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Simple Summary: Cancer is among the leading causes of death in the United States and worldwide.
Early prediction of cancers is important for the improvement of treatment outcomes and survival
rates, thus resulting in significant social and economic impacts. Recent developments have focused
primarily on using gene expression and mutation data to predict or classify cancer types. Here, we
show that chromosomal rearrangement endpoints alone can predict cancer types with more reliability
and specificity.

Abstract: Chromosomal rearrangements are generally a consequence of improperly repaired double-
strand breaks in DNA. These genomic aberrations can be a driver of cancers. Here, we investigated
the use of chromosomal rearrangements for classification of cancer tumors and the effect of inter-
and intrachromosomal rearrangements in cancer classification. We used data from the Catalogue
of Somatic Mutations in Cancer (COSMIC) for breast, pancreatic, and prostate cancers, for which
the COSMIC dataset reports the highest number of chromosomal aberrations. We developed a
framework known as GraphChrom for cancer classification. GraphChrom was developed using
a graph neural network which models the complex structure of chromosomal aberrations (CA)
and provides local connectivity between the aberrations. The proposed framework illustrates three
important contributions to the field of cancers. Firstly, it successfully classifies cancer types and
subtypes. Secondly, it evolved into a novel data extraction technique which can be used to extract
more informative graphs (informative aberrations associated with a sample); and thirdly, it predicts
that interCAs (rearrangements between two or more chromosomes) are more effective in cancer
prediction than intraCAs (rearrangements within the same chromosome), although intraCAs are
three times more likely to occur than intraCAs.

Keywords: chromosomal rearrangement; cancer classification; graph neural networks

1. Introduction

Most cancers develop due to accumulation of mutations in somatic cells, although
hereditary mutations do contribute to some cancers. Structural chromosomal rearrange-
ments, also called chromosomal aberrations (CA), constitute translocations, deletions,
inversions, duplications, and other forms of fusion of long chromosomal segments and
have been detected in nearly every analyzed cancer genome. Aberrations could affect
one single gene as well as entire chromosomal segments and generally result from im-
proper repair of double-strand breaks in DNA. CAs alter genome architecture which can
affect cell cycle regulators and cause cellular transformation and immortality. Additional
complexity in terms of association between the arrangements may be developed when
a significant portion of CAs occurs in one cell. Li et al. [1] described somatic structural
variations in whole-genome sequencing and used spatial and temporal proximity to cluster
structural variants.

Current genetic cancer theories propose that gene-level aberrations such as mutations
are drivers of cellular immortalization and cancer. However, chromosomal instability, both
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structural and numerical, has been detected in virtually every cancer type [2]. Some propo-
nents of the chromosomal theory of cancer have suggested that chromosomal instability
may be the major driver [3]. Several studies revealed the significance of chromosomal
rearrangements in cancer. Koschni et al. [4] found that comparative genomic hybridiza-
tions (CGH) have unique aberration patterns in oligodendrogliomas [4]. More specifically,
the aberration pattern in subgroup C is different from that in subgroups A and B, which
indicates a unique molecular carcinogenetic pathway of this subset of oligodendrogliomas.
Heng [5] described the genome chaos and microcellular evolution and emphasized the
higher importance of nonclonal chromosomal aberrations and genomics over genetics. We
also identified cancer-specific chromosomal rearrangements [6]. Thus, it is becoming appar-
ent that both mutations and chromosomal instability contribute to cellular transformation.

Cancer classification is a vital problem that helps clinical treatment and therapy. The
main goal of cancer classification is to use somatic mutations to classify cancer into one of the
cancer types or subtypes. Cancer prediction and classification have been investigated using
different methods. The classifications based on morphological characteristics lack accurate
diagnosis and may have a strong bias in diagnosis by experts. With the emergence of RNA
sequencing, gene expression data, and whole-genome sequencing, more opportunities
have arisen to examine the global landscape of mutations and discriminate between cancer
types more accurately. Previous works in the area of cancer type/subtype classification
used mostly gene expression data or plasma cell-free DNA methylation patterns. The
gene-based cancer type classification approach described by Jiao et al. [7] can discriminate
between 24 cancer types based on somatic passenger mutations.

