno-
Cycler [49] 2020 Colorectal

cancer Specific cellular neighborhoods are associated with overall survival

MIBI-TOF [21] 2018 Breast
cancer Compartmentalized tumors are associated with increased survival in TNBC

MIBI-TOF [35] 2022 Breast
cancer Progressors from DCIS to IBC had a thicker and continuous MEC layer
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Table 3. Cont.

Category Method Ref Year Cancer Type Described Observations

IMC [22] 2020 Breast
cancer

Single-cell pathology grouping improved the prediction of overall survival in
TNBC

IMC [25] 2021 Bladder
cancer

Stem-like cell cancer cluster (ALDH+PD-L1+ER-β−) is associated with poor
prognosis in MIBC

IMC [50] 2022 Breast
cancer

Structures containing Tregs and exhausted T cells and structures enriched in
granulocytes or APC are correlated with poor prognosis in ER−, but not ER+

breast cancer tumors

IMC [51] 2021 Ovarian
cancer

LTS showed increased number of granzyme B+ CTLs and CD45RO+CD4+ T
cells, and a reduction in tumor cells and endothelial cells in high–serous OC.
Granzyme B+ CD8+ T cells and CD45RO CD4+ interactions were correlated
with overall survival

IMC [52] 2019 Gastric
cancer

Responding mFOLFOX-treated tumors showed higher platinum levels
compared to non-responders

IMC [53] 2021 Lung
cancer Abundant Ebo CD8+ TILs are correlated with poor overall survival in NSCLC

MALDI-
MSI [54] 2019 Breast

cancer Identified nine proteins associated with EGFR related to progression in TNBC

MALDI-
MSI [55] 2021 Colorectal

cancer
Different N-glycosylation patterns in TME to distinguish short- and long-term
survivors

MALDI-
MSI [56] 2016 Ovarian

cancer
Different N-glycosylation patterns in TME to distinguish short- and long-term
survivors

DSP [57] 2020 Breast
cancer

High CD4 and ICOS expression in stroma and HLA-DR expression in stroma
or epithelial compartment were associated with long-term disease-free
survival in TNBC

DSP [58] 2019 Lung
cancer

PD-L1 expression in the macrophage compartment was associated with
progression-free survival and overall survival in NSCLC

DSP [59] 2020 Lung
cancer

High CD4 and CD56 expression in the immune cell compartment was
associated with overall survival, progression-free survival, and durable
benefit in NSCLC

DSP [60] 2020 B-cell
lymphoma

High LAG3 expression was associated with poorer progression-free survival
and overall survival

DSP [61] 2020 Lung
cancer

Expression of CD3, ICOS, and CD34 in the tumor compartment was
associated with improved overall survival in NSCLC

DSP [62] 2018 Melanoma Low CD3, B2M, and PD-L1 and low IFNγ signature were associated with
relapse after adjuvant or neoadjuvant ipilimumab and nivolumab

Treatment
Response
Human

Pheno-
Imager [63] 2021 Head and neck

SCC
CD3+ T cells and CD8+ T cells are increased post-treatment with cetuximab in
responders, compared to pre-treatment

Pheno-
Imager [64] 2017 Rectal

cancer
Lower CD4: PD-L1, CD8: PD-L1, FOXP3: PD-L1 ratios in total regression
compared to residual disease

IMC,
MALDI
-MSI

[65] 2022 Pancreatic
cancer

Gemcitabine metabolites induce γH2AX in KI67+ Phosphorylated-ERK+ and
Phosphorylated-S6+ areas in pancreatic ductal adenocarcinoma

IMC [66] 2019 Breast cancer
(HER2+)

Elevated ECD/ICD ratio in cytokeratin positive compartment had a lower
number of 5-year reoccurrence after trastuzumab

IMC [67] 2021 Rectal
cancer

Reduced Treg cells and TAMs, higher CTL levels were associated with
complete response

IMC [68] 2021 Gastro-
esophageal

Comparing immune cell composition changes in
ramucirumab/paclitaxel-responding patients with or without ICPI
administration in gastro-esophageal adenocarcinoma

DSP [69] 2021 Hairy cell
leukemia

Changes in CD8 expression and tumor burden are associated with a durable
response to cladribine

DSP [58] 2019 Lung
cancer

PD-L1 expression in the macrophage compartment was associated with
immune therapy response in NSCLC
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Table 3. Cont.

Category Method Ref Year Cancer Type Described Observations

DSP [70] 2021 Head and neck
SCC

Immune cell number and CD4, CD68, CD45, CD44, and CD66b were
correlated with progressive disease during ICPI treatment

DSP [71] 2018 Melanoma CD45RO, B2M, CD3, CD8, CD19, CD20, and Ki67 in the immune cell
compartment were associated with ICPI response

Treatment
Response
Mice

Pheno-
Imager [72] 2022 HPV16+ solid

tumors

Total macrophages, activated CTL, and number of activated T cells are higher
in responders compared to non-responders to HPV16+ vaccine (ISA101) with
nivolumab

Pheno-
Cycler [42] 2022 Breast

cancer
CD4+ and CD8+ T cell infiltration and interaction increased upon cPLA2
inhibitor treatment

IMC [73] 2020 Biliary tract
cancer Elevated CD8+ T cell numbers in small anti-PD-1 sensitive tumors

IMC [74] 2021 Lung
cancer Change in immune infiltrate upon KRAS inhibition in NSCLC

IMC [75] 2021 Breast
cancer

ITT and IPT anti-CD40/PD-L1 NDES treatment increased immune subsets
and anti-tumor responses in TNBC

Tumor
Classification
& Grading

Pheno-
Imager [34] 2018 Esophageal

cancer
Higher notch intracellular domain expression is correlated with higher tumor
stage and grade in ESCC

MALDI-
MSI [76] 2022 Lung

cancer Classifies SCC or AD (NSCLC) based on glutamine or taurine in the TME

MALDI-
MSI [77] 2019 Lung

cancer
Spatial distribution of CK5/6, HSP27, and CK15 to classify SCC or AD
(NSCLC)

MALDI-
MSI [78] 2010 Breast

cancer Identification of cysteine-rich protein 1 in HER2+ breast cancer

MALDI-
MSI [79] 2020 NSCLC Elevated levels of collagenase type III can discriminate low-grade

adenocarcinoma from healthy lung tissue

Biomarker
Discovery IMC [80] 2021 Melanoma B2M expression in tumor and stroma compartment is correlated with longer

overall survival to anti-PD-1 therapy

MALDI-
MSI [81] 2020 Lung

cancer Identification of neutrophil defensins in ICPI-responsive NSCLC patients

MALDI-
MSI [54] 2019 Breast

cancer Identified nine proteins associated with EGFR related to progression in TNBC

