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Simple Summary: Mutations of the NOTCH1 gene are a validated prognostic marker in chronic
lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present,
the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations,
which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may
lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN,
SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which
CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment
strategies for the management of CLL.

Abstract: The Notch signaling pathway plays a fundamental role for the terminal differentiation
of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane
proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release
their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional
co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in
chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1
gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive
marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide
significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation,
other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of
upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well
as physiological signals from other pathways such as the B-cell receptor. Here we review these
mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture
highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic
and microenvironmental contexts, ultimately result in the same search for proliferative and survival
advantages (through activation of MYC), as well as immune escape and therapy evasion (from
anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells
hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies
for the management of CLL.

Keywords: NOTCH1; FBXW7; chronic lymphocytic leukemia; gene mutations

1. Introduction

Over the last three decades, many biological and genetic features of chronic lympho-
cytic leukemia (CLL) have been discovered to be of prognostic and predictive utility [1].
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Among them, the most relevant and powerful are the somatic mutations of immunoglobu-
lin heavy chain variable (IGHV) genes, chromosomal alterations (deletions of chromosomes
13q, 17p, and 11q, and trisomy 12), expression of the CD49d integrin and recurrent gene
mutations of several genes including TP53, ATM, SF3B1, BIRC3 and NOTCH1 genes [2].

In particular, the interest around the Notch pathway in CLL [3–5] started to significantly
grow after a 2009 pivotal study by Rosati and colleagues [6], who demonstrated that CLL
cells are characterized by a constitutively activated Notch signaling. The study revealed a
constitutively higher expression of the NOTCH1 and NOTCH2 receptors, as well as their
ligands, compared to mature normal B lymphocytes. Furthermore, these NOTCH1-activated
CLL cells showed increased survival and nuclear factor-kappa B (NF-kappaB) activity.

Soon after, the same group [7] and others [8,9] identified NOTCH1 as one of the most
frequently mutated genes at diagnosis, whose mutational burden can increase dramatically
upon disease progression [10–13]. NOTCH1 mutations displayed both prognostic and
predictive role, as they both associate with poor outcomes [14,15] but also display a peculiar
resistance to immunotherapy with anti-CD20 antibodies [16,17].

A few years later, a research by Fabbri and colleagues [18] reported the aberrant
activation of NOTCH1 signaling in about 50% NOTCH1-wild type CLL from peripheral
blood. This common activation of the NOTCH1 pathway, together with the frequent
presence of somatic mutations, strongly hints at a significant biological role for this protein
in CLL; however, despite a vast wealth of research, its functional role is not yet fully
clarified and so for the oncogenic drives that favor the emergence of activation events.
In addition, the peculiar dynamics that regulate Notch receptors and the mechanisms of
signal transduction offer multiple layers of regulation, which are not completely elucidated
in the context of CLL.

In this review, we will discuss some of the mechanisms of activation of NOTCH1
in CLL and the role of different players that can modulate the Notch pathway. First,
we will present the details of structure and mechanisms of the NOTCH1 pathway, with
particular attention to the multiple steps that are required for receptor activation and
processing; then we will focus on CLL, to dissect the anatomy of NOTCH1 mutations
and their impact on the regulation and stability of NOTCH1 active protein and the main
functional consequences on CLL pathobiology; finally, we will dive deeper in the other
physiological and pathological mechanisms that drive Notch activation in CLL, beyond the
presence of NOTCH1 somatic mutations.

2. The Notch Pathway

The Notch pathway is a ubiquitous signaling system, highly conserved among meta-
zoans [19], with a fundamental role in cell-fate determination in almost all developing
tissues and organs [20–22] from embryonic development throughout adulthood [23]. In ad-
dition, it also functions to regulate tissue homeostasis and maintenance of stem cells in
adults [22,24–26].

The network of Notch signaling is complex, and is the result of a highly coordinated
work of many different molecules (receptors, ligands and interactors), which integrate mul-
tiple intracellular and extracellular signals and controls [27,28]. Thus the specific cellular
environmental context, and different combinations of specific receptors/ligands interaction,
may ultimately result in diverse outcomes (e.g., stem cell maintenance, progenitor selection,
growth organizing boundaries, cell growth or inhibition, differentiation) [29,30].

In light of the ubiquitous physiological role of Notch signaling, genetic alterations of
different pathway components can be found in a number solid tumors [31] and hematolog-
ical malignancies [32], where Notch can act either as an oncogene or tumor suppressor [33].
In this perspective, the oncogenic role for Notch in lymphoid neoplasms is hinted by the
fairly common presence of genetic aberrations in these tumors [34], as well as by the rele-
vance of Notch signaling in the maturation and differentiation B and T lymphocytes [35–37].
Within the B-cell lineage, Notch signaling through NOTCH1 or NOTCH2 plays a criti-
cal role in the definition of different subtypes [38–40] possibly depending on the specific
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environmental context of different lymphoid niches [36]. In particular, NOTCH1 seems
essential to steer differentiation of lymphoid progenitors toward a T-cell phenotype [35]
whereas NOTCH2 seems required for marginal zone B differentiation [40,41]; however, the
role of NOTCH1 is also evident in mature B cells and is significantly expressed in both
naïve and memory B cells [18], which are the putative cells of origin of CLL [42].

From this perspective, the observations that Notch signaling in CLL resembles that
of normal B cells favors the hypothesis of a repurposed physiological pathway to further
promote survival and proliferation, rather than a de novo transcriptional program [18].

2.1. Structure of the Notch Receptors

In mammalian cells, the Notch system comprises four Notch paralogues, NOTCH1-4,
which share most of their functional domains and present individual [43–45], yet sometimes
overlapping [46], expression profiles and developmental functions. Different Notch genes
have been implicated in various diseases and individual paralogs often have opposite
effects even within the same system. In the lymphoid lineage, for example, NOTCH1 and
NOTCH2 play radically different roles in the development of T and B lymphocytes [47–49].
Within the B-cell lineage, NOTCH1 and NOTCH2 are the most widely expressed receptors,
although with different expression patterns throughout the maturation process from bone
marrow to mature B cells; in contrast, NOTCH3 and NOTCH4 are barely expressed [50–53].