Additionally, advances in machine learning and, more recently, deep-learning tech-
niques have led to development of more accurate methods for diagnosis and treatment
of cancer. Several machine learning-based approaches are proposed for cancer prediction
and classification based on the support vector machine (SVM) [8–11], vanilla neural net-
work [8,12,13], ensemble convolutional neural network [8,14], ensemble random forest
and deep neural network [15,16], coherent voting network [17], and k-nearest neighbors
(kNN) [18–21] algorithms. Kim et al. [8] performed classification of 21 cancer types us-
ing gene expressions from The Cancer Genome Atlas project. They compared the neural
network, SVM, kNN, and random forest algorithms and reported a higher performance
for the neural network. Khan et al. [22] developed a deep learning-based framework for
the classification of breast cancers using transfer learning. Prado-Vázquez [19] used a
probabilistic graphical model approach for gene expression association and performed the
kNN algorithm for breast cancer molecular classification. Some studies report that selecting
significant genes (features) and filtering uninformative genes improve the result of the
classification and reduce the computational cost, such as the least absolute shrinkage and
selection operator (LASSO) regression [14]. Liu et al. [23] combined double RBF kernels
with weighted analysis to extract effective features from gene expression data.

More recent studies used deep-learning techniques to automate the feature selection
task in cancer classification. Most of these studies used a convolutional neural network
as the main backbone in their architecture, such as the deep neural network [24], Neural
Architecture Search Network Large (NASNEtLarge) [25], and ensemble convolutional
neural network [14]. Gao et al. [26] developed a deep learning-based framework for cancer
molecular subtype classification. The deep features learned by their framework capture
the biological characteristics associated with each molecular subtype. Tandel et al. [27]
provided a review of deep learning-based techniques in brain cancer classification.

There are some challenges with the classification based on gene expression data.
First, sequencing generates an enormous number of gene mutations, but not all genes or
mutations contribute or relate to cancer prediction, and only a subset of discriminatory
genes (driver genes) play a role in the prediction. For example, Endiratta et al. [28] reported
that TP53 is the most commonly mutated gene, and KMT2C, KMT2D, and ARID1A are the
most commonly mutated driver genes in the US population. A recent analysis of mutations
in human cancers classified 568 genes as driver [29]. Mutations in these genes are likely to
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cause cellular transformation while mutations in other genes (passenger) may contribute
little and even degrade the classification performance. Furthermore, in the discriminatory
subset, many of the genes may not have mutations, so they do not carry useful information.
These genes will increase complexity of computation for classification or prediction tasks.

One solution is to use chromosomal rearrangements instead of genes or gene ex-
pression data for cancer classification. Chromosomal rearrangements provide fewer but
informative data that can be used for classification. Chromosomal rearrangements can
be further divided into interCAs (rearrangements between two or more chromosomes)
and intraCAs (rearrangements within the same chromosome). IntraCAs are significantly
more frequent than interCAs in almost all cancer types [1,6]. In breast cancer, the tally
of intraCAs is 68190 versus 18925 for interCAs. In prostate cancer, it is reported as 66411
for intraCAs and 25443 for interCAs, and in pancreatic cancer, the numbers are 43293 for
intraCAs and 8330 for interCAs. In this work, we investigated the effectiveness of inter-
and intraCAs in cancer prediction versus their frequency using the Catalogue of Somatic
Mutations in Cancer (COSMIC).

There is a high chance of dependency between aberrations in the local neighborhood.
Li et al. [1] stated that the structural variants that occur closer together in space and
time usually fit into one cluster. This indicates that, generally, but not always, there is a
mechanistic link between structural variants within clusters. Thus, gathering information
on the other structural variants in the neighborhood needs to be taken into account for
analysis of chromosomal rearrangements. This issue was addressed in the proposed work.

There are several databases that have catalogued chromosomal aberrations and gene
fusions including the COSMIC [30], Mitelman [31], FARE-CAFÉ [32], TCGA Fusion Gene
data portal [33], FusionCancer [34], ChiTaRS [35], dbCRID [36], CoonjoinG [37], HY-
BRIDdb [38], TICdb [39], and ChimmerDB [40]. COSMIC [30] is a database of somatically
acquired mutations found in cancer and is a catalogue of translocations and fusions be-
tween gene pairs supplemented by clinical data. The Mitelman Database of Chromosome
Aberration and Gene Fusion in Cancer [31] is available for searches related to cases of
cytogenetics, gene fusion, structural or recurrent aberrations. This database relates gene
fusions and other chromosomal aberrations to tumor characteristics, including karyotype
abnormalities associated with tumor types. This database is searchable by a wide variety of
fields, such as patient age, authors, gene, tumor histology, tissue type, mutation recurrence,
associated clinical features, and cancer types. The Atlas of Genetics and Cytogenetics in
Oncology and Hematology database [41] provides information about genes, cytogenetics,
and clinical entities in cancer. Latysheva and Babu [42] provided a survey of databases
for oncogenetic fusion genes. They also summarized the existing software packages and
algorithms for identifying gene fusions from sequencing data.