Abbreviations: AD: Adenocarcinoma, ALDH: aldehyde dehydrogenase, B2M: beta-2 microglobulin, CD3: cluster
of differentiation 3, CD4: cluster of differentiation 4, CD8: cluster of differentiation 8, CD19: cluster of differentia-
tion 19, CD20: cluster of differentiation 20, CD34: cluster of differentiation 34, CD40: cluster of differentiation 40,
CD44: cluster of differentiation 44, CD45: cluster of differentiation 45, CD56: cluster of differentiation 56, CD66b:
cluster of differentiation 66b, CD68: Cluster of Differentiation 68, CK5/6: Cytokeratin 5/6, CK15: Cytokeratin 15,
cPLA2: cytosolic phospholipase A2, CTL: cytotoxic T cells, DCIS: ductal carcinoma in situ, DSP: digital spatial
analysis, Ebo: burned-out effector, ECD: extracellular domain, EGFR: epidermal growth factor receptor, ER:
estrogen receptor, ER-β: estrogen receptor beta, ERK: extracellular signal-regulated kinase, ESCC: esophageal
squamous cell carcinoma, FOXP3: forkhead box P3, γH2AX: gamma h2a histone family member X, HER2: human
epidermal growth factor receptor 2, HLA-DR: human leukocyte antigen—DR isotype, HPV16: human papilloma
virus 16, HSP27: heath shock protein 27, ICD: intracellular domain, ICPI: immune checkpoint inhibition, ICOS:
inducible T cell costimulation, IBC: invasive breast cancer, IFNγ: interferon gamma, IMC: imaging mass cytometry,
IPT: intraperitoneal treatment, ITT: intratumoral treatment, KRAS: Kirsten rat sarcoma viral oncogene homolog,
LAG3: lymphocyte activation gene 3, LTS: long-term survivors, MALDI-MSI: matrix-assisted laser desorption
ionization mass spectrometry imaging, MEC: myoepithelial E-cadherin, mFOLFOX: modified folinic acid, fluo-
rouracil, and oxaliplatin, MIBC: muscle invasive bladder cancer, MIBI-TOF: multiplexed ion beam imaging by
time-of-flight, NDES: nanofluidic drug-eluting seed, NSCLC: non-small cell lung cancer, OC: ovarian carcinoma,
PD-1: programmed cell death protein 1, PD-L1: programmed death-ligand 1, SBP1: selenium binding protein 1,
SCC: squamous cell carcinoma, TAM: tumor-associated macrophages, TIL: tumor-infiltrating lymphocyte, TME:
tumor microenvironment, TNBC: triple-negative breast cancer, Treg: regulatory T cell.

2.1. Development of the Imaging Field

The first key studies used immunohistochemistry to analyze a limited number of
markers simultaneously [19]. Immunohistochemistry has contributed to the development
of the ‘immunoscore’, which showed for the first time that, compared to histopathologi-
cal analysis, immunological imaging data of T cells in tumors provide a better predictor
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of the clinical outcome in patients with colorectal cancer (CRC). Besides immunohisto-
chemistry, multiplex immunofluorescence is routinely used to stain the TME. Multiplex
immunofluorescence is a method combining one to five different antibodies coupled with
fluorophores. This method allowed for the first identification of distinct cellular phenotypes
within the TME and is routinely used in diagnostics. The advantage of this method is
that fluorophores can be imaged simultaneously, and the signal has a large linear range
which allows quantification. These fluorophores must be chosen carefully to prevent signal
spillover, and fluorophore combinations are limited.

2.2. PhenoImager

To minimize spillover in other channels, a multispectral imaging approach is required.
A decade ago, the multispectral imager, PhenoImager, formerly known as Vectra (Figure 2),
became commercially available to study the TME. This method allows the use of four to
seven primary antibodies plus one nuclear counterstain. The antibody staining is performed
in repetitive cycles of one primary antibody, secondary horseradish peroxidase (HRP)-
labeled antibody, followed by addition of an opal polymer. This HRP converts the opal
fluorophore with a short half-life. The primary and secondary antibodies are stripped, the
following staining cycle begins, and finally the tissue slide is imaged using the PhenoImager.
This method has been used to study tumor heterogeneity [41], cell–cell interactions [28], the
spatial localization of subsets [9,29,45], prognosis prediction, [33,34,46–48], evaluation of
therapeutic responses to immune checkpoint inhibition (ICPI), and changes in the immune
landscape after chemotherapy with or without radiotherapy [49,63,64,72].

 

2 

 

 

Fig 2  
  

Figure 2. PhenoImager (Vectra) workflow. PhenoImager allows for the use of up to six primary
antibodies (or eight in case of the high throughput version) and a nuclear stain. Antibody staining is
performed in repetitive cycles of one primary antibody, a secondary horseradish peroxidase (HRP)-
labeled antibody, followed by the addition of an opal polymer. HRP converts the opal fluorophore
when peroxidase is present. Next, the primary and secondary antibodies are stripped by heat
treatment, followed by the next staining cycle, and finally the tissue slide is analyzed using the
PhenoImager microscopy system, resulting in data images. Cells in these images can be segmented
and downstream analysis can be performed (e.g., cell type mapping and marker expression).
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2.2.1. Cell–Cell Interactions and Spatial Localization within the TME

The first study used the Vectra imager to investigate spatial interactions between
T cells and tumor cells based on the cross-type nearest neighbor distance distribution
function (G-cross) in 120 samples of non-small lung cancer (NSCLC) patients [28]. Spatial
data analysis revealed that interactions between regulatory T cells (Treg) and tumor cells
in the tumor core, but not in the invasive margin, were associated with overall survival.
Moreover, interactions between CD8+ T cells and Treg within the invasive margin were
associated with overall survival, but not when these interactions were in the tumor core.

Another study characterized the cancer-associated fibroblasts (CAFs) in the invasive mar-
gin of thirty tumors (stage III) of CRC patients [9]. Stoma-high colorectal tumors showed a
reduced number of specific CAFs (FSP1+CD45+ cells) and increased fibroblast activation protein
(FAP) expression, compared to stoma-low tumors. These FAP-expressing CAFs were most
abundant in the invasive margin, compared to the tumor center, in stroma-high colorectal
tumors. Together, these studies demonstrated that specific cellular localization in the tumor and
cellular interactions can distinguish tumor subtypes and/or predict clinical outcomes.

2.2.2. Clinical Data Correlated to Spatial Imaging Analysis

Next, different research groups explored the correlation between immune cell spatial
localization and clinical outcomes for various treatments, such as platinum-based chemotherapy,
chemoradiotherapy, immunotherapy, or vaccination in combination with ICPI. For example,
the immune cell composition in twenty-four human papillomavirus 16 (HPV16), positive solid
tumors, from patients treated with HPV16 peptide vaccine in combination with twelve months
of nivolumab, were analyzed [49]. The total amount of macrophages (PD-L1+CD68+, PD-
L1−CD68+), both activated cytotoxic T cells (CTLs) (PD-1+CD8+CD3+) and T cells (PD-1+CD3+),
was only increased in responders. Notably, only the expression of the checkpoint C3a receptor
(C3aR) on macrophages correlated with progression-free survival.

Another study investigated the treatment responses of seventy-five patients with rectal
cancer who received preoperative chemoradiotherapy [72]. Treatment responses were
divided into two groups of patients with either total regression, or a minimal, moderate, or
near-total response. Here, mean CD4+ T cell infiltration and PD-L1+ lymphocyte density,
as well as the ratios of CD4:PD-L1, CD8:PD-L1, and FOXP3:PD-L1, increased significantly
in rectal tumors, which showed total regression.

Two other studies also captured the changes in T cells in the TME upon treatment.
The first study used nine paired pre-treatment and post-treatment samples of patients with
high-serous stage III-IV ovarian carcinoma, treated with carboplatin and taxane (paclitaxel
or docetaxel). Before treatment, tumors contained high counts of stromal macrophages,
the numbers of which were reduced after therapy [63]. Moreover, in the majority of the
patients, T helper cell (Th cell):Treg cell ratios changed, shifting towards a balance in which
the Th cells outnumbered the Treg cells. Furthermore, the proximity of ICOS+ Th cells and
Treg cells decreased post-treatment.

