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Simple Summary: When ovarian cancer is detected early, the survival rate is high. Unfortunately,
existing blood tests are neither sensitive nor specific enough to screen women for ovarian cancer.
The purpose of this study was to determine the levels of 92 cancer-related proteins in the blood of
women with ovarian cancer compared to healthy women in order to develop a test for ovarian cancer
detection. We tested the blood of more than 400 women and identified four proteins that, when
combined, successfully detected over 90% of the women with ovarian cancer. We then tested more
than 700 additional blood samples and found that the combination of the four proteins successfully
distinguished the majority of the blood samples from women with both early and late stages of
ovarian cancer compared to healthy women. These four proteins show promise in the development
of a test to detect the early stages of ovarian cancer.

Abstract: Background: Individual serum biomarkers are neither adequately sensitive nor specific
for use in screening the general population for ovarian cancer. The purpose of this study was to
develop a multiprotein classifier to detect the early stages of ovarian cancer, when it is most treatable.
Methods: The Olink Proseek Multiplex Oncology II panel was used to simultaneously quantify the
expression levels of 92 cancer-related proteins in sera. Results: In the discovery phase, we generated
a multiprotein classifier that included CA125, HE4, ITGAV, and SEZ6L, based on an analysis of sera
from 116 women with early stage ovarian cancer and 336 age-matched healthy women. CA125 alone
achieved a sensitivity of 87.9% at a specificity of 95%, while the multiprotein classifier resulted in
an increased sensitivity of 91.4%, while holding the specificity fixed at 95%. The performance of the
multiprotein classifier was validated in a second cohort comprised of 192 women with early stage
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ovarian cancer and 467 age-matched healthy women. The sensitivity at 95% specificity increased
from 74.5% (CA125 alone) to 79.2% with the multiprotein classifier. In addition, the multiprotein
classifier had a sensitivity of 95.1% at 98% specificity for late stage ovarian cancer samples and
correctly classified 80.5% of the benign samples using the 98% specificity cutpoint. Conclusions: The
inclusion of the proteins HE4, ITGAV, and SEZ6L improved the sensitivity and specificity of CA125
alone for the detection of early stages of ovarian cancer in serum samples. Furthermore, we identified
several proteins that may be novel biomarkers of early stage ovarian cancer.

Keywords: ovarian cancer; protein biomarkers; early detection

1. Introduction

Ovarian cancer is the fifth leading cause of cancer deaths in women in the United
States. In 2022, nearly 20,000 women will be diagnosed with ovarian cancer and more than
12,000 will die of their disease [1]. Due to vague symptoms and lack of adequate screening
tests, most women are not diagnosed with ovarian cancer until it is advanced, and the
5 year survival rate is ~30% [2]. In contrast, for women diagnosed with stage I ovarian
cancer, limited to the ovaries, the long-term survival rate is almost 90%, and for stage II,
limited to the pelvis, the survival rate is 70% [2], highlighting the need for strategies for
earlier detection.

CA125, the most well-known ovarian cancer biomarker, is not expressed in ~20%
of ovarian cancers [3,4], and therefore is not adequately sensitive to screen the general
population for ovarian cancer. It has been suggested that the addition of biomarkers
complementary to CA125 may increase the sensitivity of detecting early stage disease.
In addition to proteins, other molecules have been explored as potential biomarkers for
ovarian cancer. Autoantibodies against cancer antigens such as TP53 have been identified in
20–30% of ovarian cancer cases tested and may provide additional lead time over CA125 [5].
Serum microRNAs have been identified as candidate ovarian cancer biomarkers [6,7], and
circulating tumor DNA has also been tested as a method for early detection [8].

New technology has been developed that makes it possible to measure levels of
multiple protein biomarkers simultaneously in very small volumes of serum or plasma.
The proximity extension assay (PEA) [9,10] technology from Olink Bioscience permits
the simultaneous quantification of 92 disease-related protein biomarkers, using sample
volumes as low as 1 µL. PEA is an innovative technology that combines the specificity
of antibody-based detection methods with the sensitivity of PCR, allowing multiplex
biomarker quantification with high precision. In a feasibility study, we tested a small set of
early stage serous ovarian cancer, late stage serous ovarian cancer, benign ovarian tumors,
and healthy controls (20 of each) on the Proseek Oncology Iv2 panel to identify candidate
biomarkers for early stage serous ovarian cancer [11]. We demonstrated that the Proseek
assay panels provide similar results to conventional assays for CA125 and can be used
to identify new candidate biomarkers that, when combined with CA125, can improve
the detection of ovarian cancer over using CA125 alone. From the Proseek Oncology Iv2
data, we developed a 12-protein classifier with improved sensitivity over CA125 alone
when comparing sera from healthy women with early stage ovarian cancer patients. Since
the Oncology Iv2 panel is no longer commercially available, further discovery phase
experiments are now carried out using the updated Oncology II panel. To confirm our
findings with the earlier version, we used the Proseek Oncology II panel to quantify the
expression of 92 proteins in sera from women with late-stage high-grade serous ovarian
cancer, and identified a multiprotein classifier that could distinguish late stage ovarian
cancer from age-matched healthy control samples [12].

In this study, we measured protein levels in sera collected at two different institutions
from women diagnosed with early stage ovarian cancer (all subtypes) using the Proseek
Oncology II panel. Using these data, we developed a multiprotein classifier that could
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discriminate between early stage ovarian cancer and healthy controls. We then used a
second cohort of serum samples collected from women at four different institutions to
validate our classifier and determine its predictive value using sera from women with late
stage ovarian cancer and benign ovarian conditions.

2. Materials and Methods
2.1. Serum Samples

Blood samples were collected prior to treatment (surgery or chemotherapy) from
women diagnosed with stage I–II epithelial ovarian cancer of all subtypes, benign ovar-
ian conditions, or age-matched healthy controls under IRB-approved protocols. Cohort
#1 samples were collected at the University of Minnesota (Minneapolis, MN, USA) and
the M.D. Anderson Cancer Center (Houston, TX, USA); these samples were used in the
discovery phase of experiments to develop a multiprotein classifier. Cohort #2 samples
were collected at the Brigham Women’s Hospital, Harvard Medical School (Boston, MA,
USA), Fox Chase Cancer Center (Philadelphia, PA, USA), European Institute of Oncology
(Milan, Italy), and Oregon Health & Science University (Portland, OR, USA). These samples
were used for the validation phase of the experiments.