In this work, we proposed using chromosomal rearrangement endpoints instead of
gene expression profiles or mutations for cancer type classification using the COSMIC. To
the best of our knowledge, this is the first application of multiclass cancer classification
based on chromosomal rearrangement endpoints. Chromosomal rearrangements have
complex relationships and cannot be presented well by other traditional data structures. We
proposed a graph-based structure framework, GraphChrom, which uses a graph neural net-
work to classify cancer types or subtypes. The graph neural network has a message-passing
scheme in which each chromosome is updated according to the information (aberrations)
aggregated from the other chromosome’s graph neighborhood. In particular, we used
a graph attention network (GAT) which is a measure of the importance of aberrations,
defined as how much neighbor CAs influence each chromosome. It means that the output
vector from the GAT for each chromosome contains information about the aberrations from
other chromosomes, which is a span of n-hop from that chromosome. We also proposed
using average graph connectivity, a measure of connectedness, to find the more informative
graphs in terms of chromosomal rearrangements for classification. We also hypothesized
that the effectiveness of interCAs in cancer classification is higher than that of intraCas,
which is inversely proportional to their frequency.
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The novelty of this work is several-fold: (A) it develops a graph-based framework to
present the complexity of chromosomal aberrations; (B) it predicts cancer types (breast,
prostate, and pancreatic) using chromosomal rearrangement endpoints and can be extended
to cancer subtype prediction; (C) it extracts highly informative aberrations based on the
average graph connectivity; (D) it gathers information about other aberrations in the
local neighborhood; and (E) it determines the effectiveness of inter- and intraCAs in
cancer classification.

2. Materials and Methods
2.1. Catalogue of Somatic Mutations in Cancer (COSMIC)

The COSMIC [30] is a comprehensive database of somatic mutations in human can-
cers. This dataset consists of information about genes, mutations, and tumor classification,
including the primary tissue and tissue subtype. Initially, we derived chromosomal re-
arrangement data for 16 cancer types. However, the majority of the cancer types were
excluded because either the number of their aberrations in the COSMIC or their generated
graphs in our framework were not sufficient for training a graph neural network. This is
explained in detail in the following sections. The total number of aberrations for nine cancer
types is shown in Figure S1. Thus, the experiments were restricted to the three cancer types
only (breast, pancreatic, and prostate) that have the highest number of aberrations and also
generated the highest number of graphs in our framework. The data were derived from
the COSMIC including “Location From” and “Location To” indicating the first breakpoint
“from” and the second breakpoint “to”, sample name, mutation type, and cancer type. Each
cancer type includes multiple sample names, and each sample name contains multiple
aberrations. Each sample in COSMIC is unique and is considered as a single experiment
for this analysis. The mutation types of the samples in the COSMIC are categorized into
seven groups, including inverted orientation, noninverted orientation, inversion, deletion,
tandem duplication, insertion, and unknown types. Mutations include both intraCA and
interCA rearrangements. Interchromosomal rearrangements are all reported as the un-
known mutation type in the COSMIC while intrachromosomal rearrangements include
all the seven mutation types mentioned above. We processed intra-, inter-, and integrated
intra-/interchromosomal rearrangements to assess the effect of each group in prediction.

2.2. Overall Architecture of GraphChrom

The input of the framework is chromosomal rearrangement endpoints (CREs) and
the output is a label with probability that defines the cancer type. Overall, the framework
consists of several components. The first component is a graph generation module which
takes the CREs for each sample name and creates a single graph for that sample. Each
sample name can contain one or more aberrations related to the same cancer type. Thus,
one graph carries the CRE information belonging to one sample name. The output of this
module is a set of graphs equal to the total number of sample names.