The second study included twenty-two paired pre-treatment and post-treatment
immunotherapy-treated samples from patients with stage III-IV head and neck squamous
cell carcinoma (HNSCC). In this cohort, seven patients with a good therapy response showed
no significant differences in CD3+ and CD4+ T cell numbers compared to patients with poor
treatment response [64]. Patients with a good therapy response showed significantly increased
CD8+ T cell numbers three to four weeks after cetuximab treatment. Collectively, these studies
show that specific immune cell subsets, cellular ratios, and checkpoint expressions could change
upon receipt of different treatments, which could be related to responses to specific therapies.

2.3. PhenoCycler

PhenoCycler, formerly known as CO-Detection by Indexing (CODEX), is a commer-
cially available multiplex tissue imaging platform that uses oligonucleotide conjugated
antibodies to detect up to one hundred markers in the same tissue (Figure 3). Initial an-
tibody staining is followed by hybridization cycles with three reporter oligonucleotides
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containing spectrum-separable fluorophores. These reporter oligonucleotides hybridize
with the unique antisense oligonucleotide that is conjugated to the primary antibody. After
each cycle, a microscopy image is acquired, followed by removing the fluorophores and
a novel hybridization cycle. Upon the completion of all cycles, the images are compiled
and aligned to achieve a multiplex image [7]. This cycle-dependent approach drastically
increased the number of potential markers, and opened opportunities for detailed charac-
terization and spatial exploration of the TME [20,42].
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Fig 3 
  

Figure 3. PhenoCycler (CODEX) workflow. Tissue is labeled using oligonucleotide-conjugated
antibodies to detect up to one hundred markers simultaneously. Initial antibody staining is followed
by hybridization cycles with three reporter oligonucleotides containing spectrum-separable fluo-
rophores, which hybridize with the unique antisense oligonucleotide conjugated to the primary
antibody (left). After each cycle, a microscopy image is acquired (imaging with PhenoCycler). Next,
reporters are removed; this is followed by the next reporter hybridization cycle. Images from all
cycles are compiled and registered to generate multiplex data images. During imaging analysis,
these images can be processed into single-cell expression data and downstream analysis is performed
(e.g., cell type mapping, clustering, marker expression).

Characterization and Spatial Exploration of the TME

One of the first studies to explore the spatial characterizations of the TME using Pheno-
Cycler was performed in a stage III-IV CRC cohort. This study employed a fifty-six-marker
panel to investigate differences between thirty-five colorectal tumors with de novo TLS
at the invasive front, compared to tumors that lacked TLSs but contained a diffuse tumor
infiltrate [42]. The single-cell data were visualized as cellular neighborhoods and revealed
certain differences. For example, cellular neighborhoods enriched for granulocytes and
PD-1+CD4+ T cells were positively correlated with overall survival for patients with col-
orectal tumors that displayed diffuse infiltrates. Moreover, overall survival in these patients
was associated with cellular neighborhoods containing high CD4+ T cells frequencies and
CD4+/CD8+ T cell ratios. In contrast, frequencies outside these cellular neighborhoods did
not influence the overall survival rate.

More recently, PhenoCycler has also been used to elucidate the role of the S100A7/cytosolic
phospholipase A2 (cPLA2)/Prostaglandin E2 (PGE2) signaling pathway in breast cancer; it
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was found that S100A7 is associated with tumor growth and metastasis [20]. Breast cancer-
bearing mice that overexpressed S100A7 were treated with the cPLA2 inhibitor, and the
analysis revealed changes in T cell composition and cellular interactions. Cluster analysis
revealed that cPLA2 inhibitor treatment promoted infiltration of activated CD4+ T cells
and CD8+ T cells within the tumor. Furthermore, the highest degree of interaction among
CD4+ and CD8+ T subsets was observed after cPLA2 inhibitor treatment. Studying these
anti-tumor responses in relation to tumor-infiltrated T cells during treatment is essential
for establishing whether the number of infiltrating immune cells is correlated with the
anti-tumor response. Additionally, studies that focus on immunological changes within
the TME will help to uncover biological mechanisms induced by the treatment, and enable
biomarker discovery to predict clinical responses.

2.4. Multiplexed Ion Beam Imaging by Time-of-Flight

Multiplexed ion beam imaging by time-of-flight (MIBI-TOF, Figure 4) can theoretically
utilize up to 100 primary antibodies, each of which can be coupled to unique metal iso-
topes. A multiplex antibody panel is incubated on a tissue section, and a primary oxygen
duoplasmatron ion beam applies a raster to the sample surface. Next, the beam ionizes
the metal-conjugated antibody-containing rasters, which are subsequently detected as sec-
ondary ions separated by mass and charge by time-of-flight mass spectrometry. The mass
spectrometry data are integrated with the single-cell images to generate a tabular chart that
contains single-cell data, which can be used to generate spatial profiles [12]. MIBI-TOF is
used to study tumor spatial heterogeneity [17,21,35] and tumor progression [80].
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Figure 4. Multiplexed ion beam imaging by time-of-flight (MIBI-TOF) workflow. Tissues are first
labeled with a multiplex panel of antibodies conjugated with heavy metals containing polymers. Next,
these are directly ionized to generate secondary ions. Ions are filtered and detected by time-of flight
mass spectrometry. Next, multiplex images are generated, containing images depicting expressions
for each separate antibody–metal conjugate. These images can be processed into single-cell expression
data. During imaging analysis, these images can be processed into single-cell expression data and
downstream analysis is performed (e.g., cell type mapping, clustering, marker expression).
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2.4.1. Tumor Spatial Heterogeneity

MIBI-TOF has been employed to explore the spatial context of the TME and to observe
heterogeneity in both tumor and immune cell numbers and in their localization [17,21,35].
For instance, in a cohort containing tissue samples from forty-one TNBC patients, a 36-plex
antibody panel, which included phenotypic markers and markers for intratumoral immune
cells, was used to investigate the TME [17,21]. This study revealed that the numbers of infil-
trating immune cells correlated with the numbers of CD31+ vascular endothelium cells [17].
Additionally, patients either showed high CD4+ T cell numbers and low macrophage num-
bers, or the inverse, and most patients displayed enrichment of neutrophils and depletion
of B cells.

In a follow-up study, this research group used the same sample set to further analyze
the immune cell spatial organization and composition within the TME [21]. Most tumors
showed predominantly PD-1+CD4+ T cells, and follow-up analysis revealed that PD-1 was
mainly expressed by CD4+ T cells, while the majority of PD-L1 is expressed by macrophages.
Spatial analysis revealed that the PD-1+CD4+ T cells colocalized with CD8+ T cells or PD-
L1+ macrophages in separate immune cell regions. In contrast to the first study, the later
analysis showed that B cells were infiltrated in the tumor core instead being depleted.
The TNBCs were classified as either compartmentalized, meaning that there are regions
predominately composed of immune cells or tumor cells, or as mixed tumors, meaning
high spatial mixing of immune cells and tumor cells. Compartmentalized TNBC tumors
were associated with PD-1 expression on CD4+ T cells and PD-L1 expression on myeloid-
derived cells in the tumor–immune cell boarder. In contrast, mixed tumors have PD-L1
expression on tumor cells and PD-1 expression on CD8+ T cells. Additionally, the spatial
proximity for receptor–ligand pairs was analyzed. This analysis revealed that myeloid-
derived suppressor cells are in near proximity of a cluster of tumor cells and lymphocytes.
Upon closer image inspection, a concentric cellular organization was observed, consisting of
tumor cells aligned with myeloid-derived suppressor cells, followed by a lymphocyte zone.