2.2. Olink Proseek Oncology II Assay

The levels of 92 oncology related proteins were quantified in 1 ul of serum using the
Proseek Oncology II Proximity Extension Immunoassay Panel (Olink, Uppsala, Sweden)
as previously described [12]. Samples were randomly assigned to 96-well plates using
stratified randomization based on the institution of origin, diagnosis (healthy vs. cancer),
ovarian cancer subtype, age, and race (when available). Samples were run on the Proseek
Oncology II panel to quantify the level of protein expression. Each sample was mixed
with the Proseek Oncology II reagents according to the manufacturer’s instructions and
quantified by Q-PCR using a Fluidigm® BioMark™ HD high-throughput PCR instrument
at the University of Minnesota Genomics Center. The Proseek platform includes three
“interplate controls” for data normalization between plates and three “negative controls” to
establish background levels. Internal controls for incubation and extension are included by
Olink in each assay for quality control. The Proseek® assay reports relative quantification
on a log2 scale, as Normalized Protein eXpression (NPX) values, which was normalized
according to the manufacturer’s protocols. Samples that did not pass Olink quality control
were not included in the analysis.

2.3. Identification of Unstable Proteins

In Cohort #1, case-control differences between institutions were explored by fitting a
linear regression model with an interaction term of institution (MN vs. TX) and disease
status (ovarian cancer vs. healthy), along with the corresponding main effects, for each pro-
tein with a Holm’s adjustment to account for multiple testing. Proteins whose case-control
differences varied significantly between institutions were excluded due to concern that
these proteins’ levels were unstable, meaning too sensitive to preanalytical conditions (e.g.,
environmental factors such as preprocessing storage time or the pre- or postcentrifugation
temperatures). We compared our findings from Cohort #1 to previous work that investi-
gated the impact of environmental factors on quantified protein levels for Olink panels for
cardiovascular disease (Olink CVD I) and inflammation (Olink Inflammation I) [13].

2.4. Data Normalization for Cohort #2

Twenty-two “bridge” samples (12 ovarian cancer and 10 healthy controls; 2–3 samples
per 96-well plate) were used to normalize data between Cohort #1 and Cohort #2 using
Olink’s recommended approach [14]. Specifically, differences in NPX values were calculated
between the “bridge” samples from Cohort #1 and Cohort #2, and then the median of these
pairwise differences were calculated for each protein, which we call the normalization
factor. The NPX values for each of the proteins for samples in Cohort #2 were normalized by
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subtracting the protein-specific normalization factor. This data normalization is necessary
since the Proseek assay reports relative (vs. absolute) quantification.

2.5. Statistical Analysis

The data were normalized by the University of Minnesota Genomics Center, per
the manufacturer’s protocol [15]. Differences in mean expression between cancer and
healthy samples were determined using two-sample t-tests assuming unequal variances
with p-values adjusted to control the false discovery rate at 5%. Single-protein classification
accuracy was evaluated using the empirical receiver operating characteristic (ROC) curve
and was summarized by the area under the ROC curve (AUC) and the sensitivities cor-
responding to specificities of 0.95 and 0.98 (i.e., ROC (0.05) and ROC (0.02), respectively).
To summarize the value added beyond the contribution of CA125, the same summaries
(AUC, ROC (0.05), and ROC (0.02)) were calculated for two-protein classifiers that included
CA125 and one other protein. These two-protein classifiers were fit on Cohort #2 using
a method [16] to maximize the sensitivity for a fixed specificity of 0.95 and assessed on
Cohort #1. Confidence intervals (CIs) for AUC, ROC (0.05), and ROC (0.02) were calculated
using a nonparametric bootstrap approach.

A multiprotein classifier was developed to differentiate healthy controls from early
stage ovarian cancer cases using least absolute shrinkage and selection operator (LASSO)
logistic regression with the tuning parameter chosen using 10-fold cross-validation to be
that with a cross-validation error within 1 standard error of the minimum cross-validation
error (“lambda.1se”) [17]. Summaries of the classification accuracy were estimated using
the predicted probabilities from the held-out cross-validation folds. To obtain CIs for AUC,
ROC (0.05), and ROC (0.02) for the multiprotein classifier, the bias-corrected bootstrap case
cross-validation method of Jiang et al. [18] was used. The difference in AUCs between
different classifiers was tested using a bootstrap method for correlated ROC curves. All
analyses were performed in R version 4.0.2 (R Foundation for Statistical Computing, Vienna,
Austria) using the R packages glmnet [19], maxTPR [20], and pROC [21].

2.6. Unsupervised Hierarchical Clustering Analysis

Unsupervised clustering methods were applied to the data to identify clusters of pro-
teins and visually evaluate their association with disease status. Unsupervised hierarchical
clustering (uncentered correlation using centroid linkage) was completed using Cluster
3.0 [22] and visualized using Treeview (v1.1.6r4; Ref [23]). Principal component analysis
(PCA) was performed using the prcomp function in R [24] and t-distributed Stochastic
Neighbor Embedding (t-SNE) was done using the Rtsne package in R [25].

3. Results
3.1. Cohort #1 Demographics

The Proseek Oncology II panel was used to quantify the expression of 92 cancer-related
proteins in 1 µL of serum from 336 healthy women and 116 women with early stage ovarian
cancer from the University of Minnesota and the MD Anderson Cancer Center (Cohort #1;
Table 1). The ovarian cancer samples were comprised of the major epithelial subtypes of
ovarian cancer, with almost half of the samples from women diagnosed with high-grade
serous ovarian cancer (HGSOC; 46%). The remaining ovarian cancer samples were from
women with endometrioid (18%), mucinous (13%), clear cell (12%), or with mixed ovarian
cancer subtypes (11%).
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Table 1. Patient demographic information for Cohorts #1 and #2.