The graph representations are then fed to the second component to capture the higher
level of information including the maximum disjoint paths and the average graph con-
nectivity. The third component is a filtering module to filter out the graphs with the
connectivity measure higher than a specified threshold. Finally, there is a classification
component, which is a graph neural network that classifies cancer types by taking the
filtered graphs as inputs and outputting the predicted cancer type associated with the CREs.
The goal of GraphChrom is to predict cancer types using CREs by learning from node
embeddings in the graph neural network which is referred to as the graph classification
problem. The overall architecture of GraphChrom is shown in Figure 1. The following
sections describe each component of GraphChrom in detail.
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Figure 1. The overall architecture of GraphChrom. The model consists of the following four main
components: the graph representation module that generates graphs based on the chromosomal rear-
rangement endpoints derived from the COSMIC dataset, the average connectivity measurement that
computes higher-level information for the graphs, the filtering component that filters out the graphs
with the average graph connectivity less than a specified threshold, and the GNN that generates
higher-level features of the graphs with the global spatial domain and makes the final prediction.

2.2.1. CRE Graph Generation

Graphs are a ubiquitous data structure for describing complex systems. In the most
general view, a graph is simply a collection of objects (nodes) along with a set of interactions
(edges). In this work, graphs were generated based on the CREs derived from the COS-
MIC dataset. The structure of chromosomal aberrations is formulated as a directed graph
G (V, E) where V = {1, 2, . . . n} is the set of n = 24 chromosomes (nodes) and E denotes the
set of rearrangements (edges) between the chromosomes. The graphs are also considered
as multigraphs which allows multiple edges between the same pair of nodes, indicating
repetition of the same chromosomal aberration for the sample. Each graph is represented
as an adjacency list where each element in the list denotes edge Auv that connects node u
(source chromosome) to node v (sink chromosome). We referred to the source chromosome
as the first breakpoint (“Location From”) and to the sink chromosome as the second break-
point (“Location To”) in the chromosomal break and used→ as the notation to show the
direction of the rearrangement. For example, aberration 2→ 3 represents a chromosomal
rearrangement from chromosome 2 to chromosome 3. For interCAs, the direction of the
edge is from the source chromosome to the sink chromosome. However, for intraCAs, the
source and sink chromosomes are the same nodes; thus, graphs contain self-loop edges.
An attribute matrix A ∈ R|V|×d is created, which represents the edges (chromosomal aber-
rations) between the nodes. The type of rearrangement (inverted orientation, noninverted
orientation, inversion, deletion, tandem duplication, insertion) is unknown for interCAs in
the COSMIC, although they are defined for intraCAs.

The samples contain information including the sample name, sample ID, primary site,
mutation type, source chromosome, destination chromosome, etc. All aberrations associ-
ated to the same sample name generate one single graph that represents the rearrangement
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structure for that specific sample. Figure 2 shows two different graphs which are generated
based on CREs belong to two different sample names in prostate and breast cancers, re-
spectively. Some samples contain very few aberrations, which develop sparse graphs. It is
assumed that these graphs do not carry sufficient information; thus, a strategy is used to
extract the graphs that have a higher contribution towards prediction. We proposed using
the average graph connectivity using the maximum disjoint paths between the nodes to
extract informative graphs, as described in the following subsections. We used only the
graphs with the average connectivity higher than a specified threshold in the experiment.
The generated graphs in Figure 2 are examples of dense and sparse graphs for breast and
prostate cancers.
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Figure 2. Examples of dense and sparse graphs representing CAs for two distinct samples in (A) breast
cancer (large number of aberrations (such as 2→ 6, 6→ 2, 16→ 6, 7→ 17, 17→ 7, 8→ 21, 21→ 8,
etc.)) and(B) prostate cancer (few aberrations (such as 2→ 5, 4→ 10, 17→ 3, 17→ 7, 8→ 21, 21→ 8, etc.)).

2.2.2. Maximum Disjoint Path between Two Chromosomes

According to Menger’s classical theorem [17], in a k-connected graph, every pair of
nodes are joined by k internally disjoint paths. Given digraph G and two nodes, u and
v, disjoint paths are u-to-v edge paths where no two paths share an edge. We used this
theorem to find the maximum disjoint path between every pair of chromosomes in the
graph by using a breadth-first search algorithm. The maximum disjoint path between
chromosomes is used in the next step for computing the average connectivity of the graphs
(described below).