MIBI-TOF has been combined with other high-plex technologies, spatial transcrip-
tomics, and single-cell sequencing to explore a tumor-specific keratinocyte population in
ten cutaneous squamous cell carcinoma (cSCC) tumors [35]. Droplet-based single-cell RNA
sequencing of ten paired tumor–skin regions of dissociated tumors was analyzed, and
revealed four keratinocyte clusters. Three clusters were present in both the tumor and the
normal skin; these clusters were identified as basal keratinocytes, cycling keratinocytes,
and differentiating keratinocytes. The fourth cluster was only present in cSCC tumors,
and was identified as comprising tumor-specific keratinocytes. Spatial transcriptomics
also observed this tumor-specific keratinocyte cluster, which is in concordance with the
single-cell RNA sequencing results. Analysis of approximately 100 µm from the tumor
border revealed an enrichment for transcripts associated with CAFs and endothelial cells.
Integration of the single-cell data and spatial transcriptomics data of the tumor border
confirmed that tumor-specific keratinocytes reside in a fibrovascular niche located at tumor
borders, which are enriched for CAFs and endothelial cells. To further explore the spatial
organization of the tumor border, six tumors were analyzed using MIBI. In-depth single-cell
analysis of the immune landscape within the tumor border revealed a correlation between
macrophages, CD4+ T cells, CD8+ T cells, and Treg cells. Interestingly, the Treg cells seemed
to function in two different niches, since these T cells co-localize in two different clusters:
one containing CD4+ T cells and macrophages, and the other containing CD8+ T cells.

2.4.2. Tumor Progression

Besides describing different tumor and immune cell compositions, imaging studies have
generated insight into specific TME changes that are relevant to tumor progression. To explore
which changes in the TME are essential in transitioning from carcinoma in situ into a carcinoma,
longitudinal analysis of tissue samples from normal breast tissue that progressed into ductal
carcinoma in situ (DCIS) and invasive breast cancer (IBC) was performed in nine patients [80].
The first transition, from normal breast tissue to DCIS, showed a reduction in normal fibroblasts,
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resting fibroblasts, and mast cells in the tumor stroma. The second transition, from DCIS to
IBC, showed that fibroblasts were supplanted by CAFs. Additional spatial analysis searched
for risk factors for DCIS to IBC progression. Components that were identified as making a
minor contribution to the progression to IBC included: periductal immune cells, and antigen
presenting cells that are located nearby PD-1+ fibroblasts. Additionally, expression of my-
oepithelial E-cadherin (MEC) was identified as major risk factor for progressing towards IBC.
Moreover, the myoepithelial lining of non-progressors was thinner and discontinuous, whereas
the myoepithelial lining of progressors was thicker and continuous; these are features that are
also observed in normal breast tissue. Therefore, it was concluded that the loss of normal-like
features such as continuous and thicker myoepithelial cells could have a protective function in
preventing IBC progression in non-progressors.

2.5. Imaging Mass Cytometry

Imaging mass cytometry (IMC, Figure 5) uses a pulsed ultraviolet laser to ablate
tissue labeled with metal-labeled antibodies from a glass slide [13]. The ablated tissue is
taken up into an argon gas flow and ionized by the plasma, forming ion clouds. These
ion clouds pass a filter to enrich the reporter ions and remove common biological ele-
ments, after which the signal is quantified by time-of-flight mass spectrometry. The data
table integrates single ion signals per pixel, after which image and single cell segmen-
tation can be converted to single-cell data for downstream analysis. In cancer research,
IMC is used to discover novel phenotypes and biomarkers, or to study TME heterogene-
ity [22–25,30–32,36,43,44,50]. IMC is also used to predict prognosis and therapy responses
in humans or in mice [23,30,51,65–68,73–75].
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Figure 5. Imaging mass cytometry (IMC) workflow. Tissues are first labeled with a multiplex panel
of antibodies conjugated with heavy metal containing polymers. Next, the slide is inserted into the
imaging mass cytometer (IMC) and regions of interest (ROI) are selected. Small pieces of 1 uM2 of
labeled tissue are consecutively ablated with a UV-laser and ionized. Ions are filtered and detected by
time-of flight mass spectrometry. Next, multiplex images are generated, containing images depicting
expressions for each separate antibody–metal conjugate. During imaging analysis, these images can
be processed into single-cell expression data and downstream analysis is performed (e.g., cell type
mapping, clustering, marker expression). The Hyperion cartoon was acquired from BioRender.
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2.5.1. Prognosis and Therapy Responses

Different studies have explored how the TME is related to disease prognosis or responses to
ICPI or platin-based chemotherapy. IMC has been used to study HER2+ intracellular domain
(ICD) and extracellular domain (ECD) ratios in HER2+ breast cancer after adjuvant chemotherapy
and subsequent trastuzumab treatment [67]. An elevated ECD/ICD ratio was associated with
a lower disease recurrence within five years in trastuzumab-treated patients. Moreover, after
treatment, CD8+ T cells localized closer to HER2+ ECD at the tumor–stroma interface, which
decreased from the tumor core to the tumor invasive front. This differential localization pattern
may suggest that CD8+ T cells play a role in the anti-tumor response after anti-HER2+ therapy.

Another study investigated forty-one untreated advanced stage (stage IIIB-IV) high
serous ovarian cancer, and compared different immune subsets in long-term survivors
(LTS) and short-term survivors (STS) [52]. Tumors of LTS showed an increase in granzyme
B+ CTLs and significantly higher CD45RO+CD4+ memory T cells numbers, and a reduction
in B7H4+Keratin+ tumor cells and CD31+CD73mid endothelial cells. Analysis of the cell–cell
interactions suggested that CTLs deplete tumor cells in LTS, since granzyme B+CD8+ T cells
are negatively correlated with B7H4+ tumor cells. Additional nearest neighbor interaction
analysis indicated only a prognostic significance in granzyme B+CD8+ T cells and tumor
cell interaction. Overall survival was analyzed using recursive feature elimination (RFE)
and showed a positive coefficient of granzyme B+CD8+ T cells and CD45RO+CD4+ memory
T cells. This result indicates a positive correlation with overall survival.

Finally, ten gastric cancer biopsies of patients treated six months preoperatively with
modified folinic acid, fluorouracil, and oxaliplatin (mFOLFOX) were analyzed, and showed
that biopsies of patients with a pathological response had higher platinum levels compared
to biopsies of non-responders [53].

Besides platin-based treatment responses, IMC has been used to study ICPI responses in
various patient cohorts. For example, the immune cell compositions in thirty-five patients with
resectable (stage I) and advanced (stage IV) NSCLC, who were treated with a single anti-PD-1 agent,
were studied [54]. Patients with advanced stage NSCLC had a higher abundance of burned-out
effector (Ebo) CD8+ tumor-infiltrating lymphocytes (TIL). Furthermore, patients with non-durable
benefits from the anti-PD-1 treatment had significantly higher Ebo CD8+ TIL proportions, which
showed elevated expression of PD-1, lymphocyte-activation gene 3 (LAG3), and Ki67, compared to
patients with long durable benefits from anti-PD-1 treatment. Overall, Ebo CD8+ TIL abundance
was an independent outcome predictor, which was associated with a poor overall outcome.