Cohort #1 (Discovery) Cohort #2 (Validation)

Healthy
(n = 336)

Early Stage Ovarian
Cancer (n = 116)

Healthy
(n = 467)

Early Stage Ovarian
Cancer (n = 192)

Location
MN 61 (18%) 46 (40%)
TX 275 (82%) 70 (60%)

Fox Chase 226 (48%) 55 (29%)
Italy—Milan 144 (31%) 86 (45%)

OHSU 7 (1%) 12 (6%)
BWH-Harvard 90 (19%) 39 (20%)

Age (years)
Mean (SD) 66.4 (7.6) 58.5 (12.5) 55.1 (11.5) 56.3 (11.5)

Median 67.0 58.5 54.0 56.0
Range 48–87 19–85 24–85 24–85

CA125 value
Median (Q1, Q3) 10.4 (7.7, 14.3) 98.3 (42.9, 379) ND 143 (42.3, 543)

Range 0–69 7–22,780 ND 2–12,219

Subtype
HGSOC 53 (46%) 76 (40%)

Endometrioid 21 (18%) 50 (26%)
Clear cell 14 (12%) 36 (19%)
Mucinous 15 (13%) 16 (8%)

Mixed 13 (11%) 11 (6%)
Other 0 (0%) 3 (2%)

Stage
I 73 (63%) 119 (62%)
II 43 (37%) 73 (38%)

Abbreviations: MN (University of Minnesota), TX (M.D. Anderson), OHSU (Oregon Health & Science University),
BWH (Brigham Women’s Hospital), SD (standard deviation), Q1 (first quartile), Q3 (third quartile), ND (not done),
HGSOC (High-Grade Serous Ovarian Cancer).

3.2. Identification of Unstable Proteins

The Proseek assay uses PEA technology in which oligonucleotide-labeled antibody
pairs are used to quantify proteins by real-time PCR. To determine whether any of the
protein measurements may have been sensitive to preanalytical variation during the sample
collection or processing, we compared the standardized mean differences (SMDs) in protein
levels between subjects with and without cancer for samples from MD Anderson (TX) and
the University of Minnesota (MN) (Figure 1a). Twenty-four proteins were significantly
differentially expressed between institutions (e.g., overexpressed in MN cancer samples and
underexpressed in TX cancer samples; Figure 1a, blue circles). These findings are consistent
with previous work by Shen et al. [13], who examined the effects of preanalytical variables
on proteins quantified using the Proseek Cardiovascular Disease I and Inflammation I
assay panels. The SMDs in the protein levels for the nine proteins in our study, which were
also examined in Shen et al.’s study, are shown in Figure 1b. When the protein instability
measurement from Shen et al. (sum of ∆NPX values, with higher values indicating more
instability) was compared to the p-values for the differential effects by institution in our
study (where small p-values are evidence of instability), all four of the proteins with
significant p-values for the differential effects by institution (blue filled circles in Figure 1b)
also had the highest sum of the ∆NPX values (blue circles in Figure 1c), consistent with
our hypothesis that these proteins are unstable and sensitive to preanalytical variation.
Therefore, the 24 proteins that were significantly differentially expressed between TX and
MN were removed from downstream analysis, due to concern that they would not serve
well in the development of future clinical biomarker panels. The list of 24 proteins and the
mean differences by institution can be found in Table S1.
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or ELISA measurements for CA125. Again, we found the measurements were highly cor-
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Figure 1. Defining proteins that may be sensitive to preanalytical variation. (a) The standardized
mean differences (SMDs, i.e., t-statistics) in protein levels between those with and without cancer
were compared for Texas (TX) vs. Minnesota (MN). Blue points are proteins that were significantly
differentially expressed between institutions (e.g., overexpressed in MN cancers vs. underexpressed in
TX cancers). (b) The same plot as in (a), except only the proteins tested to determine their preanalytical
variation in Shen et al. [13] are plotted. (c) Shen et al.’s measurement of protein instability (sum of
∆NPX values; higher values indicate more instability) was compared to the p-values for differential
effects by institution, where small p-values are evidence of instability. The differential effect by
institution p-values for all differentially expressed proteins are in Table S1, along with the mean
differences by institution.

3.3. Identification of Candidate Biomarkers for Early Stage Ovarian Cancer

In our previous study, the Proseek Oncology II assay measurements for both CA125
and HE4 correlated with the clinical values or ELISA measurements in serum samples
obtained from women with late-stage high-grade serous ovarian cancer [12]. In this study,
we made a similar comparison comparing the Proseek NPX values with the clinical values
or ELISA measurements for CA125. Again, we found the measurements were highly
correlated (r = 0.83).

We also performed unsupervised clustering of the 452 samples in Cohort #1 based
on 67 proteins to visualize the protein expression differences between the samples from
the two institutions. Plotting of the first three principal components (Figure S1a) and
t-SNE plots (Figure S1b) show that the early stage ovarian cancer serum samples separate
from the healthy serum samples regardless of the institution of origin. The protein folate
receptor-gamma (FR-gamma/FOLR3) was not included in these analyses because it was
expressed at high levels in a subset of serum samples that did not correlate with ovarian
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cancer status. Similar to the PCA and t-SNE analysis, unsupervised hierarchical clustering
identified major clusters of cancer vs. healthy (Figure 2). Clusters 1 and 2 are composed
primarily of samples from healthy controls, while cluster 3 is primarily from ovarian cancer
samples, with some exceptions scattered throughout. The hierarchical clustering revealed
a group of proteins that have previously been reported to be expressed at elevated levels
in ovarian cancer serum samples, including: CA125 (MUC16), HE4, MSLN, MK, KLK8,
KLK11, NECT4, FOLR1, as well as KLK13, KLK14, and IL6 [3,26–35]. The two clusters
formed by samples from healthy individuals are divided by a general upregulation vs.
downregulation of all proteins. There is no evidence of batch effect between the sources, as
samples from both institutions are interspersed.
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Figure 2. Hierarchical clustering of 452 serum samples from Cohort #1 based on 67 proteins (excluding
FOLR3). Blue indicates proteins with high levels of expression, while yellow indicates proteins with
low levels of expression. Three major clusters were identified. The three color bands at the bottom
identify the samples. Band #1, sample type and institution: Light red, 70 early stage ovarian
cancer (TX); dark red, 46 early stage ovarian cancer (MN); light green, 275 healthy (TX); dark green,
61 healthy (MN). Band #2, overall sample type: 116 cancer (red) and 336 healthy (green). Band #3,
ovarian cancer subtypes: 53 serous (red), 21 endometrioid (blue), 14 clear cell (yellow), 15 mucinous
(green), and 13 mixed (brown).
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By FDR-adjusted two-sample t-tests, the mean levels of 38 of the 68 proteins differed
significantly (p < 0.05) between the early stage (I-II) ovarian cancer and healthy samples
(Table 2); seventeen of these proteins were elevated in the ovarian cancer samples compared
to the healthy control samples, including CA125 and HE4. The Proseek NPX values for
CA125 and HE4 were elevated in ovarian cancer samples from all subtypes (Figure 3a).
The mean NPX expression values by diagnosis of all 68 proteins is provided in Table S2.