The basic structure of the NOTCH1 receptor consists in a single-pass transmembrane
heterodimer, organized in multiple functional domains (Figure 1A). The NOTCH1 extra-
cellular domain (NECD) is primarily responsible for ligand binding, and is composed of
36 consecutive epidermal growth factor (EGF)-like domains, some of which are calcium-
binding and others are heavily glycosylated. The NECD is followed by three Lin12/Notch
repeats (LNRs) and a heterodimerization domain (HD): these two modules act as a negative
regulatory region (NRR), in which the LNRs sterically protect a buried cleavage site [54].
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Figure 1. Structure and function of NOTCH1 signaling. (A) The NOTCH1 receptor consists of a
single-pass transmembrane heterodimer organized in multiple functional domains, organized in
three main regions: the extra-cellular domain (NECD), responsible for ligand binding; the negative
regulatory region (NRR), which regulates receptor activation; the intra-cellular domain (NICD), which
incorporates transcription effector functions. The NECD is essentially composed of 36 consecutive
epidermal growth factor (EGF)-like domains responsible for ligand binding; the NRR is a beautifully
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simple but complex system of folded regions composed of three Lin12/Notch repeats (LNRs) that
sterically protect the heterodimerization domain (HD). The NICD is composed by a protein-binding
RBP-Jκ-associated molecule (RAM), seven ankyrin (ANK) repeats flanked by two nuclear localization
signals, a transcriptional activation domain (TAD) and a glutamate, serine and threonine (PEST) do-
main. The PEST domain regulates NICD stability and degradation through multiple phosphosignals
and the WSSSSP motif is recognized by E3 ubiquitin-ligases. (B) Mechanism of signal transduction.
The ligand-engaged NECD is “pulled” toward the signal-sending cell (expressing the ligand) un-
folding the three-dimensional protein structure of the NRR and exposing the HD. Nearby ADAM
metalloproteases then cleave the NOTCH1 protein at the S2 site, whereas the gamma-secretase
complex cleaves the S3 site. The liberated NICD is now free to translocate to the nucleus. (C) Nuclear
functions and turnover of NICD. The translocated NICD binds with high affinity to the transcription
factor RBP-Jκ; this displaces RBP-Jκ from other repressor proteins and histone deacetylases (HDACs),
and favors binding of activating co-factors including Mastermind-like (MAML) and p300 which
promote transcription. Within a few hours, the NICD is progressively phosphorylated and ubiquiti-
nated, disengaged from RBP-Jκ, and destined for proteasomal degradation. RBP-Jκ is then bound by
repressor proteins, shutting down the transcription program.

On the cytoplasmic side of the membrane, the Notch intra-cellular domain (NICD) is
composed of a protein-binding RBP-Jκ-associated molecule (RAM), seven ankyrin (ANK)
repeats flanked by two nuclear localization signals, a transcriptional activation domain
(TAD), and a C-terminal region rich in proline, glutamate, serine and threonine (PEST). The
PEST domain acts as a phosphodegron domain, as it contains multiple phosphosignals
(reviewed in [55]) and motifs for substrate recognition by E3 ubiquitin-ligases that allow
for fine-tuned regulation of protein stability and degradation [29,56,57].

Although very similar in structure, amino-acid composition and slight structural vari-
ations differentiate NOTCH2-3-4 from NOTCH1 (reviewed in [34] for B-cell malignancies),
including the number of EGF repeats and the presence of TAD modules in the cytoplasmic
domain, dramatically changing the function of each receptor.

2.2. Maturation and Processing

Notch receptors are first synthesized in the endoplasmic reticulum as a single, type-1
transmembrane precursor, and then transferred to the Golgi network for multiple post-
translational modifications. Here, the NECD undergoes a complex maturation process,
with the glycosylation of multiple EGF-like modules by the Fringe glycosyltransferases [58]
Lunatic, Radical, and Manic Fringe, which can induce selective sensitivity to Jagged or
Delta ligands [59]. Subsequently, the furin convertase operates the first proteolytic cleavage
(named site-1 or S1) at the HD [60,61]: this process converts the single-chain protein into
a heterodimer composed of the NECD and the transmembrane/intracellular (TMIC) C-
terminal subunit. The two subunits are stabilized together at the HD through electrostatic
interactions and non-covalent bonds with calcium ions [62]. The mature Notch heterodimer
is then finally exposed on the surface of the cell outside lipid rafts [63].

Pulse-chase experiments demonstrated that there is a constant turnover of Notch
receptors on the cell, with the disappearance of labeled Notch within hours [64]. If Notch
does not engage a ligand, it is marked for degradation by E3-ligases such as AIP4/Itch [65]
or Nedd4 [66] and internalized via early endosomal vesicles [67,68] with Numb-mediated
AP2-clathrin adaptor-complexes [69].

2.3. Ligand-Induced Signaling Transduction

Notch signaling is initiated by the interaction of Notch receptors on a “signal-receiver”
cell with transmembrane ligands exposed on adjacent “signal-sending” cells. The mammal
Notch cognate ligands consist of five transmembrane proteins belonging to two distinct
families: Jagged (JAG)-1 and-2 of the Serrate family and Delta-like (DLL) 1, 3 and 4 of the
Delta family (reviewed in [70]).
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Although these families share some structural homologies, they play fundamentally
different roles as signals transmitted through Delta or Jagged can also differentially affect
receiving cells within the hematopoietic system [71–73]; therefore, as the expression of
different Notch receptors on lymphocytes depends on their maturation stage, different
stimuli may result in different outcomes such as differentiation [74,75] or homeostasis [39].

Antiparallel engagement of a ligand by NOTCH1 is mediated by the NECD through its
EGF repeats [76,77] and is characterized by different binding affinities for each ligand [78].
The physical interaction, coupled with the endocytosis of both Notch receptor and ligand by
the respective cells [79], generates a mechanical force [80,81] that causes a conformational
change of the NRR. This “stretching” unfolds the three-dimensional protein structure in
the NRR [70,82], exposing a cryptic cleavage site (named site-2 or S2) on the HD [54].
Cleavage at the S2 site is performed by two non-redundant metalloproteases, ADAM10 and
ADAM17 [83]. ADAM10 is required for ligand-dependent signaling, whereas ADAM17
seems responsible for ligand-independent NOTCH1 activation (Figure 1B) [84].