2.5.2. Discovery of Novel Phenotypes in the TME

Imaging strategies with multiplex antibody panels enable the discovery of novel
(immune) phenotypes in the TME: for example, the discovery of one new immune sub-
population, identified as CD3−CD4+, in both the tumor region and the adjacent tumor
area in primary squamous cell lung carcinomas that did not receive any therapy [24]. In-
terestingly, these CD3−CD4+ immune cells expressed forkhead box P3 (FOXP3), terminal
deoxynucleotidyl transferase (TdT), and tumor necrosis factor alpha (TNFα), but lacked
expression of CD25, CD127, and interferon gamma (IFNγ). Collectively, the expression
pattern of these cells pointed towards a proinflammatory function within the TME.

Another example is the discovery of a novel CD4+LAG3+ T cell subset in classical
Hodgkin lymphoma (cHL) using a 35-plex IMC panel [44]. Additional spatial analysis
revealed that this specific T cell subset was most abundant in major histocompatibility
complex II (MHC-II) negative cHL, but not present in normal reactive lymph nodes. Lastly,
analysis of three colon cancer tissue samples, along with the corresponding tissues lo-
cated next to the cancer, demonstrated that infiltrating EpCAM+PD-L1+CD4+ T cells with
upregulated p38-MAPK-MAPKAPK2 signaling were specifically present in the tumor [44].

2.5.3. Biomarker Discovery

To discover new biomarkers to predict anti-PD-1 treatment responses, two non-adjacent
tumor cores of sixty melanoma samples, taken from patients treated with nivolumab or
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pembrolizumab or a combination of both, were stained with a 25-plex IMC panel. The IMC
data were analyzed with AQUA software, which is used to study marker intensity across
five different compartments: tumor, stroma, macrophages, T cells, and B cells [22]. The
IMC data mainly focused on general T cells markers, and showed that higher CD3 and
CD8 expression was associated with progression-free survival and overall survival, but
CD4 expression was not. Additional compartment-specific analyses revealed that elevated
expression of major histocompatibility complex I (MHC-I), beta-2 microglobulin (B2M),
CD8+ T cells, and LAG3 in both tumor and stroma was associated with progression-free
survival. Meanwhile, only colony stimulating factor 1 receptor (CSF1R) expression in
the tumor was associated with progression-free survival. IMC data was validated using
independent RNA-sequencing data of melanoma patients treated with immune checkpoint
inhibition. This validation specifically focused on MHC-I, B2M, and CSF1R expression, and
showed that only B2M, but not MHC-I, was correlated with overall survival.

2.6. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI,
Figure 6) is a labeling-free method for two-dimensional and three-dimensional quantita-
tive spatial analysis of the molecular distribution of molecules, such as proteins, lipids,
metabolites, and glycans in tissue [18]. The microscope slide containing either formalin-
fixed paraffin-embedded (FFPE) or fresh frozen (FF) tissue sections is processed, and a
matrix is applied. After matrix deposition, the slide is inserted into the MALDI-MSI, and
a laser creates a 10–150 micrometer raster. The laser beam ionizes a spot in each raster,
and the ionized analytes from the raster are transferred into the mass spectrometer for
compound identification. In parallel, an image is created by combining the data of the spot
location with the corresponding measured mass spectrum. In the field of cancer research,
MALDI-MSI has been used to analyze drug (metabolite) distribution in the TME, tumor
subtyping, tumor grading, or biomarker discovery [55,76–79,81]. MALDI-MSI is also used
to predict tumor progression and clinical outcomes [56,69].
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Figure 6. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) workflow.
Tissue sections are processed, and a matrix is applied (matrix deposition). Next, a laser in the MALDI-MSI
creates a 10–150 micrometer raster (Raster Application). The laser beam ionizes a spot in each raster
(laser ablation), and the ionized analytes from the raster are transferred into the mass spectrometer for
compound identification (mass spectra). In parallel, an image is created by combining the data of the spot
location with the corresponding measured mass spectrum (images of single m/z values).
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2.6.1. Tumor (Sub)Classification and Tumor Grading

Non-small cell lung cancer (NSCLC) is the most studied tumor type using MALDI-MSI;
this research has revealed differences in the TME that can be used for tumor classification.

For example, elevated collagenase type III levels in the extracellular matrix discrimi-
nate low-grade adenocarcinoma (AD) (stage I-III) from adjacent healthy lung tissue. More
in-depth analysis revealed that hydroxylated peptides display a specific spatial pattern
within the TME, which allows for the differentiation of tumor subtypes [76]. Spatially
guided proteomics and histology-guided spatial metabolomics of NSCLC allowed for the
differentiation of two NSCLC subtypes: adenocarcinoma and squamous cell carcinoma
(SCC). In squamous cell lung carcinoma, glutamine is more abundantly expressed, whereas
taurine expression is most abundant in adenocarcinoma [77]. Additionally, spatial protein
distribution combined with linear discriminant analysis identification showed that cytok-
eratin 5/6 (CK5/6), heat shock protein 27 (HSP27), and cytokeratin 15 (CK15) are most
commonly (co-)expressed in SCC and, less frequently, in adenocarcinoma. Expression of
cytokeratin 7 (CK7) was high in adenocarcinoma, but not in SCC [78].

A similar approach was used to evaluate human epidermal growth factor receptor
2 (HER2) status in pre-defined HER2-status breast cancers. HER2 overexpressing breast
cancers showed scattered expression of a molecule with a mass-to-charge ratio (m/z) of
8404, while HER2-negative cancers lacked this expression pattern. Next, this molecule
was identified using electrospray ionization mass spectrometry as cysteine rich protein 1
(CRP1) [55].

2.6.2. Biomarker Discovery

The results of MALDI-MSI studies have potential implications for tumor (sub)classification
and tumor grading, and for the identification of biomarkers with potential prognostic
clinical value. For example, nine proteins associated with epidermal growth factor receptor
(EGFR) which have potential prognostic value in triple-negative breast cancer (TNBC) were
discovered using MALDI-MSI, by comparing tumor tissue to benign breast tissue. In this
study, proteins were mapped against a library constructed using liquid chromatography-
matrix-assisted laser desorption/ionization mass spectrometry (LC-MALDI-MS/MS), fol-
lowed by protein network analysis [81].

In NSCLC patients, the proteins neutrophil defensin 1, defensin 2, and defensin 3 were
identified as potential markers for predicting responses to anti-PD-1 therapy [79]. In this
study, most responding patients and a minority of non-responding patients expressed these
proteins in a biopsy taken before treatment. This was validated by immunohistochemical
staining, and could be used for the prediction of therapy responses.

2.6.3. Prediction of Tumor Progression and Clinical Outcomes

Besides MALDI-MSI proteome-based discoveries, two independent studies involv-
ing patients with CRC stage II or stage III ovarian carcinoma showed that the N-glycan
signatures in TME were related to clinical outcomes [56,69].

In CRC, a comparison between tumor cells and adjacent normal colon tissue showed
that tumor cells contained reduced levels of highly branched N-glycans and fucosyla-
tion, but elevated high-mannose glycan and sialylation levels [56]. Regional comparisons
revealed elevated N-glycosylation levels in the tumor cells, which gradually decreased
from the tumor cells towards the stroma interface and the tumor lining-stroma. This
observation indicates that different tumor and microenvironmental compartments show
distinct N-glycosylation patterns. Interestingly, differential glycosylation patterns in the
stroma interface that aligns with the tumor cells could distinguish short-surviving from
long-surviving patients.