Table 2. Mean (standard deviation) of NPX values for the 38 proteins in Cohort #1 significantly
different between ovarian cancer and healthy controls.

Protein UniProt ID Healthy
(n = 336)

Early Stage Ovarian Cancer
(n = 116) p-Value

CA125 Q8WXI7 3.21 (0.77) 6.73 (1.68) <0.001
HE4 Q14508 8.14 (0.39) 9.02 (0.65) <0.001

ITGAV P06756 3.05 (0.21) 2.70 (0.32) <0.001
MK P21741 6.40 (0.60) 7.17 (0.95) <0.001
SCF P21583 8.89 (0.41) 8.22 (0.85) <0.001
IL6 P05231 2.89 (1.26) 4.21 (1.68) <0.001

SEZ6L Q9BYH1 2.56 (0.27) 2.22 (0.44) <0.001
FASLG P48023 8.97 (0.48) 8.58 (0.52) <0.001
ESM-1 Q9NQ30 8.98 (0.57) 9.44 (0.62) <0.001
hK11 Q9UBX7 6.18 (0.44) 6.74 (0.86) <0.001

ADAM-TS 15 Q8TE58 1.86 (0.63) 2.41 (0.90) <0.001
XPNPEP2 O43895 8.06 (0.58) 7.61 (0.73) <0.001

SYND1 P18827 6.06 (0.50) 6.51 (0.82) <0.001
CXCL13 O43927 7.66 (0.61) 8.14 (0.86) <0.001
TFPI-2 P48307 7.57 (0.49) 7.98 (0.76) <0.001
TCL1A P56279 4.01 (1.22) 3.28 (1.31) <0.001
FR-α P15328 6.57 (0.48) 7.12 (1.08) <0.001

KLK13 Q9UKR3 3.41 (0.75) 3.84 (0.87) <0.001
VEGFR-2 P35968 6.70 (0.28) 6.56 (0.30) <0.001

CEACAM1 P13688 6.02 (0.24) 5.91 (0.25) <0.001
TLR3 O15455 4.93 (0.67) 4.56 (0.87) <0.001

MSLN Q13421 3.12 (0.66) 3.55 (1.03) <0.001
CYR61 O00622 5.70 (0.49) 5.37 (0.83) 0.001

GPNMB Q14956 6.07 (0.19) 5.97 (0.24) 0.001
CPE P16870 3.95 (0.42) 3.72 (0.58) 0.002
LY9 Q9HBG7 5.17 (0.41) 4.96 (0.53) 0.003

NECT4 Q96NY8 4.03 (0.47) 4.36 (0.92) 0.004
ERBB2 P04626 7.44 (0.31) 7.27 (0.49) 0.004

TNFRSF6B O95407 5.10 (0.78) 5.51 (1.13) 0.005
FCRLB Q6BAA4 0.92 (0.52) 1.18 (0.74) 0.01
GPC1 P35052 4.64 (0.39) 4.44 (0.55) 0.01

IFN-γ-R1 P15260 4.68 (0.32) 4.53 (0.43) 0.01
CD48 P09326 5.86 (0.32) 5.73 (0.42) 0.01
RET P07949 5.35 (0.48) 5.12 (0.67) 0.01

ICOSLG O75144 5.94 (0.57) 5.71 (0.73) 0.03
CTSV O60911 3.74 (0.48) 3.54 (0.64) 0.03
AREG P15514 1.87 (0.57) 2.07 (0.62) 0.03
MIA Q16674 9.66 (0.29) 9.55 (0.37) 0.03
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Figure 3. Development of a multiprotein classifier from samples in Cohort #1. (a) Proseek Oncology
II NPX values were plotted with the median and 25th and 75th percentiles for the healthy patients
(blue) and the 5 subtypes of early stage ovarian cancer (pink) for the four proteins included in the
multiprotein classifier. (b) ROC curves for the multiprotein classifier and each of the four individual
proteins included in the multiprotein classifier.

To summarize the sensitivity (true positive rate; the probability that an ovarian cancer
specimen will be correctly identified as cancer) and specificity (true negative rate; the
probability that a healthy control sample will be correctly identified as healthy) of each
protein individually across all classification thresholds, we calculated the AUC for each of
the 68 proteins. In total, 11 proteins had an estimated AUC of >0.70 (Table 3). Seven of these
eleven proteins were elevated in the early stage (I–II) ovarian cancer samples compared
to control samples, while ITGAV, SCF, SEZ6L, and FASLG were decreased. As expected,
CA125 had the highest AUC (0.958, 95% CI: 0.928–0.982) and HE4 was second with an
AUC of 0.857 (95% CI: 0.808–0.901). However, when the AUCs for the individual proteins
in combination with CA125 were considered, HE4 was outperformed by multiple other
proteins. The AUC values and sensitivity at 95% and 98% specificity for all 68 proteins
individually and in combination with CA125 are listed in Table S3.
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Table 3. AUC and sensitivities at 95% and 98% specificity for the 11 proteins with AUC > 0.70
comparing women with ovarian cancer to healthy women in Cohort #1. Summaries are also given for
the proteins when combined with CA125.