After proteolytic shedding of the NECD, the remaining TMIC fragment is readily
cleaved on the cytoplasmic side at site-3 (or S3) by γ-secretase [85] at valine 1754 (coding
reference UniProtKB-P46531). As a supramolecular protein complex, γ-secretase is mainly
involved in the proteolysis of type I transmembrane proteins, composed of many different
subunits, including presenilins (PSEN) 1 and 2, nicastrin, anterior pharynx defective 1
(APH-1), and presenilin enhancer 2 (PEN-2) [85] as well as plays a major role also within
Alzheimer’s disease [86].

The S3 site represents an important site as the proteolytic cleavage generates a novel
epitope, which can be recognized by several commercial antibodies. This allows for
selective recognition of the NICD by Western blotting under denaturing conditions, which is
the most widespread and reliable method [87–90]. Other studies have reported detection by
immunohistochemistry, immunofluorescence and even flow cytometry [18,91–94]; however,
these techniques require precise control of non-specific staining. Given the specificity of
detection, the term “NICD” (along with its possible variations ICN, N-ICD, active ICN etc.)
generally defines the functionally active cleaved form of NOTCH1, which will hereafter be
used with this intended meaning.

Upon release within the cytoplasm, the NICD readily translocates to the nucleus [95,96]
and interacts with DNA binding protein RBP-Jκ/CSL (CBF-1, Su (H), Lag-1) [97,98] via the
RAM domain [86]. Further recruitment of other adapters such as MAML (Mastermind-
like) induce conformational changes that release RBP-Jκ-bound co-repressors (SMRT, SKIP,
SPEN, HDACs) [99,100], and replacement by co-activators (p300, PCAF and others) [101]
to initiate target gene transcription (Figure 1C).

2.4. Ligand-Independent NOTCH1 Signaling

Beside this “canonical” Notch signaling, a wealth of evidence suggests that a number
of mechanisms exist that activate Notch signaling independently of extracellular ligands
(comprehensively reviewed in [102,103]). Although these mechanisms may be of limited
magnitude compared to ligand-dependent signaling, they have proven to be of relevance.
Many of these mechanisms revolve around the complex network of NOTCH1 intracellular
trafficking (reviewed in [68]). Briefly, NOTCH1 receptors that undergo endocytosis and are
exposed within lysosomes to acidic conditions [104] and lysozymes, may be proteolyzed at
the NECD that extends into the intraluminal space, removing inhibitory sequences that
prevent S2 recognition by γ-secretases [85,105,106]; further S3 cleavage would then release
NICD into the cytoplasm [107–109].

Early studies [62,110] on the NOTCH1 receptor evidenced its high dependency on
calcium ions to properly operate; consequently, Rand and colleagues demonstrated that
calcium ions depletion induced the dissociation of Notch heterodimers [111]. In addition,
varying intracellular pH and ion-concentrations (i.e., Ca2+, Zn2+) may also play a critical role
in the stability of the receptor or affecting the activity of involved proteases [54,62,111,112].
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In this regard, the most important stimulus for the NOTCH1 receptor is the chelating
agent ethylenediaminetetraacetic acid (EDTA); EDTA is widely used as an anticoagulant in
blood sampling procedures, as it also preserves blood cell morphology, and in cell biology
to prevent clumping of cells grown in liquid suspensions, or detaching adherent cells for
passaging. Millimolar concentrations of EDTA are sufficient to chelate the calcium ions that
stabilize the NNR/HD interaction, causing its tertiary structure to unfold and exposethe
S2 site [86] for ADAM17-dependent cleavage [84]; however, subsequent S3 cleavage still
relies on the activity of gamma-secretases (Figure 2) [113] to promote NICD detachment
and translocation.
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Figure 2. Ligand-independent NOTCH1 activation elicited by EDTA. Left panel: molecular in-
teractions within the NRR are stabilized by divalent calcium ions; chelation by EDTA disrupts
the three-dimensional conformation, allowing cleavage at S2 by ADAMs and subsequent gamma-
secretase cleavage at S3 (not shown). Right panel: prototypic example of MEC1 cells treated with
increasing concentrations of EDTA for 3 h showing evident accumulation of cleaved NICD, which is
reversed by gamma-secretase inhibition (GSI). Original blots see Supplementary File S1.

One clear consequence is that CLL cells from blood samples collected in EDTA tubes
are exposed to significant concentrations of chelating agent of about 6 mM, well above those
employed for in-vitro stimulations [88]. Therefore, when investigating Notch signaling,
proper control of the preanalytical phase becomes of paramount importance [114], as clearly
reported by some studies [115].

3. NOTCH1 Mutations in CLL
3.1. General Features

In human cancers, somatic mutations of NOTCH1 generally cluster in two main
hotspots: the HD and PEST domains. This distribution reflects the functional importance
of the affected domains that regulate, respectively, activation and stability. HD mutations
are mostly common in T-ALL, where they often represent the primary oncogenic lesion
and can be found in up to 60% cases. These are mostly missense mutations that alter the
three-dimensional conformation of the NRR, allowing for ligand-independent S2 and –S3
cleavage, resulting in constitutive activation of the Notch pathway.

In contrast, CLL is strongly characterized by the other class of NOTCH1 mutations,
which are restricted to the TAD and PEST domains; therefore, NOTCH1 signaling in CLL
still requires external receptor engagement for cleavage to be triggered. Because of this
mechanism of action, NOTCH1 mutations in CLL are mostly passenger events, acquired dur-
ing the course of the disease and are rarely found within precursor populations [116–118].

The reason for such a striking difference in mutational hotspot usage is still unknown.
However, given the different roles of NOTCH1 signaling in T- and B-cell maturation, specific
microenvironmental conditions and layers of epigenetic regulation may induce selective
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pressure to push cells to select the most advantageous alteration: a ligand-independent, con-
stitutive pathway activation for Notch1-addicted T cells versus a ligand/microenvironment-
dependent activation for B cells.