2.2.3. Average Connectivity of CA Graphs

The more connected the graph is (more aberrations in a sample), the more depen-
dencies between the mutations (or rearrangements) there usually (not always) are. We
hypothesized that graphs with more links between chromosomes carry more mutation
information and play a more important role in prediction than single independent muta-
tions. The measure of how well a graph is connected is connectivity, which is defined as
the minimum number of nodes in a set whose deletion results in a disconnected graph.
However, since its value is based on a worst-case situation, it does not always reflect the
behavior of the whole graph. Thus, we used the average graph connectivity [43], a measure
of global graph connectedness, which gives the expected number of nodes that must fail in
order to disconnect an arbitrary pair of nonadjacent nodes. In particular, connectivity is a
lower bound for the average connectivity. In this work, the average graph connectivity was
computed based on the following [43]:
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aggregating information at node 𝑢 and 𝒉𝑣  is the hidden embedding of node 𝑣. The in-
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G(u, v) is the connectivity between
chromosome pairs u and v, and p is the order of the graph. In our study, p = 24, which
represents 24 chromosomes (22 autosomes and two sex chromosomes). We calculated the
average connectivity for all the CRE graphs based on the maximum disjoint paths between
all pairs of chromosomes.
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2.2.4. Filtering

In the filtering module, sparse graphs with the average connectivity below a specified
threshold are removed. We used different values using trial and error to find the best
threshold that provides the highest performance. In our experiments, it was observed that
the prediction accuracy is significantly increased with filtering very dense graphs in which
rearrangements have less influence on the structure of the graph.

2.2.5. Graph Neural Network (GNN)

In GraphChrom framework, the GNN [44–46] is the main component that makes the
final prediction. GNNs describe a flexible set of architectures for graph-learning tasks
and have seen many successful applications over recent years. In this work, the GNN is
implemented using the iterative message-passing scheme which allows exchanging vector
messages between chromosomes and so update the information of each chromosome
as the central node. At each iteration, every node aggregates information from its local
neighborhood, and as these iterations progress, each node is embedded with more and
more information from further reaches of the graph. In this framework, chromosomes are
updated by the other aberrations in the local neighborhood and not only by the immediate
neighbors. This is an important factor as structural variants are mechanistically linked
to each other [1]. The input of the GNN is the filtered dense graphs from the filtering
component, and the output is the predicted cancer type. The graph neural network is
trained by computing the loss function between the predicted values and the ground truth
data. The proposed GNN includes several layers described as follows.

The graph attention network (GAT) [47] is a version of the graph convolutional
network that improves message aggregation by applying attention weights which represent
the importance of each chromosome. The measure of importance is defined as how much a
neighbor influences the chromosome. Message aggregation in the GAT is defined as follows:

mξ (u) = ∑
v∈ξ

∝u,v hv (2)

where ∝u,v denotes the attention on neighbor v in the neighborhood of node u when
aggregating information at node u and hv is the hidden embedding of node v. The intuition
behind using the GAT is to assign an attention weight or importance to each chromosome,
which is used to weigh the chromosome’s influence during the aggregation step. Different
numbers of GAT layers (radius = n) are used in the GNN architecture. It means that the
output vector of the GAT for each chromosome contains information about the aberrations
from other chromosomes, which is a span of n-hop from that chromosome. Different
values are used for n to explore how strongly the neighborhood CAs influence the CAs on
chromosomes.

The pooling is performed using global max pooling which performs pooling based on
the whole graph. It is followed by the last layer of the GAT in the GNN.

Dense layer—a fully connected layer is created at the last component of the GNN
which is followed by the Softmax activation function.

The objective function is the negative log likelihood loss applied to the log Softmax
activation function as follows:

lossGraphChrom(θ) = −
1
n

n

∑
i=0

[yi log(ŷi) + (1− ŷi) log(1− ŷi)] (3)

where θ is the set of parameters in the model, n is the total number of graph structures of
aberrations, ŷi and yi are the predicted and ground-truth cancer type values, respectively.

Adjusting class imbalance: the classes with the imbalanced size of data negatively
affect the performance of the classification. In this work, imbalanced numbers of graphs
are obtained for different cancer types after applying the filtering module. The list of class
sizes for each cancer type is shown in Extended Data Table 1. In order to compensate
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for the imbalanced data, a weighting strategy is used to oversample the minority classes.
The weight of each class is calculated proportionally to the number of samples. Then, the
number of samples in each batch are picked up proportionally to the weight of the classes.

Table 1. The size of the data used in the experiment (number of aberrations and resulting graphs for
integrated inter-/intrachromosomal aberrations).