Similar N-glycan distribution effects were detected in the ovarian cancer study [69],
demonstrating its ability to discover novel predictive signatures in multiple cancer types.
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2.7. Digital Spatial Analysis

Digital spatial analysis (DSP, Figure 7) is a commercially available technique that
enables RNA or protein quantification from FFPE or FF tissue by counting targets that
are linked to unique indexing oligonucleotides [10]. These indexing oligonucleotides are
covalently bound with a UV-photocleavable (PC) linker to a mRNA hybridization probe or
to a primary antibody. Tissue slides are first hybridized with mRNA probes or stained with
PC-linked primary antibodies. After this first staining, the same slide can be stained with
one to four fluorescent labeled antibodies, which allows for the identification of specific
tissue structures or cellular subsets of interest. The tissue slide is inserted into the DSP
and an image is produced, based on the signal from the fluorescent labeled antibodies.
These overview images enable the selection of a region of interest (ROI) of any shape. After
the ROI is selected, the digital micromirror device illuminates the ROI, which causes the
PC-linked mRNA or primary antibody to be released from the tissue. The photocleaved
indexing oligonucleotides are aspirated with a microcapillary and collected in a 96-well
plate. The collected photocleaved indexing oligonucleotides are analyzed either by next
generation sequencing or by an nCounter system.
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Figure 7. Digital Spatial Profiling (DSP) workflow. Tissue sections are labeled with antibodies and/or
in situ hybridization with mRNA probes, which are linked with UV-cleavable oligo-tags. Slides
are labeled with fluorescence-conjugated antibodies to determine cell subsets and select regions of
interests and masks for bulk cell subsets for directed UV-cleavage of the oligo-tags. The cleaved
oligos are collected with a microcapillary and transferred to a 96-well plate. Next, the oligos are
quantified by digital counting (nCounter) or next-generation sequencing. Differential expression of
specific mRNA or proteins between ROIs and cell subsets are next analyzed (data analysis).

DSP has been used in the field of cancer research to search for TME transcriptional
profiling, and to identify predictive markers for prognosis, therapy response prediction, or
clinical outcomes [26,57–62,70,71,82]. Furthermore, DSP has been utilized to investigate
TME heterogeneity [27,37–40,83–85].
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Immunotherapy Response Prediction

DSP has been widely used to predict immunotherapy responses or to identify prog-
nostic markers. Three different studies have investigated which markers are related to ICPI
treatment response.

The first study examined seventeen resectable stage III melanoma baseline biopsies,
which were treated with adjuvant or neoadjuvant ipilimumab and nivolumab, before
or after complete regional lymph node dissection [71]. Samples were analyzed with
twenty-nine oligo-conjugated antibodies directed to immune-related surface antigens.
Low expression of CD3, B2M, and PD-L1, and a low IFNγ signature within the tumor
were correlated with relapse after adjuvant or neoadjuvant ipilimumab and nivolumab.
Meanwhile, tumors with an intermediate or high IFNγ signature did not relapse.

A second study included resectable Melanoma stage III or oligometastatic stage IV
tumors that were treated with neoadjuvant nivolumab monotherapy or a combination
of nivolumab and ipilimumab [26]. Immunohistochemistry showed that the tumors of
responding patients expressed elevated PD-L1 expression in tumor cells, increased lym-
phocyte marker expression (granzyme B, CD4, FoxP3, CD20, and PD-1), and elevated
proportions of CD8+ TILs. Furthermore, higher expression of CD45RO, B2M, CD3, CD8,
CD19, CD20, and Ki67 in the CD45+ immune cell infiltrate correlated with ICPI response.
Meanwhile, the T cell receptor sequencing showed that tumors of responders had a larger
T cell clone diversity than tumors of non-responders.

The third study investigated which immune cell makers were correlated with ICPI
treatment outcomes. Seven samples, taken from patients with metastatic head and neck
squamous cell carcinoma that had been treated with nivolumab and pembrolizumab, were
analyzed with a 44-marker panel [61]. The immune cell profiling panel revealed that
expression of CD4, CD45RO, CD68, IDO-1, P-ERK, Ki67, PD-L1 PD-1, Granzyme B, CD45,
OX40, STAT3, P-STAT3, CD44, STING, CD66b, P-AKT, and PTEN was associated with
progressive disease. Additionally, in contrast to the second study of melanoma, CD8
expression was not predictive for the ICPI treatment outcome here.

Two studies used immunofluorescent antibodies to identify specific compartments
within the TME. The first study included immunotherapy-treated melanoma samples.
These samples were stained with a 44-plex antibody cocktail that was mainly directed
towards the immune-related surface antigens of leukocytes and macrophages [59]. Addi-
tionally, some markers to identify the tumor cells were included. These makers were used
to identify three compartments: melanocytes (S100+ and HMB45+), macrophage (CD68+),
and leukocyte (CD45+) compartments. Analysis of these compartments revealed that high
CD8+ counts within the macrophage compartment were associated with progression-free
survival, as well as immunotherapy response and prolonged overall survival. CD8+ num-
bers within the tumor compartment were associated with favorable outcomes, whereas
CD8+ numbers in the leukocyte compartment were not. In total, eleven markers and
fifteen markers were found to correlate with progression-free survival and overall sur-
vival, respectively. However, in the multivariate analysis, only PD-L1 expression in the
macrophage compartment was significantly associated with progression-free survival and
overall survival.

The second study included eighty-one NSCLC patients (stage III-stage IV) who were
treated with either nivolumab, pembrolizumab, or atezolizumab [60]. Three different
compartments within these tumors were analyzed: tumor cells (pan keratin+), immune
cells (CD45+), and macrophages (CD68+). Multivariate analysis showed that high levels of
CD56 and CD4 in the immune cell compartment are predictive of longer progression-free
survival, prolonged overall survival, and durable benefit, while high VISTA levels and
CD127 levels in the tumor compartment were predictive of non-durable benefit and shorter
progression-free survival.
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3. Challenges and Developments in Spatial Data Analysis

In recent years, the development of multiplex imaging technologies has increased the
need for methods to analyze imaging data, particularly spatial single-cell analysis. Im-
ageJ [86] is the major open-source software package used for many different image analysis
tasks, including single-cell segmentation, tumor grading of clinical images originating
from magnetic resonance imaging (MRI), or staining quantification [87–89]. A more recent
open-source software package specifically developed for tissue analysis, QuPath [90], is
now being applied to multiple spatial tissue analysis tasks, including region annotation,
cell segmentation, marker expression, and distance calculation.

3.1. Cell Segmentation

A major challenge in tissue analysis is cell identification [91]. Cell identification
requires that the boundaries of cells are identified, and pixels are assigned to a specific cell.
This process is called single-cell segmentation. Cell segmentation allows marker expression
analysis on a single-cell level, and analysis of the localization of each cell. Single-cell
segmentation is particularly challenging in dense tissues because cells can overlap in the
z-dimension, which, when imaging, is perceived as overlapping membranes or nuclei.
Overlap of cellular parts complicates the identification of individual cells for single-cell
segmentation. Moreover, tissues often contain a variety of cell types with various shapes.
To identify and classify specific (immune) cell subsets, a specific combination of (multiple)
membrane, cytoplasmic, and/or nuclear marker expression is required.