3.2. Coding Mutations

From a genomic point of view, all NOTCH1 mutations in CLL occur within exon 34,
which encodes for about half of the NICD, specifically the TAD and the PEST functional
domains, responsible for Notch transcriptional activity and stability (Figure 3A).
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cating events scattered across exon 34, leading to the same outcome. The 3′UTR mutations (blue) lead
to an alternate splicing event, mostly with a cryptic site around Q2503, which leads to an alternate
transcript again lacking the main phosphodegron. Missense mutations (green) are rare events, usually
private polymorphisms. (B) Prototypic immunoblot detection of NICD in primary CLL samples.
Wild-type NICD is promptly phosphorylated and ubiquitinated, with an increase in molecular weight,
degradedation within hours. Mutated NICD (p.2514R*fs4) displays prolonged stability. Dashed lines
represent a hypothetical trajectory since protein levels were undetectable. Samples were thawed
cryopreserved PBMC from EDTA-stabilized peripheral blood samples. Densitometry and molecular
weight calculations were performed with ImageLab (Bio-Rad). (C) Schematic representation of the
effect of NOTCH1 mutations. Superstable NICD skews the balance of the RBP-Jκ complex toward
transcriptional activation, enhancing gene transcription of multiple genes. Unbound repression
proteins, mostly epigenetic modifiers such as histone deacetylases (HDACs) and methyltransferases
(DNMT3a) relocate to other targets. Original blots see Supplementary File S1.
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The most common is a 2-bp deletion occurring at position c.7541–7542 (NM_017617.5),
a variant commonly known as “delCT”; this variant, first identified in 2009 by Di Ianni and
colleagues [7], results in a premature stop codon after proline 2514 (p.P2514Rfs*14), which
is the primary phosphorylation site required for NICD ubiquitination (Figure 3A).

The advent of next generation sequencing (NGS) rapidly allowed a more thorough
examination of the mutational profile of the NOTCH1 gene: besides confirming the recur-
ring presence of the delCT mutation, these studies identified other less frequent variants
within exon 34 [8,9,119]. These variants, instead of being constrained to specific hotspots
like the delCT, are found scattered across the whole of exon 34, and are highly enriched
in nonsense and frameshift events. From a functional perspective, these mutations ulti-
mately result in the translation of a truncated protein, with the loss of the phosphodegron
sites around serines 2513/2517 and the WSSSSP motif at position 2520–2525. These do-
mains are required for targeting the NICD for ubiquitination and subsequent proteasomal
degradation, and thus the mutated protein fails to be ubiquitinated, displays abnormal
stability and accumulates within the cell, prolonging the activation of NOTCH1 signaling
(Figure 3B) [120].

Overall, the incidence of these mutations varies at different disease stages, ranging
from about 3–11% at the MBL stage [121,122], to 15–25% at CLL diagnosis [10,11], and
20–40% for refractory/relapsed CLL and Richter syndrome [12,13]. In addition, the average
mutational burden can vary greatly, has evolved over time in parallel with technological
advancements such as NGS [10,11] and droplet digital PCR [123–125]. In particular, the
latter studies report a detection limit of 0.03% for variant allele frequency, way lower
than the NGS limit of about 0.3–1.3 [11,126]; in parallel, they have also suggested that
NOTCH1 delCT mutations may be present in a greater fraction of CLL cells, ranging from
18.6–25% [124,125] up to 55% in CLL cases with trisomy 12.

At the other end of the spectrum, missense mutations are a much rarer event and,
rather than acquired somatic variants, they often represent private germinal polymor-
phisms [11]. In contrast to truncating mutations, missense mutations change only the
affected amino acid, leaving the rest of the protein fully intact. At present, the functional
impact of these mutations is unknown, since they usually do not seem to disrupt functional
motifs and do not cluster at specific positions [11] suggesting a limited, if negligible, role in
the course of CLL.

3.3. Non-Coding Mutations

Beside the known mutations within the coding region, a new and unexpected type of
alteration was identified by whole-genome and whole-exome sequencing. In 2015, Puente and
colleagues [127] identified in their datasets several unusual splicing isoforms of NOTCH1,
carrying somatic mutations in the 3′ untranslated region (UTR) corresponding to positions
7668 + 371A > G, 7668 + 378A > G and 7668 + 380A > C. These point mutations generate a
novel motif recognized as a splicing acceptor which, in turn, either interacts with exon 33
(splicing out the whole of exon 34) or, more frequently, triggers a cryptic splicing donor
within exon 34 around glutamine 2503 (Figure 3A). Once again, the resulting protein loses
the functional PEST domain, displays prolonged stability, and accumulates within the
cell [128,129]

The impact of these mutations was later confirmed in further studies and larger cohorts
with a frequency of about 2–4% and a prognostic impact similar to NOTCH1-delCT-mutated
CLL, for both time-to-first-treatment and overall survival [10,11,130].

4. Functional Consequences of NOTCH1 Mutation in CLL

At difference with the fairly straightforward landscape of mutations, the phenotypic
consequences of the accumulation of an active NICD in CLL cells have been, for a long
time, far from clear. Many groups have investigated the different lights and shadows
of Notch signaling in CLL cells, without identifying a single, major, unified mechanism
of action. Rather, the resulting picture highlights a number of different mechanisms
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(extensively reviewed in [131]) that might occur under specific genomic, phenotypic and
microenvironmental contexts [87,88,132–136].

4.1. Proliferation and Metabolism: A Story of MYC

Over time, one of the most recurrent and reproducible phenotypic effects of prolonged
NOTCH1 signaling in CLL was the capability to induce the well-known oncogene MYC.
MYC is a basic helix-loop-helix leucine zipper transcription factor that regulates a large
number of diverse target genes involved in proliferation and metabolism, and due to
its role as a master regulator of cell growth, is regarded as one of the most important
oncogenes [137].

Not long after the NOTCH1 lesions were identified in T-ALL [138], NOTCH1 signaling
was shown to upregulate MYC expression, by direct interaction with several regulatory
regions in proximity to the MYC promoter [139–141]. Further studies demonstrated the
existence of NOTCH1-controlled enhancers downstream of the MYC locus, that were re-
stricted to T-ALL and responsible for the NOTCH1-dependent activation of MYC [142–144].
Driven by these observations, we also investigated whether aberrant NOTCH1 signaling
could impact on cell growth and proliferation, demonstrating in the context of CLL that
NOTCH1 can directly bind regulatory elements at the MYC locus and induce gene transcrip-
tion [88]. By gene expression profiling, we also showed that this NOTCH1/MYC activation
upregulates genes related to ribosome biogenesis such as nucleophosmin 1 (NPM1) and
ribosomal proteins (RNPs), potentially conferring cell growth and/or proliferation advan-
tages on NOTCH1-mutated CLL cells. Our study also confirmed a previous observation
by Jitschin and colleagues [133], who demonstrated that direct interaction of CLL cells
with stromal cells induced NOTCH1-related MYC expression and a metabolic shift from
mitochondrial respiration to glycolysis (Warburg effect), which can provide growth and
survival advantages for tumor cells [145].