Cancer Type No. of Aberrations No. of Graphs

Breast 86,485 598
Pancreatic 51,623 513
Prostate 91,854 478

2.3. Baseline Models

In this section, we described the baseline models used in our experiment, including
vanilla networks, SVM, and kNN. The input of these models is the set of all the CREs for
the three defined cancer types, in contrast to the GNN in which the inputs are the graphs
generated per sample name.

The implemented vanilla network is a three-layer backpropagation neural network
with the RELU activation function. The output layer contains three neurons for three-way
classification (prostate, pancreatic, and breast cancer). We tested the network with different
numbers of hidden layers and neurons and achieved the highest accuracy with three hidden
layers and 60 neurons.

Two experiments were performed using the support vector machine (SVM) based
on linear and polynomial functions. Nearly the same performance was achieved for both
linear and polynomial SVM kernels.

The k-nearest neighbors algorithm (kNN) is performed with different numbers of
neighbors, from one to hundred, and different similarity measures, including Minkowski,
Mahalanobis, and Euclidean distances.

3. Results and Discussion

GraphChrom is implemented in Python 3 using Pytorch 0.40. The training process of
the GNN lasts at most 200 epochs using the Adam optimizer with a learning rate of 0.001
and batch size of 10. In this work, n GAT layers were employed, where n varied between
1 and 10, and the 0.2 dropout rate was applied. The total number of aberrations and
their corresponding generated graphs in GraphChrom for breast, prostate, and pancreatic
cancers are shown in Table 1. These three cancer types have the highest number of samples
and aberrations in the COSMIC. This enabled the framework to generate the highest
number of graphs for these three cancer types compared to other cancer types.

3.1. GraphChrom Predicts Cancer with High Accuracy

Overall, 1589 graphs were generated, of which 1137 were filtered out by the filtering
module due to sparsity. The size of the training data (inter-, intra-, and integrated CAs) used
in the experiment is shown in Figure S2. Different threshold values for the average graph
connectivity were tested, and the value with the highest performance (0.3) was chosen. The
range of graph connectivity was between 0 and 1. In the experiments, it was observed that
most of the aberration graphs had the average connectivity below 0.3. These graphs did
not have a sufficient number of endpoints and thus were removed from the experiment.
Finally, the model was trained with the remaining 361 and 91 graphs for training and
testing, respectively. The imbalanced data were adjusted using a weighting strategy. The
training and testing accuracy graphs for GraphChrom are shown in Figure 3. According to
the results, a high accuracy classification rate was achieved for all three cancer types. In
particular, the classifier obtained 88% overall accuracy for classification. It also achieved
95%, 91%, and 90% accuracy for breast, pancreatic, and prostate cancers, respectively.
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3.2. Effect of Inter- and Intrachromosomal Aberrations in Prediction

In this experiment, we investigated how inter-, intra-, and integrated inter-/intraCAs
affect the overall prediction. We performed GraphChrom for each of these groups in
separate experiments. The results indicate that interCAs were more effective than intraCAs
in prediction. The accuracy rate for interCAs was 72% and 37% for intraCAs (Figure 4a).
IntraCAs exhibited poor performance and, in particular, did not contribute to prediction
on their own. In the integrated experiment, we combined both inter- and intraCAs and
applied them to the models. The integrated data provided the highest accuracy of 88%
for the overall classification. We also observed that accuracy decreased when removing
either inter- or intraCAs. However, the highest decrease could be observed when removing
interCAs. This indicates that the predictive effectiveness of interCAs was higher than that
of intraCAs, although intraCAs also have a minor role in prediction in the integrated form.
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Figure 4. Classification accuracy rate and frequency of aberrations in intrachromosomal, interchro-
mosomal, and integrated aberrations. The frequency is computed based on the data obtained from
the COSMIC. Intrachromosomal aberrations are more frequent but have less effect in prediction in
contrast to interchromosomal aberrations that are less frequent but significantly affect prediction
accuracy. (a) classification accuracy for inter CA, intra CA, and integrated CA based on GraphChrom
(b) Frequency of inter CA, intra CA, and integrated CA.