Single-Protein AUC Single-Protein Sensitivity
at 95% Specificity

Single-Protein Sensitivity
at 98% Specificity

Protein Estimate (95% CI) Rank Estimate (95% CI) Rank Estimate (95% CI) Rank

CA125 0.958 (0.928, 0.982) 1 0.879 (0.802, 0.940) 1 0.810 (0.707, 0.897) 1
HE4 0.857 (0.808, 0.901) 2 0.612 (0.526, 0.716) 2 0.578 (0.302, 0.672) 2

ITGAV 0.832 (0.783, 0.878) 3 0.440 (0.302, 0.621) 3 0.276 (0.164, 0.440) 4
SCF 0.778 (0.728, 0.825) 4 0.336 (0.233, 0.448) 6 0.293 (0.172, 0.371) 3

SEZ6L 0.764 (0.709, 0.816) 5 0.310 (0.207, 0.448) 9 0.164 (0.078, 0.310) 14
IL6 0.762 (0.708, 0.812) 6 0.310 (0.129, 0.474) 9 0.129 (0.000, 0.233) 22
MK 0.745 (0.685, 0.802) 7 0.405 (0.310, 0.509) 4 0.250 (0.052, 0.431) 6

ESM-1 0.718 (0.661, 0.772) 8 0.250 (0.129, 0.353) 17 0.121 (0.060, 0.224) 28
hK11 0.713 (0.651, 0.770) 9 0.353 (0.224, 0.466) 5 0.216 (0.138, 0.336) 9

ADAM-TS 15 0.710 (0.649, 0.768) 10 0.259 (0.181, 0.379) 16 0.233 (0.129, 0.310) 8
FASLG 0.705 (0.647, 0.761) 11 0.284 (0.172, 0.414) 12 0.181 (0.026, 0.267) 12

Protein + CA125 AUC Protein + CA125 Sensitivity
at 95% Specificity

Protein + CA125 Sensitivity
at 98% Specificity

Protein Estimate (95% CI) Rank Estimate (95% CI) Rank Estimate (95% CI) Rank

CA125 – – – – – –
HE4 0.966 (0.944, 0.983) 8 0.853 (0.784, 0.914) 55 0.784 (0.664, 0.888) 55

ITGAV 0.967 (0.941, 0.987) 7 0.914 (0.845, 0.957) 1 0.862 (0.776, 0.931) 2
SCF 0.958 (0.927, 0.982) 46 0.879 (0.802, 0.940) 36 0.810 (0.707, 0.897) 33

SEZ6L 0.974 (0.950, 0.992) 1 0.905 (0.845, 0.957) 3 0.897 (0.836, 0.948) 1
IL6 0.963 (0.935, 0.983) 15 0.836 (0.759, 0.914) 61 0.793 (0.707, 0.862) 51
MK 0.959 (0.931, 0.982) 29 0.862 (0.776, 0.931) 52 0.784 (0.698, 0.871) 55

ESM-1 0.960 (0.931, 0.983) 24 0.862 (0.802, 0.940) 52 0.802 (0.716, 0.897) 45
hK11 0.953 (0.923, 0.976) 65 0.828 (0.750, 0.914) 66 0.776 (0.672, 0.853) 60

ADAM-TS 15 0.961 (0.931, 0.984) 21 0.888 (0.810, 0.940) 22 0.793 (0.716, 0.905) 51
FASLG 0.973 (0.954, 0.988) 2 0.914 (0.853, 0.974) 1 0.836 (0.733, 0.931) 11

Abbreviations: AUC (area under the curve), CI (confidence interval).

The sensitivity at two fixed levels of specificity (95% and 98%) is shown for the
11 proteins with an AUC > 0.70 in Table 3. At 95% specificity, CA125 had a sensitivity of
0.879 (95% CI: 0.802–0.940) and HE4 had a sensitivity of 0.612 (95% CI: 0.526–0.716). Simi-
larly, at 98% specificity, CA125 ranked first, with a sensitivity of 0.810 (95% CI: 0.707–0897)
and HE4 ranked second with a sensitivity of 0.578 (95% CI: 0.302–0.672). When the per-
formance in combination with CA125 was considered, HE4 no longer ranked at the top.
Instead, SEZ6L and ITGAV had the highest sensitivities at 98% specificity.

3.4. Development of a Multiprotein Classifier for Early Stage Ovarian Cancer

To improve the detection of ovarian cancer at an early stage over CA125 alone, we
used a statistical learning method to develop a multiprotein classifier that could distinguish
sera from early stage ovarian cancer patients from that of healthy control women. Using
LASSO logistic regression to adaptively perform variable selection, the expression of
68 cancer-related proteins were considered as potential predictors, with the optimal model
combining the expression values of CA125 with three additional proteins (HE4, ITGAV,
and SEZ6L), such that the predicted ovarian cancer risk score is equal to:

expit(−3.43 + 0.959 × CA125 + 0.380 × HE4 +−0.946 × ITGAV +−0.964 × SEZ6L) (1)

where expit(x) = ex/(1 + ex). While this risk score would typically equal the estimated
probability of ovarian cancer, the intercept estimate is biased given the case-control study
design and, thus, we call it more generally a risk score. The positive weights for CA125 and
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HE4 indicate a higher predicted likelihood of cancer for those with a higher expression,
while the negative weights for ITGAV and SEZ6L indicate a lower predicted likelihood
of cancer for those with a higher expression. Interestingly, ITGAV and SEZ6L have not
previously been identified as early stage ovarian cancer biomarkers, and the levels of both
proteins were significantly decreased in sera from women with early stage ovarian cancer
compared to healthy controls (Table 2, Figure 3a, bottom panels). When we examined the
t-SNE plots clustered for all 68 proteins (Figure S1b) by the expression of the four proteins
included in our multiprotein classifier, we found that the majority of the cancer samples
expressed high levels of CA125 and HE4 (Figure S1c,d) and low levels of ITGAV and SEZ6L
(Figure S1e,f).

The ROC curves for the multiprotein classifier and each of the four individual proteins
included in the classifier are shown in Figure 3b and summarized in Table 4. Compared to
CA125 alone, the four-protein classifier improved the AUC from 0.958 (95% CI: 0.928–0.982)
to 0.974 (95% CI: 0.949–0.989). The sensitivity at 98% specificity of the multiprotein classifier
was also improved from 0.810 (95% CI: 0.707–0.897) for CA125 alone to 0.862 (95% CI:
0.776–0.933) for the multiprotein classifier. The improvement in the AUC by the multipro-
tein classifier compared to using CA125 alone was statistically significant (p = 0.02). The
predictive performance by CA125 measured by ELISA was similar to that of CA125 mea-
sured by Proseek, with an AUC of 0.959 (95% CI: 0.934–0.979) and sensitivities at 95% and
98% specificity of 0.858 (95% CI: 0.779–0.920) and 0.779 (95% CI: 0.628–0.876), respectively

Table 4. Area under the curve (AUC) and sensitivities at 95% and 98% specificity (with 95% confidence
intervals (CIs)) for the multiprotein classifier and the individual protein components for Cohorts #1
and #2.