The capacity of NOTCH1 to induce MYC expression was also confirmed by later stud-
ies in CLL [57,145,146], mantle cell lymphoma (MCL) [147] and other non-hematological
cancers [148–151]. In particular, the work of Ryan et al. [147,152] revealed that the NOTCH1-
responsive element active in MCL (and possibly also in CLL) is different from the one
identified in T-ALL, located about 500 kb upstream of the MYC locus, and its usage is
restricted to B cells. The same mechanism was reported also for CLL by Fabbri and col-
leagues [18]. Using ChIP-seq experiments, they confirmed not only the capacity of NOTCH1
to induce MYC transcription, but the usage by NOTCH1 of the same B-cell specific 5′ en-
hancers previously described in lymphoma; interestingly, copy-number analyses suggested
that this enhancer region is recurrently affected by focal duplications, mutually exclusive
with NOTCH1 mutations.

4.2. The Complex Interplay with NF-kappaB

Activation of NOTCH1 signaling is usually correlated with the activation of the NF-
kappaB pathway, which is also critically involved in CLL pathogenesis [153–155].

Notch/NF-kappaB interplay has been documented in different malignancies, such as
T-ALL [156] and Hodgkin Lymphoma [157], but also in the physiological maturation of B
cells [158], where NF-kappaB can trigger the Notch signaling pathway in neighboring cells
to induce expression of JAGGED1 protein [159].

The possibility that NOTCH1 activates NF-kappaB in CLL was suggested by early
evidence [6] which reported a higher degree of NF-kappaB-binding to its consensus se-
quence by electrophoretic mobility shift assay; further studies seemed to confirm these
observations, evidencing the activation of the NF-kappaB pathway especially in the context
of NOTCH1-mutated CLL cases, in which the activity of NICD was enhanced due to its
prolonged half-life [160].

Although the mechanisms of NOTCH1/NF-kappaB interaction in CLL are rather
elusive [161], evidence in models of T-cell leukemia suggest the possibility of both a
transcription-dependent interaction, through its target HES1 that, in turn, can modulate
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other components of NF-kappaB pathway [156], and a transcription-independent interac-
tion, where NOTCH1 may directly interact with the p50/c-Rel subunit, to retain the active
NF-kappaB heterodimer in the nucleus [162].

We observed nuclear retention of NF-kappaB subunits in the context of CLL [136],
by taking advantage of a NICD-transfected CLL cell line model. In this study, we could
demonstrate that overexpression of a mutated, stabilized form of NICD resulted in nu-
clear retention of the RelA/p65 subunit, triggering the NF-kappaB canonical pathway.
In turn, this activation was associated with elevated levels of integrin CD49d, an estab-
lished key regulator of microenvironmental interactions and a negative prognosticator in
CLL [163,164].

4.3. Nuclear Rewiring Triggers Epigenetic Downregulation of CD20: Clinical Implications for
Anti-CD20 Immunotherapy

Soon after NOTCH1 mutations were identified in CLL, several retrospective anal-
yses demonstrated that NOTCH1-mutated patients have inferior survival and worse
treatment outcomes compared with NOTCH1 wild-type patients [11,14,15,165–170], al-
beit with discordant results regarding the impact on overall survival or progression-free
survival [16,170–172].

An unexpected observation came from the CLL8 clinical trial, which compared fludara-
bine/cyclophosphamide versus fludarabine/cyclophosphamide plus rituximab. Surpris-
ingly, patients carrying NOTCH1 mutations seemed not to benefit from the addition of rit-
uximab to the backbone therapy, displaying a progression-free survival significantly lower
than NOTCH1-wild-type cases and comparable to those treated without rituximab [16].
These data were subsequently confirmed in a homogeneously prospective CLL series that
underwent rituximab consolidation after first-line therapy; in this study, patients carrying
NOTCH1 mutations were characterized by lower rate of complete remission and response
duration while in rituximab maintenance [17]. Similar results came from trials with the
second generation anti-CD20 monoclonal antibody, ofatumumab [173], whereas no major
differences were found with the third-generation antibody, obinutuzumab [174].

These clinical observations led us to investigate the putative underlying mechanisms
that could explain such behavior. We demonstrated that NOTCH1-mutated CLL cells are
characterized by lower CD20 expression [128,134,175] and lower sensitivity to rituximab-
mediated complement-mediated cytotoxicity [134]. This effect was particularly evident in
CLL cases that also carried trisomy 12, which are characterized by a peculiar phenotype and
elevated CD20 expression [176,177]. In our study, we showed that accumulation of mutated
NICD in the nucleus is responsible for a dysregulation of histone deacetylases (HDACs)-
mediated epigenetic repression of MS4A1/CD20 transcription. Specifically, in a condition of
NICD accumulation (via transfection with an exogenous expression vector), RBP-Jκ showed
preferential binding to NICD, rather than HDACs, in an abnormally stable transcription
complex (Figure 1C). This has an impact on the amount of free HDACs that can bind to and
epigenetically silence other genomic regions [134], since chromatin immunoprecipitation
experiments demonstrated that, in those NICD-accumulating cells, the MS4A1 promoter
displayed a higher degree of bound HDACs compared to untransfected cells.

The rewiring of nuclear epigenetic circuitries influencing CD20 expression was later
found to influence other targets, such as DNMT3A, to ultimately upregulate CCR7 expres-
sion and increase CCL19-driven homing to lymphoid niches. These results suggest that
NOTCH1-mutated CLL cells may be facilitated at homing to privileged niches that provide
pro-survival stimuli, further fueling pathway activation [135].

5. Other Mechanisms of NOTCH1 Activation in CLL
5.1. Evidence of NOTCH1 Sustained Activation in the Absence of Genetic Mutations

The first consistent report on the activity of the Notch pathway in CLL [6] revealed
that expression of NOTCH1, NOTCH2 and their ligands Jagged 1/2 was common and at
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odds with normal B lymphocytes, possibly due to deregulated protein turnover rather than
differences in gene transcription and/or mRNA stability.

Although the majority of functional studies have been performed on peripheral blood,
given the ease of access and sampling, several studies managed to investigate NOTCH1
signaling within the lymph nodes. Consistent with microenvironment-driven activation
of NOTCH1, these investigations reported a significant expression of activated NOTCH1
within the lymph node microenvironment compared to peripheral blood [87,91,178] and co-
cultures with stromal cells [53,87,133]. In addition, Fabbri and colleagues [18] demonstrated
that Notch signaling was particularly active in the mantle zone but not within germinal
center-cells. These data provide evidence that NOTCH1 signaling is indeed activated in
naïve and memory B cells, which are the putative compartments-of-origin of CLL.