For multiplex imaging data, segmentation is mostly performed using machine learn-
ing algorithms. These algorithms include user-guided machine learning pipelines with
Illastik [92] and CellProfiler [93]. These pipelines have been used in the analysis of datasets
that combine IMC and fluorescent microscopy [16,89,91]. More recently, deep-learning
algorithms that use convolutional neural networks (CNNs) have become available; these
include DeepCell [17,94], U-NET [95], and DeepImageJ [96]. The methods discussed here
are open source, can be adapted to address specific questions, and require computational
and imaging data analysis experience.

Notably, all machine learning is based on training that uses manual data annotations
(ground truth) generated by expert users. To avoid annotation bias, which can affect the
resulting cell segmentation, it is recommended that multiple experts annotate the training
data [97]. Additionally, interobserver variability can be introduced during single-cell
generation when the expert assesses segmentation quality or excludes samples based on
visual inspection. This might ultimately lead to statistical interference; however, the field
does currently not have a gold standard and relies completely on the experience of experts.

3.2. Tissue Organization and Cellular Localization

The recent implementation of high-plex imaging technologies allows for the analysis
of many differential cell-subtypes in tissues. On one hand, this has sparked the develop-
ment of novel methods directed towards cell-subset identification and cellular localization.
On the other hand, it allows for the analysis of cell–cell interactions, including neigh-
borhood analysis. These analyses can, for example, be performed with HistoCAT, the
Histo-Cytometric Multidimensional Analysis Pipeline (CytoMAP), and Squidpy [15,16,98].
Unbiased analysis can reveal spatial patterns; for example, the enrichment z-scores of
receptor–ligand pairs expressed in cells have been used to identify the co-localization of
proteins [17]. Similarly, single-cell expression data have been analyzed using Pearson
correlation heatmaps in CytoMAP [98]; this analysis shows a correlative expression of
proteins in neighboring cells within a chosen radius. Such unbiased analyses can show
differential tissue organization, but can also reveal which expressed (immune) markers,
signaling molecules, or immune checkpoints either colocalize or avoid each other in specific
conditions. Another application of CytoMAP is the identification of cellular neighborhoods,
by performing clustering on patterns of the spatial co-occurrence of single-cell marker
expression [98].
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Cell location and gene expression variation can also be analyzed directly, without
cell-type assessment or environmental variables, by using spatial variance component anal-
ysis (SVCA) to model the spatial sources of the variable expression of different proteins or
genes [99]. The application of SVCA to IMC data from breast cancer samples demonstrated
differential contributions across detected protein levels of cell-intrinsic effects, environ-
mental effects, and cell–cell interactions. SVCA analysis per protein marker revealed that
cell–cell interaction, and environmental and intrinsic effects each contribute differently to
the variable expression of specific proteins. It was shown that CD44, CD20, CD3, and CD68
demonstrated the largest cell–cell interaction effects. Additionally, the spatial variance
signature aligned with the tumor grade: specifically, the spatial variance signatures of a
subset of proteins, including CD44 and CD20 [99].

Deep learning can also be applied here to study spatial patterns. NaroNet is a deep
learning framework that combines multiplex imaging and the corresponding clinical patient
parameters to perform patch contrastive learning [100]. Patch contrastive learning divides
images into patches, which are embedded into a 256-dementional vector. Similar vectors are
then assigned by an unsupervised trained CNN to patches that contain a similar biological
structure. An enriched graph of these patches is created, which contains spatial interactions
between the patches. The enriched graph is the input for NaroNet, which uses the data to
classify patients based on the abundance of cell phenotypes, phenotype neighborhoods,
and the area of interaction of those neighborhoods within the TME.

NaroNet has been applied to an endometrial carcinoma dataset which included
336 seven-color images from twelve patients with high-grade endometrial carcinoma. Here,
four patient labels were added to the data: somatic DNA polymerase epsilon (POLE) mu-
tation status, copy number variation, DNA mismatch repair deficiency status, and two
tumor histopathology types. NaroNet identified a specific neighborhood containing two
phenotypes (T cells and tumor cells) that were associated with somatic POLE mutation.
Moreover, this study used a set of 382 images from 215 breast cancer patients, which were
stained with a 37-plex IMC panel [23,100]. Patients were clustered into three risk groups
based on their overall survival. NaroNet was able to predict the patient risk group based on
57 learned distinct spatial patterns. In-depth analysis of differences in the TME composition
revealed two neighborhoods that were predictive of the distinctions between high-risk and
low-risk patients. The first neighborhood contained tumor cells and the other contained
fibroblasts, which were more abundant in high-risk patients.

More directive (biased) analysis approaches range from cell–cell interaction analyses
to distance calculation between specific cell types, or between a cell type and a tissue
region. This type of analysis can reveal differential interactions, distancing between cells,
or regional separation [17,98]. Such analyses can, for example, reveal differential tumor
archetypes based on lymphocyte infiltrate: tumors contain no infiltrate (cold tumors),
infiltrate between tumor cells (mixed tumors) or infiltrate that separates the neighboring
compartments (compartmentalized tumors) [17].

3.3. Data Management

One of the other challenges of high-plex spatial imaging concerns imaging data
management and metadata management [101].

3.3.1. Metadata

Metadata are generated at multiple stages during these high-plex spatial imaging
experiments [101]. First, tissue is sectioned and prepared for staining, and clinical data are
then associated with these tissue samples, generating clinical and biospecimen metadata.
Next, samples are stained with an antibody cocktail and data are acquired using the
imaging instrument of choice, which generates channel-level metadata and instrumental
metadata, respectively. All of these forms of metadata collectively form the experimental
metadata, and, to promote interpretation and data reuse, there is an urgent need to store
such metadata in line with the Findable, Accessible, Interoperable, and Reusable (FAIR)
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standards [102]. Additionally, researchers need to account for the fact that patient data
need to be stored anonymously, and the metadata must not allow specific patients to be
traced or identified [103].

Recently, a paper highlighted the urgent need for metadata and data standards for
high-plex spatial data [101]. One of the key challenges is to implement a metadata standard
that balances easy data entry, sufficient detailed information, and reproducible analysis
and publication. However, a standard for these high-plex spatial imaging techniques has
not yet crystalized, and needs to be further developed by the research community in the
coming years.

3.3.2. Data Storage and Distribution

After data acquisition, the data must be stored, processed, and analyzed, and the
challenge of data management arises. Both raw data and data generated during processing,
up to the point where the final figures are created, must be stored in an organized manner.

One of the challenges in data management concerns the large size of raw multiplex
imaging datasets, which can easily require a few terabytes of disk space, a requirement
that increases further during data processing and analysis. This makes local data storage
and distribution of these large FAIR datasets challenging and costly. Another challenge
relates to the question of which different levels of data should be made publicly available
from different data analysis stages upon publication. [101]. Recently, a paper proposed
that from the quality controlled, assembled images and onwards should be made publicly
available, but this is not yet a gold standard. The distribution and storage of such FAIR
datasets in a standardized structure, containing multiple data levels, will need to evolve
over the coming years to promote accessibility and reproducibility in the near future [101].

4. Conclusions and Future Outlook

Recent advances in spatial imaging technologies allow for the study of tissue com-
partmentalization, cellular localization, and cell–cell interactions within the TME. At the
same time, a large marker set allows relatively deep subset identification. Together, these
advances reveal potential correlations between therapeutic responses and clinical outcomes.
These advances create rich spatial datasets, which also drives the need for computational
analysis methods and pipelines for analysis. This allows for faster and deeper gains in
biological insights into factors including biomarkers for tumor subtyping, and patient prog-
nosis and/or response prediction. In this review, we surveyed the recent contributions that
each single multiplex imaging method has made towards our current understanding of the
TME, and their potential clinical implications, along with current methods for single-cell
and spatial analysis.