AUC Sensitivity at 95% Specificity Sensitivity at 98% Specificity p-Value 1

Cohort #1
Multiprotein 0.974 (0.949, 0.989) 0.914 (0.852, 0.964) 0.862 (0.776, 0.933) –

CA125 0.958 (0.928, 0.982) 0.879 (0.802, 0.940) 0.810 (0.707, 0.897) 0.02
HE4 0.857 (0.808, 0.901) 0.612 (0.526, 0.716) 0.578 (0.302, 0.672) <0.001

ITGAV 0.832 (0.783, 0.878) 0.440 (0.302, 0.621) 0.276 (0.164, 0.440) <0.001
SEZ6L 0.764 (0.709, 0.816) 0.310 (0.207, 0.448) 0.164 (0.078, 0.310) <0.001

Cohort #2
Multiprotein 0.933 (0.909, 0.955) 0.792 (0.708, 0.844) 0.661 (0.526, 0.771) –

CA125 0.916 (0.886, 0.942) 0.745 (0.672, 0.807) 0.635 (0.536, 0.750) <0.001
HE4 0.882 (0.850, 0.912) 0.620 (0.536, 0.703) 0.516 (0.359, 0.630) <0.001

ITGAV 0.700 (0.653, 0.746) 0.266 (0.172, 0.354) 0.109 (0.036, 0.224) <0.001
SEZ6L 0.603 (0.554, 0.651) 0.130 (0.068, 0.182) 0.057 (0.016, 0.115) <0.001

1 Comparing the AUC of the multiprotein classifier to the AUC of the listed classifier.

3.5. Validation of the Multiprotein Classifier for Early Stage Ovarian Cancer Using a New Cohort
of Early Stage Ovarian Cancer Samples

To validate our multiprotein classifier on an unrelated set of serum samples, 192 early
stage ovarian cancer samples and 467 healthy control samples from four different institu-
tions were assembled as Cohort #2 (Table 1). Similar to Cohort #1, the majority of the serum
samples were from women with HGSOC (40%), followed by the endometrioid subtype
(26%), clear cell carcinoma (19%), and mucinous ovarian cancer (8%).

The NPX values between Cohort #1 and Cohort #2 were normalized using “bridge”
samples from Cohort #1 (see Section 2. Materials and Methods). The comparison of the
NPX values prior to normalization for the bridge samples (across all proteins) is shown
in Figure S2a and a histogram of the protein-specific normalization factors is shown in
Figure S2b. The normalization factors for the four proteins of interest were 0.70 (CA125),
1.02 (HE4), 1.98 (ITGAV), and 1.95 (SEZ6L).

For Cohort #2, we tested all 92 proteins to identify whether they were significantly
differentially expressed between the institutions. Of the 24 unstable proteins identified in
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Cohort #1, 9 proteins (38%) were also unstable in Cohort #2. Of the 68 stable proteins in
Cohort #1, only 3 proteins (4%) were found to be unstable in Cohort #2. These three proteins
(CA125, MK, and TFPI-2) were overexpressed in the cancer samples for all institutions, but
the magnitude of overexpression varied between institutions. For the 15 unstable proteins
identified in Cohort #1, but not Cohort #2, there was significant differential expression
between Cohort #2 and one of the Cohort #1 institutions (TX). When we compared the NPX
values for CA125 to the clinical values for the ovarian cancer patients in Cohort #2, we
found a correlation of 0.78, similar to what was observed in Cohort #1. The protein fold
changes between ovarian cancer and healthy patients were similar for Cohort #1 and Cohort
#2 (Figure S2c). The NPX values in Cohort #2 for the four classifier proteins separated by
ovarian cancer subtype are shown in Figure 4a.
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We next applied the early stage multiprotein classifier to the Cohort #2 samples
in order to validate its performance. The ROC curve for the early stage multiprotein
classifier applied to the Cohort #2 samples, along with the ROC curves for the four proteins
individually, are shown in Figure 4b and summarized in Table 4. For the multiprotein
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classifier, the AUC was 0.933 (95% CI: 0.909–0.955). The sensitivity at 95% specificity
was 0.792 (95% CI: 0.708–0.844) and the sensitivity at 98% specificity was 0.661 (95% CI:
0.526–0.771). For CA125 alone, the AUC was 0.916 (95% CI: 0.886–0.942). The modest
improvement in AUC by the multiprotein classifier compared to using CA125 alone was
statistically significant (p < 0.001).

3.6. Validation of the Multiprotein Classifier Using Serum Samples from Women with Benign
Ovarian Conditions

In order to examine the performance of our classifier in a broader sample set, we
applied the early stage multiprotein classifier to samples from women with benign ovarian
conditions from the same institutions as Cohort #1 (n = 49) and Cohort #2 (n = 115). The
mean (SD) age of the women with benign ovarian conditions was 56.5 (14.0) years old
with a median of 59 and range of 18–84 years old. The majority of the benign ovarian
conditions were serous cystadenomas or adenofibromas (n = 101), but also included benign
cysts (n = 30), mucinous cystadenomas (n = 10), endometriotic cysts (n = 9), and various
other benign ovarian conditions (n = 14).

These serum samples were run on the Proseek Oncology II panel simultaneously with
the ovarian cancer and healthy controls. The NPX expression levels for the four proteins
in our multiprotein classifier are shown for ovarian cancer, benign, and healthy control
samples from both cohorts in Figure 5a. In general, the median NPX values for the benign
samples were intermediate between those of the healthy controls and the ovarian cancer
samples or similar to the NPX values from the healthy controls. The predicted cancer risk
scores stratified by true cancer status are shown in Figure 5b for both cohorts. Using the
98% specificity cutpoint, our multiprotein classifier correctly classified 80.5% of benign
samples as “not cancer”.