Surprisingly, the same paper [18] reported that about 50% NOTCH1-wild type CLL
from peripheral blood presented detectable NICD staining in immunoblots and immunoflu-
orescence. Since the known half-life of the NICD-RBP-Jκ-CoA activation complex is esti-
mated in a few hours [179,180] after a single round of stimulation (Figure 3B), these data
suggest that some kind of prolonged receptor engagement must be in action. Interestingly,
the transcriptional signature of these NOTCH1-wt/ICN + CLL samples was consistent
with that of NOTCH1-mutated samples and similar to that of normal B-cell counterparts
upon stimulation.

The co-expression of Notch and Jagged proteins in CLL cells [6] suggest a role for
cis-interaction, i.e., autocrine interaction of ligand-receptor on the same cell. However the
current consensus model for Notch activation requires an interaction between two cells,
i.e., in trans, for receptor activation, whereas a ligand-receptor interaction on the same cell,
i.e., in cis, mostly results in an inhibitory effect [181–184]. It has recently been shown that
a cis-interaction may be activating under certain conditions, but these data need further
validations [185]. In the context of CLL, cis-interactions would be an attractive hypothesis,
but the diverse signaling intensities reported in peripheral blood versus lymph node seem
to argue against this scenario [87,178].

Indeed, MEC1 cells cultured in-vitro at high concentrations (~12× 106/mL, 3 × 106/cm2)
to favor cell-cell interactions, show significant cleavage of NOTCH1 as well NICD induction,
whereas sparse cells (~0.375× 106/mL, 0.054× 106/cm2) maintained almost constant levels
of NOTCH1 and shut down NICD expression (Figure 4A). Of note, incubation with gamma-
secretase inhibitors (DAPT) was able to prevent cleavage of NICD in dense cultures but
had no significant effect on sparse cultures.

Nevertheless, the complexity of Notch signaling and the intertwined signaling cir-
cuitries provide a number of other mechanisms, both activating and suppressing, that can
result in the activation of the NOTCH1 pathway, which will be discussed below.
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Figure 4. Other mutation-independent mechanisms of NOTCH1 in CLL. (A) NOTCH1 activation is 
mostly dependent upon microenvironmental interactions. Immunoblot and flow cytometric detection 
of NICD in NOTCH1-wild-type (MEC1) and NOTCH1-mutated (3′UTR mutation, CI) CLL-like cell 
lines, cultured at low (L, 0.054 × 106 cells/cm2) and high (H, 3 × 106 cells/cm2) concentration for the 
indicated time. Samples at time zero were collected after an overnight culture at low concentration. 
For the high exposure blot, a gamma correction of 0.5 was applied to enhance visibility. Blots are 
derived from one single gel and are separated only for presentation purposes. (B) Other modulators 
of NOTCH1 signaling recurrently mutated in CLL. FBXW7, MED12 and SPEN are highlighted in bold. 
(C) Putative model for the interaction between Wnt and Notch pathways mediated by DVL2 in the 
context of SF3B1 mutations. DVL2, a key component of the Wnt pathway, is reported to act as a 
negative regulator of NOTCH1 either by direct interaction with NICD (dashed lilac line) or by 
sequestering RBP-Jκ, reducing its bioavailability to NICD (solid lilac line). SF3B1 mutations induce 
alternative splicing of DVL2 (altDVL2) which is less proficient in the interaction with RBP-Jκ (solid 
pink line, right side). (D) Proposed model of BCR-mediated NOTCH1 activation. Unengaged Notch 
receptors are internalized for recycling; chemical adjustments in the endocytic compartment, with 
progressive acidification and efflux of calcium result in destabilization of the NRR and prime the 
receptor for cleavage. Active PKC, elicited by BCR signaling, triggers co-endocyted ADAM-
metalloproteases which initiate processing of the Notch receptor. Abbreviations: a.u, densitometric 
arbitrary units; mfi, mean fluorescence intensity; SF3B1, splicing factor 3 subunit 1; WNT, wnt ligands; 
FRZ, Frizzled receptors; DVL2, dishevelled 2; altDVL2, alternate splicing of DVL2;. BCR, B-cell 
receptor; SYK, spleen associated tyrosine kinase; BTK, Bruton’s tyrosine kinase; PI3K, 
phosphoinositide 3 kinase; PKC, protein kinase C; PLCγ, phospholipase C γ. Original blots see 
Supplementary File S1. 

Figure 4. Other mutation-independent mechanisms of NOTCH1 in CLL. (A) NOTCH1 activation
is mostly dependent upon microenvironmental interactions. Immunoblot and flow cytometric
detection of NICD in NOTCH1-wild-type (MEC1) and NOTCH1-mutated (3′UTR mutation, CI)
CLL-like cell lines, cultured at low (L, 0.054 × 106 cells/cm2) and high (H, 3 × 106 cells/cm2)
concentration for the indicated time. Samples at time zero were collected after an overnight culture at
low concentration. For the high exposure blot, a gamma correction of 0.5 was applied to enhance
visibility. Blots are derived from one single gel and are separated only for presentation purposes.
(B) Other modulators of NOTCH1 signaling recurrently mutated in CLL. FBXW7, MED12 and SPEN
are highlighted in bold. (C) Putative model for the interaction between Wnt and Notch pathways
mediated by DVL2 in the context of SF3B1 mutations. DVL2, a key component of the Wnt pathway,
is reported to act as a negative regulator of NOTCH1 either by direct interaction with NICD (dashed
lilac line) or by sequestering RBP-Jκ, reducing its bioavailability to NICD (solid lilac line). SF3B1
mutations induce alternative splicing of DVL2 (altDVL2) which is less proficient in the interaction
with RBP-Jκ (solid pink line, right side). (D) Proposed model of BCR-mediated NOTCH1 activation.
Unengaged Notch receptors are internalized for recycling; chemical adjustments in the endocytic
compartment, with progressive acidification and efflux of calcium result in destabilization of the
NRR and prime the receptor for cleavage. Active PKC, elicited by BCR signaling, triggers co-
endocyted ADAM-metalloproteases which initiate processing of the Notch receptor. Abbreviations:
a.u, densitometric arbitrary units; mfi, mean fluorescence intensity; SF3B1, splicing factor 3 subunit
1; WNT, wnt ligands; FRZ, Frizzled receptors; DVL2, dishevelled 2; altDVL2, alternate splicing of
DVL2;. BCR, B-cell receptor; SYK, spleen associated tyrosine kinase; BTK, Bruton’s tyrosine kinase;
PI3K, phosphoinositide 3 kinase; PKC, protein kinase C; PLCγ, phospholipase C γ. Original blots see
Supplementary File S1.
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5.2. Recurrent Mutations of Modulators of NOTCH1 Signaling
5.2.1. FBXW7