The emergence of the multiplex imaging methods discussed here increased the need
for advanced analysis pipelines to generate single-cell data. Before these single-cell data are
generated, there are many challenges and potential pitfalls that need to be addressed. The
current challenges include normalization, the correction of batch effects, and the removal of
experimental artefacts, for which no standardized methods nor a gold standard currently
exists. Moreover, (deep) machine learning is often incorporated into the analysis pipeline,
and training the algorithm requires many manual annotations. After adding all of the
annotations, the predicted segmentation requires a visual inspection to verify its quality.
This visual inspection can be challenging due to dataset size and the computation capacity
that is required to generate all of the images in parallel. Another challenge in generating
single-cell data from cell-dense areas arises from overlapping cells which can be segmented
in too many fragments, since pixels of two different membranes or nuclei overlap [104]. This
risk of segmentation in too many fragments is increasing when the imaging data has a lower
resolution. To improve single-cell segmentation quality in dense areas in lower resolution
images, the MATISSE pipeline has recently been released [89,91]. A final challenge that
is faced in single-cell data generation is the segmentation of irregularly shaped cell types,
such as macrophages. The segmentation of these immune cells requires membrane markers
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to indicate the irregularly shaped cell boundary. Therefore, segmentation based on nuclear
expansion, which assumes a regularly shaped cell boundary surrounding the nucleus, does
not perform properly.

The field of multiplex imaging and cancer research will likely start combining and
integrating multiple spatial (omics) techniques in the coming years. The first step towards
simultaneously quantifying DNA, RNA, and protein levels within the TME was recently
taken, by developing Protein Additionally Nucleic Acid In Situ Imaging (PANINI) and
coupling it to MIBI [105]. Because of the rapid development of these multiplex imaging
techniques, single-cell analysis pipelines can be expected to further improve segmentation
quality; moreover, this research field will develop gold standards for normalization, batch
correction, and experimental artifact correction. Along with the expanding analysis quality,
the existing descriptive research into the TME will evolve towards research that contains
comprehensive integration of both clinical parameters and biological parameters. The
integration of these parameters will even allow for an improved prediction of biomarkers,
clinical responses, and prognosis of cancer patients in the future.
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Abbreviations

Abbreviation Description
AD Adenocarcinoma
ALDH Aldehyde Dehydrogenase
B2M Beta-2 Microglobulin
BPH Benign Prostatic Hyperplasia
CD3 Cluster of Differentiation 3
CD4 Cluster of Differentiation 4
CD8 Cluster of Differentiation 8
CD19 Cluster of Differentiation 19
CD20 Cluster of Differentiation 20
CD25 Cluster of Differentiation 25
CD31 Cluster of Differentiation 31
CD34 Cluster of Differentiation 34
CD40 Cluster of Differentiation 40
CD44 Cluster of Differentiation 44
CD45 Cluster of Differentiation 45
CD56 Cluster of Differentiation 56
CD66b Cluster of Differentiation 68
CD68 Cluster of Differentiation 68
CD127 Cluster of Differentiation 127
cHL Classical Hodgkin Lymphoma
C3aR C3a receptor
CAF Cancer-Associated Fibroblast
CK5 Cytokeratin 5
CK6 Cytokeratin 6
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CK7 Cytokeratin 7
CK15 Cytokeratin 15
CODEX CO-Detection by Indexing
CNN Convolutional Neural Networks
cPLA2 Cytosolic Phospholipase A2
CRC Colorectal Cancer
CRP1 Cysteine Rich Protein 1
CSF1R Colony Stimulating Factor 1 Receptor
CTL Cytotoxic T cells
cSCC Cutaneous Squamous Cell Carcinoma
CytoMAP Histo-Cytometric Multidimensional Analysis Pipeline
DB Durable Benefit
DC Dendritic Cell
DCIS Ductal Carcinoma in Situ
DSP Digital Spatial Analysis
Ebo Burned-Out Effector
ECD Extracellular Domain
EGFR Epidermal Growth Factor Receptor
EpCAM Epithelial Cell Adhesion Molecule
ER Estrogen Receptor
ER-β Estrogen Receptor Beta
ERK Extracellular Signal-Regulated Kinase
ESCC Esophageal Squamous Cell Carcinoma
FAP Fibroblast Activation Protein
FF Fresh Frozen
FFPE Formalin-Fixed Paraffin-Embedded
FOXP3 Forkhead Box P3
G-cross Cross-Type Nearest Neighbor Distance Distribution Function
γH2AX Gamma H2A Histone Family Member X
HER2 Human Epidermal Growth Factor Receptor 2
HLA-DR Human Leukocyte Antigen—DR isotype
HPV 16 Human Papilloma Virus 16
HRP Horseradish Peroxidase
HSP27 Heath Shock Protein 27
ICD Intracellular Domain
ICPI Immune Checkpoint Inhibition
ICOS Inducible T Cell Co-stimulation
IBC Invasive Breast Cancer
IFNγ Interferon Gamma
IMC Imaging Mass Cytometry
IPT Intraperitoneal Treatment
ITT Intratumoral Treatment
KRAS Kirsten Rat Sarcoma Viral Oncogene Homolog
LAG3 Lymphocyte Activation Gene 3

LC-MALDI-MS/MS
Liquid Chromatography-Matrix-Assisted Laser Desorption/Ionization
Mass Spectrometry

LTS Long Term Survivors
MAPK Mitogen-Activated Protein Kinase
MAPKAPK2 Mitogen-Activated Protein Kinase-Activated Protein Kinase 2
MALDI-MSI Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging
MEC Myoepithelial E-Cadherin
mFOLFOX modified Folinic Acid, Fluorouracil, and Oxaliplatin
MHC-I Major Histocompatibility Complex I
MHC-II Major Histocompatibility Complex II
MIBC Muscle Invasive Bladder Cancer
MIBI-TOF Multiplexed Ion Beam Imaging by Time-Of-Flight
MRI Magnetic Resonance Imaging
nDB Non-Durable Benefit
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NDES Nanofluidic Drug-Eluting Seed
NSCLC Non-Small Cell Lung Cancer
OC Ovarian Carcinoma
OSCC Oral Squamous Cell Carcinoma
PD-1 Programmed Cell Death Protein 1
PD-L1 Programmed Death-Ligand 1
p-eIF4E Phospho-Eukaryotic Translation Initiation Factor 4E
PGE2 Prostaglandin E2
POLE DNA Polymerase Epsilon
p-p38 Phospho-p38
ROI Region Of Interest
SBP1 Selenium Binding Protein 1
SCC Squamous Cell Carcinoma
SIRT2 Sirtuin 2
STAT3 Signal Transducer and Activator of Transcription 3
SVCA Spatial Variance Component Analysis
TAM Tumor Associated Macrophages
TdT Terminal Deoxynucleotidyl Transferase
Th T Helper Cell
TIL Tumor-Infiltrating Lymphocyte
TLS Tertiary Lymphoid Structure
TME Tumor Microenvironment
TNBC Triple-Negative Breast Cancer
TNFα Tumor Necrosis Factor Alpha
Treg Regulatory T Cell
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