3.7. Validation of the Multiprotein Classifier for Early Stage Ovarian Cancer on Samples from
Women with Late Stage Ovarian Cancer

In a previous study, we tested sera from women with late stage high grade serous
ovarian cancer and healthy women on the Proseek Oncology II panel [12]. However, it has
been suggested that protein changes in early stage disease may not persist to later stage.
To determine if the multiprotein classifier developed using the early stage samples from
Cohort #1 could retain its performance if presented with late stage samples, we applied
the early stage multiprotein classifier to the NPX data from late stage samples. Similar
to what we observed in the early stage samples, CA125 and HE4 levels were elevated in
the late stage ovarian cancer samples, while ITGAV and SEZ6L levels were higher in the
healthy control samples. The predicted cancer risk scores, stratified by true cancer status,
are shown in Figure 6a for the late stage samples. Given the lack of bridge samples between
these two studies, we were unable to normalize between experiments, and thus the risk
scores are not directly comparable between studies. However, we can see the multiprotein
risk score discriminates the late stage samples from the healthy controls. For the ROC
curve for the late-stage samples using the early stage multiprotein classifier (Figure 6b), the
AUC was 0.978 (95% CI: 0.941–1.00). The sensitivity at 95% specificity was 0.967 (95% CI:
0.902–1.00) and the sensitivity at 98% specificity was 0.951 (95% CI: 0.885–1.00). These data
demonstrate that the multiprotein classifier developed using early stage samples has strong
discrimination performance between healthy and late stage ovarian cancer samples.
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Figure 5. Validation of the multiprotein classifier with serum samples from women with benign
ovarian conditions. (a) Comparison of the NPX values for the proteins included in the multiprotein
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and 25th/75th percentiles are shown in all plots.
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by true cancer status for late stage ovarian cancer samples (n = 61 cancer samples; n = 88 healthy
controls) from Skubitz et al. [12]. (b) ROC curve for the early stage multiprotein classifier applied to
the late stage samples.

4. Discussion

In this study, we used the Proseek Oncology II panel to sensitively quantify the level
of proteins in sera from early stage ovarian cancer patients and healthy controls, with
the goal of developing and testing a multiprotein classifier for the detection of ovarian
cancer at an early stage of disease when it is more treatable. The Proseek Oncology II panel
uses PEA technology to quantify 92 different cancer-related proteins, including the well-
known ovarian cancer serum biomarkers CA125 and HE4. By analyzing data from a cohort
of 116 early stage ovarian cancer and 336 healthy control patients from two institutions,
we developed a multiprotein classifier to distinguish ovarian cancer cases from healthy
controls. Our classifier was comprised of four proteins: CA125, HE4, ITGAV, and SEZ6L.
When we tested our four-protein classifier with a validation cohort comprised of 192 early
stage ovarian cancer and 467 healthy control patients from four different institutions, we
found that it performed significantly better than CA125 alone.

Of the 27 proteins that were significantly differentially expressed in both cohorts of
serum, 11 proteins were found at decreased levels in ovarian cancer samples compared
to the healthy controls, including the two proteins in our multiprotein classifier, ITGAV
and SEZ6L. ITGAV is a subunit of the alpha V family of integrins, that are involved in
cell–cell and cell–matrix adhesions and signaling [36]. High expression of ITGAV in ovarian
cancer tumor tissue from late stage tumors has been associated with poor prognosis [37].
However, both tissue [38] and serum levels of ITGAV have been shown to be present
at reduced levels in ovarian cancer compared to benign tumors and borderline ovarian
cancers [39]. In addition, ITGAV expression has been correlated with increased expression
of the matrix metalloprotease MMP9 in ovarian cancer effusions [40], which could impact
ITGAV shedding into the serum in late stage ovarian cancer. The SEZ6L protein is a single
pass transmembrane protein that may contribute to specialized endoplasmic reticulum
functions [41]. Genetic analyses have implicated the loss of SEZ6L gene function in the risk
for development of lung cancer by deletion [42], and in colon cancer through promoter
hypermethylation [43]. Although, Gorlov et al. also showed increased expression of SEZ6L
in lung cancer cell lines and tumor tissues compared to normal lung cells, suggesting that
SEZ6L is both a tumor biomarker and a genetic risk factor [42].

In our previous analysis of the Proseek Oncology II biomarker panel, 40 proteins were
found to have significantly lower levels in sera from women with late stage HGSOC [12].
Eight of the eleven proteins with significantly lower levels in early stage ovarian cancer
were also found at reduced levels in sera from late stage HGSOC, including ITGAV [12],
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while three biomarkers (CPE, IFNg-R1, SEZ6L) were significantly lower only in the early
stage samples

While the identification of protein biomarkers at lower levels in cancer compared
to normal sera seems somewhat counter-intuitive, others have shown similar results for
SCF [44] and FASL [45]. One explanation could be that lower levels of proteins involved in
immune response could result in reduced antitumor immunity in ovarian cancer patients,
as was also suggested by Arts et al. for FASL [45]. Indeed, seven of the eleven proteins that
we showed had lower levels in sera from early stage ovarian cancer patients than in the
healthy controls play a role in immune response [41]. Alternatively, antigen–autoantibody
complex formation could mask the epitopes recognized by the Proseek assay, causing lower
levels of protein to be detected in ovarian cancer patients. Another explanation could be
that the proteins found at lower levels in ovarian cancer sera are more actively cleared
and/or catabolized by the tumor-bearing host. However, for proteins present at very low
levels in all samples, the difference may simply reflect the high degree of heterogeneity
within the population [46], which can only be revealed by the inclusion of a large number
of healthy control samples in the study. In our discovery cohort, we included a 3:1 ratio of
control to ovarian cancer samples in an attempt to address this issue. However, given the
relatively low prevalence of ovarian cancer in the population, the inclusion of even more
control samples would likely improve classifier performance.

Panels of biomarkers, such as ours, with greater sensitivity than CA125 alone could
increase the proportion of early stage cancers detected, possibly translating to improved
mortality. The recent report of the mortality results of the UKCTOCS screening trial [47]
casts some doubt on the assumption that earlier detection of ovarian cancer will improve
rates of cure. In this large ovarian cancer screening trial, multimodal screening (CA125 and
transvaginal sonography) detected 10% more early stage (I-II) and fewer late-stage (III-IV)
ovarian cancers, though this did not result in improved mortality [47]. In the NROSS trial
in the United States, a similar strategy with CA125 and transvaginal sonography produced
a 41% stage shift [48]. As the NROSS study was not adequately powered or controlled to
assess mortality, it is not possible to determine whether the much greater stage shift would
be associated with significantly decreased mortality. Panels of biomarkers with greater
sensitivity could, however, further increase the fraction of early stage cancers detected,
prompting additional trials to assess the impact of screening on mortality.