One of the key regulators of NOTCH1 activity is the E3 ubiquitin-ligase FBXW7 (F-box
with seven tandem WD40). F-box proteins are responsible for regulating the turnover of
their targets: they recognize their substrates through the presence of conserved phosphode-
gron motifs that are phosphorylated at specific residues; the substrate is then ubiquitinated
and targeted for proteasome degradation [186].

FBXW7, in particular, regulates NOTCH protein activity by controlling its half-life,
maintaining optimum protein levels in the tissue. It is perhaps the most widely stud-
ied F-box protein due to its role in a panel of both normal and malignant cellular pro-
cesses [187,188]; in fact, mutations of the FBXW7 gene have been identified in more than
30% of pediatric T-ALL [188,189] and several other hematological and non-hematological
diseases [190–194] These mutations disrupt the direct interaction between FBXW7 and
NICD and extend the half-life of NICD, thus mimicking the effects of canonical NOTCH1
mutations (Figure 4B). For example, T-ALL cells harboring FBXW7 mutations are generally
resistant to GSI [180,188].

In CLL, mutations of FBXW7 have been identified with a frequency estimated by
early studies of about 2–5% cases [118,169,195–197] that was later confirmed by more
recent studies [170,198]. Like NOTCH1 mutations, FBXW7 mutations also show a distinct
association with trisomy 12 CLL [169,170] and the two are thought to contribute to the
transformation of CLL to Richter syndrome [195]. Nevertheless, these mutations are mostly
mutually exclusive, suggesting a functional redundancy, since both mutations lead to NICD
stabilization with an equivalent oncogenic effect over time.

A recent study by Close and colleagues [57] investigated in detail the role of FBXW7
mutations in CLL. The most frequently affected residues correspond to the three arginine
residues (465/479/505) required for substrate recognition, which are collectively mutated
in about 50% of all FBXW7-mutated cases. These substitutions, which very likely alter the
electrostatic/hydrophobic interactions between FBXW7 and its substrates, could prevent
NICD degradation, even after inhibition of translation.

However, to make the landscape even more complex, FBXW7 is known to regulate
the activity of a much wider range of substrates through the ubiquitin-proteasome system-
mediated degradation pathway and. Targeted knock-outs have suggested that there may
be close to 90 FBXW7 substrates [199], including MYC, cyclin E, mTOR, c-Jun, MCL1,
hypoxia-inducible factor 1-α (HIF1-α), and AURKA. In particular, the MYC protein, which
has a characteristic very short half-life (as is the case with NICD), is a recognized target
of FBXW7 [200], and T-ALLs with FBXW7 mutations not only show prolonged NOTCH1
signaling, but also MYC stabilization and increased protein levels [180]. In contrast, the
off-NOTCH1 effects of FBXW7 mutations in CLL seem more elusive. Despite in vitro
luciferase reporter assays demonstrating elevated MYC promoter activity, transcript and
protein levels were not dissimilar between FBXW7-mutated and -unmutated cases [57],
suggesting additional layers of regulation. Furthermore, FBXW7 mutations were associated
with elevated levels of HIF1-alpha, but not Cyclin E or NF-kappaB2/p100. Although all
of these proteins have been shown to be of relevance in CLL [57,201], these data suggest a
rather restricted impact of these mutations on the protein interactome, at least within CLL.

Beside FBXW7, other regulators of NOTCH1 signaling have been found mutated in
CLL at various frequencies, specifically MED12 and SPEN.

5.2.2. MED-12

Mediator complex subunit 12 (MED12), together with MED13, CyclinC and CDK8,
is part of the kinase module of the Mediator complex, a central integrator and processor
of polymerase II transcription [202]. This complex transduces information conveyed by
transcription factors to promote long-range chromatin interactions (via looping) and the
formation of transcription pre-initiation complexes [203].
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The MED12-Cyclin C-CDK8 complex is also responsible for the turnover of the NICD,
since it is directly involved in phosphorylating the PEST domain, which acts as the targeted
substrate of FBXW7 (Figure 4B) [204,205]. Mutations in MED12 have been identified by
several studies in 1–9% of CLL cases [127,196,206–210]. MED12 mutations, like FBXW7
mutations, were mutually exclusive of NOTCH1 mutations but still associated with trisomy
12 [89]. Biochemical studies revealed that MED12 mutations lead to decreased CDK8 kinase
activity by disrupting the MED12-Cyclin C binding interface [207] and causing abnormal
accumulation of NICD [89].

5.2.3. SPEN

The SPEN gene encodes for an adaptor protein part of the Mint/SHARP/SPEN com-
plex. This system interacts with several transcription factors, including Msx2 and RBP-Jκ,
and acts as a bridge between RBP-Jκ and repressor proteins, such as NCor/SMRT/HDACs
(Figure 4B) [211,212]. Prolonged absence of NICD is believed to allow recruitment of the
adaptor to RBP-Jκ, and then of the repression complex, to condense the chromatin around
NOTCH1 target genes and inhibit gene expression.

Inactivating mutations of SPEN have been identified in CLL at a low frequency be-
tween 1–10% [115,119,127,198,213], and functional studies have confirmed an association
with increased NOTCH1 activation. In particular, Edelmann and colleagues [115] high-
lighted that SPEN-mutated tumors had significantly higher median expression levels of
NOTCH1 target genes, as well as frequently higher expression of MYC.

Although the overall mutation frequency of these NOTCH1-related genes is quite low,
when taken together, they may account for an additional 5–10% of CLL cases with a possible
NOTCH1 dysfunction. Helbig and colleagues [198] reported that the combination of these
NOTCH1 regulatory pathway mutations present a clinical impact not dissimilar to NOTCH1
canonical mutations, although small numbers do not easily allow for an estimation of their
independent prognostic impact. Nevertheless, these recent reports highlight the importance
of performing molecular investigations in a pathway-wise manner instead of focusing on
single genes to possibly avoid underestimating the biological impact of multiple lesions
converging on the same oncogenic pathways.