Surprisingly, the effectiveness of inter- and intraCAs in prediction was inversely pro-
portional to the frequency of aberrations. Although intraCAs occurred at a higher frequency
rate than interCAs (Figure 4b), the accuracy of interCAs in prediction was more than dou-
ble that of intraCAs (Figure 4a). It indicates that the frequency is not the main factor for
defining the driver genes/chromosome for cancer prediction. Interchromosomal instability
is expected to occur at a lower frequency, perhaps because it is harder to stabilize transloca-



Cancers 2022, 14, 3060 10 of 15

tions. In fact, most human genome is “junk” DNA; small intrachromosomal deletions and
inversions are tolerated but may not affect cell function. However, certain translocations
(e.g., unbalanced) can cause long-range allele loss (e.g., loss of heterozygosity) which could
inactivate many genes and cause cell death. In a recent report, we showed that interchromo-
somal rearrangements are cancer-specific (Mirzaei and Petreaca) while intrachromosomal
rearrangements may be “passenger”. Many interchromosomal aberrations occur during
DNA replication due to improperly stalled or collapsed replication forks [48]. Recurrent
interchromosomal instability was previously shown to correlate with cancer types and in
some cases is even used as a diagnostic tool (e.g., the Philadelphia chromosome in certain
leukemias and lymphomas) [49]. Thus, it makes sense that the algorithm described in
this report forecasts that interchromosomal instability has a higher accuracy of cancer
prediction. The frequency of inter- and intra CAs per cancer type is provided in Figure S3.

3.3. GraphChrom Outperforms Baseline Models

GraphChrom was compared with several baseline models, including the vanilla neural
network, SVM-linear, SVM-polynomial, and kNN. In all the models, data were trained
based on a training set and evaluated on a testing set. As shown in Figure 5, GraphChrom
achieved a higher accuracy rate than the baseline models. In particular, GraphChrom
considerably outperformed the baseline models by achieving 88% for integrated CAs
compared with less than 50% for the baseline models.
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Figure 5. Performance of GraphChrom, vanilla neural network, SVM, and kNN based on inter-,
intra-, and integrated chromosomal rearrangement endpoints.

Surprisingly, in the baseline models, integrated CAs provided a lower accuracy rate
compared to interCAs, in contrast to GraphChrom. This is because of the complexity of
CAs, and their spatial dependency could be formulated very well with graphs, but not
with the baseline classifiers. In fact, GraphChrom has a message-passing strategy that
aggregates messages from the neighbor chromosomes to get information about the other
CAs. This is an important factor which cannot be addressed in the baseline models. In
all the models, intraCAs had a very low contribution to prediction. We also observed
that GraphChrom outperformed the baseline models for interCAs with the 73% accuracy
rate, compared with the 60%, 56%, 57%, and 63% accuracy rate for the vanilla network,
SVM-linear, SVM-polynomial, and kNN, respectively.

3.4. Local Chromosomal Aberrations Affect Prediction

In order to investigate how structural variants are mechanistically linked to each
other and how they impact prediction, we further performed GraphChrom with different
numbers of hubs away from each chromosome, i.e., if we have chain of CAs, how these
aberrations are influenced by nonimmediate neighbors. We performed the experiment
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with different numbers of hubs within GraphChrom. In fact, each chromosome aggre-
gates information not only from direct neighbors but also from neighbors of neighbors
in the range of 2–10 hubs away from the original chromosome. For example, the embed-
ding vector of chromosome A consists of its neighbors {B, C, D} when n_hub = 1, and
it consists of the second-order neighbors when n_hub = 2 and the third-order neighbors
when n_hub = 3, and so on. The more the number of hubs, the more information is incor-
porated from the chromosome’s neighborhood. Although more information aggregated
from the neighborhood can help to increase classification accuracy, at some point, the
accuracy begins to decrease. The reason is that one chromosome may appear in different
chromosome neighborhoods which causes the same information to be added over and over
into the embedding. Additionally, the more there are hubs, the higher the computational
complexity. The results indicate that not only the direct neighbors, but also the non-direct
neighbors affect prediction. We achieved the maximum performance with six hubs away
from each chromosome with 88% accuracy.

The accuracy rate obtained for different numbers of hubs in the range of 2–10 is shown
in Figure 6.

Cancers 2022, 14, x  11 of 15 
 

 

 
Figure 5. Performance of GraphChrom, vanilla neural network, SVM, and kNN based on inter-, 
intra-, and integrated chromosomal rearrangement endpoints. 