Although we developed our multiprotein classifier using early stage ovarian cancer
samples compared to healthy controls, serum samples from women with benign ovarian
conditions were run simultaneously on each of the Proseek Oncology II plates. When
we applied our multiprotein classifier to the 164 benign samples with a threshold of 98%
specificity, 80.5% of the benign samples were classified correctly, with only ~20% of the
benign cases being classified as “cancer”. Our multiprotein classifier could be incorporated
into a two-step screening strategy, such as those used in the UKCTOCS and NROSS
studies [47,48], whereby those women whose serum tests indicate “cancer”, would then
be screened by imaging to rule out the false–positive benign lesions and exclude them
from surgery.

Other groups have used multiple panels of the Proseek multiplex assays (Oncology
II, Inflammation, Immune Response, Development, Cell Regulation, Metabolism, Car-
diometabolic, and Organ Development) to identify biomarkers in cohorts of ovarian cancer
patients compared to benign and borderline cases [39,49] and healthy controls (Oncology II,
Inflammation, Neurology, CVD II and CDV III, Ref. [50]) and have developed multiprotein
classifiers from their data. As with our classifier, these all included both CA125 and HE4,
while some classifiers included up to 13 additional biomarkers from the 460 proteins as-
sayed [50]. Most of the biomarkers included in these multiprotein classifiers were elevated
in ovarian cancer compared to benign, borderline, and control samples. However, in a
recent analysis of 177 Proseek proteins (from the Oncology II and Inflammation panels)
used to distinguish benign tumors from borderline tumors and ovarian cancer, ITGAV was
the only individual biomarker found to improve the performance of the reference model
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(CA125, HE4 and age) [39]. ITGAV was also included in the six-protein classifier developed
using LASSO regression, and was one of only two proteins to have significantly lower NPX
values in the ovarian cancer samples compared to benign samples [39].

Recently, Gyllensten et al. used the Olink Explore platform to analyze 1493 proteins in
plasma samples from women with ovarian cancer compared to benign ovarian tumors [51].
They identified 28 proteins with significantly elevated levels in two small cohorts of samples
and developed several multiprotein models which were able to distinguish ovarian cancer
from benign samples. The models used between four–seven proteins, including HE4, but
interestingly, none of the models included CA125 [51].

Another recent study used the Proseek Oncology II panel to identify biomarkers
capable of distinguishing ovarian cancer cases in prediagnostic samples from the European
Prospective Investigation into Cancer and Nutrition (EPIC) cohort [52]. They identified
nine individual biomarker proteins that could discriminate between 91 women who later
developed cancer (39 women <9 months; 52 women <18 months) from 182 women who did
not, with an AUC of ≥0.70. Seven of these nine proteins (CA125, HE4, CXCL13, FOLR1,
KLK11, MK and MSLN) were significantly elevated in both of our early stage ovarian
cancer cohorts. In their study, the addition of any of the individual markers to CA125 did
not significantly improve the ability to detect the prediagnostic samples, and the use of
all 92 markers to develop a detection algorithm was also not successful. In contrast, our
classification algorithm included CA125, HE4, and two markers with lower expression in
the early stage ovarian cancer samples.

The Proseek Oncology II panel uses PEA technology to provide relative quantification
of 92 different cancer-related proteins in serum or plasma. As was done in our study,
“bridge” samples are necessary to compare results between different experiments due
to the relative quantification. For clinical application, absolute quantification of proteins
would be necessary. Additionally, in our analysis of sera from women with early stage
ovarian cancer, we found that 24 of the 92 proteins differed significantly between ovarian
cancer cases and control samples that were collected from two different institutions in
Cohort #1. This data suggests that these 24 proteins may have unstable levels due to
their sensitivity to preanalytical variation. Indeed, of the nine proteins in our study that
overlapped with the analysis of preanalytical variables in the Proseek Cardiovascular
Disease I and Inflammation I assay panels done by Shen et al. [13], the four markers that
we found had significant p-values for differential effects by institution were also shown
to have significantly increased ∆NPX values with increasing time from blood collection
to processing [13]. The increase in protein levels with increasing time to centrifugation
could be attributed to protein leakage from blood cells. In Shen et al.’s analysis [13], only
minimal effects on the protein profiles were observed after an 8 h delay in centrifugation (at
4 degrees) and 1 h at room temperature. However, after 24 h at room temperature, nearly
one-third of the proteins were affected [13]. In our study, more than 25% of the measured
proteins showed significant differential effects by institution, suggesting a potential for
preanalytical variation in sample processing, despite the use of standardized methods for
sample processing and timely storage. This underlines the necessity of selecting robust
biomarker candidates for clinical assay development. The instability of biomarkers in
serum may explain the inconsistent results from the literature; for example, EGF has been
reported to be elevated [53], decreased [54], or not significantly different [55] in sera from
ovarian cancer patients compared to healthy controls. Interestingly, in the study by Shen
et al., essentially no change was observed in protein levels quantified by the Proseek assay
after up to eight freeze–thaw cycles [13], indicating that multiple rounds of freezing and
thawing does not lead to destabilization of these proteins. Other studies have shown
differences in biomarker levels due to long term storage [56], common medications [57],
and samples collected under anesthesia [58].

Thus, although several studies have used the Olink platform in an effort to identify
ovarian cancer biomarkers, slightly different panels of biomarkers have been found. In
terms of prioritizing a biomarker panel for future study, it would be useful to further
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characterize the performance of existing panels on external validation samples in settings
where the panel’s biomarkers have already been quantified in samples from other studies.
Following that, prospective validation of the most promising panels—or a combination of
panels—would be needed to determine if the early detection of ovarian cancer is increased,
and whether there is an associated mortality reduction.

5. Conclusions

Our study highlights the importance of identifying protein biomarkers that are ro-
bust and not sensitive to preanalytical variation. We also showed that including protein
biomarkers that are present at reduced levels in early stage ovarian cancer cases compared
to healthy controls can increase the predictive value of a multiprotein classifier, suggesting
that the lower levels of some proteins may contribute to tumor development. Future models
may need to include autoantibodies, circulating tumor DNA, miRNA, or other molecules.
In addition, longitudinal testing of protein panels and other biomarkers may be necessary
to improve the earlier detection of ovarian cancer.
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