3.4. Local Chromosomal Aberrations Affect Prediction 
In order to investigate how structural variants are mechanistically linked to each 

other and how they impact prediction, we further performed GraphChrom with different 
numbers of hubs away from each chromosome, i.e., if we have chain of CAs, how these 
aberrations are influenced by nonimmediate neighbors. We performed the experiment 
with different numbers of hubs within GraphChrom. In fact, each chromosome aggregates 
information not only from direct neighbors but also from neighbors of neighbors in the 
range of 2–10 hubs away from the original chromosome. For example, the embedding 
vector of chromosome A consists of its neighbors {𝐵, 𝐶, 𝐷} when n_hub=1, and it consists 
of the second-order neighbors when n_hub=2 and the third-order neighbors when 
n_hub=3, and so on. The more the number of hubs, the more information is incorporated 
from the chromosome’s neighborhood. Although more information aggregated from the 
neighborhood can help to increase classification accuracy, at some point, the accuracy be-
gins to decrease. The reason is that one chromosome may appear in different chromosome 
neighborhoods which causes the same information to be added over and over into the 
embedding. Additionally, the more there are hubs, the higher the computational complex-
ity. The results indicate that not only the direct neighbors, but also the non-direct neigh-
bors affect prediction. We achieved the maximum performance with six hubs away from 
each chromosome with 88% accuracy.  

The accuracy rate obtained for different numbers of hubs in the range of 2–10 is 
shown in Figure 6.  

 
Figure 6. Accuracy of GraphChrom with integrated intra-/interchromosomal aberrations with 
different numbers of hubs in the GNN. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GraphCrom ANN SVM - L SVM-P kNN

AC
CU

RA
CY

Intra CA Inter CA Integrated CA

Figure 6. Accuracy of GraphChrom with integrated intra-/interchromosomal aberrations with
different numbers of hubs in the GNN.

3.5. Metrics for Classification

The GraphChrom model was evaluated using different performance metrics, including
accuracy, precision, recall, and F1-score. Accuracy measures the fraction of correctly
classified samples (true samples) to all the samples in the model. Although it is an important
metric, it is not sufficient to evaluate a classifier, especially when there are imbalanced data.
Precision is the model’s capability of predicting the number of positive samples that are
truly positive. In fact, it is the ratio of correctly predicted positive samples (cancer cases)
to the total predicted positive samples. Recall or true positive rate (TPR) is the model’s
sensitivity and is defined as the ratio of the correctly predicted positive samples (cancer
cases) to all cases in the actual class. F1-score is defined as the harmonic mean of the
precision and recall of the classifier. Considering the total number of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) results in prediction, performance
metrics are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)
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F1 score =
2TP

2TP + FP + FN
(7)

The evaluation metrics and the confusion matrix are shown in Table 2 and Figure 7,
respectively. The data fusion matrix is normalized by columns. The actual values of the data
fusion matrix are shown in Table S1. GraphChrom achieves the highest accuracy for breast
cancer with 95%, followed by pancreatic cancer and prostate cancer with 91% and 90%,
respectively. The results show that the model can generalize very well since they become
stable as the F1-score and accuracy are high, especially for prostate and breast cancers.

Table 2. Evaluation metrics (%).

Cancer Type Precision Recall F1-Score Support

Breast 0.89 0.96 0.92 30640
Pancreatic 0.86 0.8 0.83 26459
Prostate 0.91 0.89 0.9 32849

Accuracy 0.89
Macro average 0.88 0.88 0.88 89948

Weighted average 0.89 0.89 0.89 89948
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4. Conclusions

In this study, we proposed GraphChrom, a novel graph neural network-based frame-
work for predicting cancer from chromosomal rearrangements endpoints. We performed
GraphChrom for predicting breast, prostate, and pancreatic cancers because they have the
highest tally of aberrations in the COSMIC. Our model achieved a significantly higher per-
formance in predicting cancer compared with other baseline models. Further, we explored
the effect of interCAs, intraCAs, and integrated inter-/intraCAs.

Moreover, we proposed a novel data extraction method using the average graph
connectivity that extracts more informative graphs, leading to effective prediction. We
observed that interCAs were more effective in prediction than intraCAs, although the fre-
quency of interCAs was much lower than that of intraCAs. Furthermore, the results show
that GraphChrom achieved 88% accuracy in the overall classification, and 95%, 91%, and
90% for breast, pancreatic, and prostate cancers, respectively. The accuracy of GraphChrom
outperformed the baseline models. This is the first study that used chromosomal rear-
rangement endpoints for cancer classification and also investigated the effect of inter- and
intrachromosomal rearrangement in prediction. The trained GraphChrom model can be
subsequently used for classification of new samples, facilitating clinical implementation of
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cancer prediction for samples with a large number of aberrations, considering its superior
performance. We plan to expand our work by incorporating other cancer types through
cross-database experiments.
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