5.3. Mutations of SF3B1: An Interplay with the Wnt Pathway

The landscape of genetic lesions involved in dysregulating NOTCH1 signaling was
unexpectedly enriched by mutations in the RNA splicing factor 3b subunit 1 (SF3B1). SF3B1
is a key component of the splicing machinery, responsible for recognizing the branchpoint
sequences in proximity of the 3′ splice site (acceptor site) and allowing intron removal from
precursor-messenger RNAs.

Mutations of SF3B1, found in about 10% CLL cases, are predicted to alter the protein’s
tertiary structure, hampering the correct high-affinity recognition of the substrates and
resulting in the selection of alternative 3′ splice sites. In CLL, mutations of SF3B1 have been
shown to induce transcriptome-wide alterations, with an increased frequency of alternative
3′ splice site selection and functional consequences for several pathways, such as DNA
damage, telomere maintenance, and methylation [10,214–217].

The pivotal study by Wang and colleagues [216] on the transcriptome-wide alterations
induced by SF3B1 mutations identified consistent splicing alterations of the dishevelled-2
(DVL2) gene. DVL2 is a key mediator of the Wnt pathway and has demonstrated the
ability to act as a negative regulator of the NOTCH1 pathway by binding to RBP-JK and/or
NICD itself. By exploiting both a Notch luciferase-reporter-assay system [218] and transfec-
tion of synthetic constructs, they detected significantly higher Notch pathway activation;
furthermore, overexpression of wild-type DVL2 repressed NOTCH1 signaling [219] and
expression of altered DVL2 counteracted this effect, suggesting a dominant impact of the
alternatively-spliced isoform (Figure 4C).

In our subsequent study [175], we moved to primary CLL cells and used gene expres-
sion profiling to show that SF3B1-mutated cases share a gene signature with NOTCH1-
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mutated cases that drove an unsupervised co-clustering of the two categories with respect
to wild-type cases. Moreover, increased NOTCH1 signaling positively correlated with the
expression of altered DVL2 and reduced CD20 expression in SF3B1-mutated CLL cases,
suggesting that SF3B1 mutations represent another factor associated with the reduction of
CD20 expression through mutation-independent activation of the NOTCH1 pathway.

The association between mutated SF3B1 and activation of the NOTCH1 pathway has
also been investigated at the epigenetic level. Pacholewska and colleagues investigated
DNA methylation profiles in SF3B1-mutated CLL patients, identifying differentially methy-
lated regions associated with multiple cancer-related signaling genes, including NOTCH1,
and enriched within the NOTCH signaling pathway [217].

5.4. DNMT3a

DNA methyltransferase 3A (DNMT3A), along with DNMT3B, is responsible for es-
tablishing the patterns of DNA methylation early in embryogenesis through de novo
methylation of unmethylated CpG sites, wheras DNMT1 maintains these patterns through-
out cell division [220].

Although DNMT3A mutations are frequent in acute myeloid leukemia, myelopro-
liferative disorders, and T-ALL [221], it is not an expected lesion within CLL; instead,
several works demonstrated that low activity and expression of DNMT3A is important for
CLL pathogenesis and evolution [222–224], and mouse models with deletion of Dnmt3a
consistently developed CLL [225].

A very recent study [226] highlighted a possible role for DNMT3A in modulating the
NOTCH1 pathway. Expression of DNMT3A is highly variable in CLL cells; nevertheless,
lower DNMT3A expression is associated with a more aggressive disease, presenting a
shorter failure-free survival. Therefore, Biran and colleagues generated a mouse model
with B-cell restricted knockout of Dnmt3A. This model showed very high penetrance
of CLL, and the disease was characterized by focal hypomethylation and activation of
Notch and MYC signaling pathways, allegedly via the direct hypomethylation of gene
promoters. Furthermore, MYC amplification on chromosome 15 was detected in all sick
mice, and their spleens were characteristically infiltrated by high-MYC-expressing CLL
cells. Interestingly, Dnmt3a-depleted CLL was sensitive to pharmacologic inhibition of
Notch signaling in vitro and in vivo, supporting hyperactivation of Notch signaling in
these cells and a high dependency on this pathway for survival. These insights provide a
novel mechanism linking epigenetic alterations in CLL to Notch signaling and a potential
animal model to investigate non-mutational Notch activation.

5.5. Bidirectional Interplay between NOTCH1 and BCR Pathways

One of the fundamental signaling axes in CLL cells is the B-cell receptor, which medi-
ates extrinsic and autonomous signals that promote cell survival and proliferation [227,228].
Early evidence suggested that NOTCH1 signaling could influence the expression of
multiple genes encoding elements of the BCR pathway, such as LYN, SYK, BLNK, and
PIK3γδ [18,147] and, in turn, appeared as an important mediator of BCR-induced B-cell
activation in murine primary B-cells [229].

Del Papa and colleagues [230] reported evidence of a relationship between the BCR
pathway and NOTCH1 activity, since BCR stimulation was able to increase NICD expres-
sion that was counteracted by ibrutinib treatment. Furthermore, ibrutinib-treated CLL
patients showed progressive downregulation of NOTCH1 activity during therapy, which
was restored at relapse and remained activated in ibrutinib-resistant disease.

A subsequent study by Arruga and colleagues [90] further demonstrated that this
relationship involves functional cooperation of the NOTCH1 and BCR pathways connected
by a feed-forward loop. In this study, BCR cross-linking by anti-IgM antibodies resulted
in an increase in surface NOTCH1 levels, but not at the transcript level, suggesting a
mechanism of post-transcriptional regulation. Furthermore, upregulation of NOTCH1
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expression was paired with upregulation of the target genes DTX1 and HES1, and these
effects were reversed by ibrutinib and gamma-secretase inhibitors.

A possible key molecule involved in this circuit has been identified in protein-kinase
C (PKC). Un-engaged Notch receptors on the cell surface are internalized for endosomal
degradation. The endocytic vesicles progressively experience a low-pH and low-calcium
environment, which may facilitate denaturation of the NECD within, exposing the S2 and S3
sites to ADAM10/17-mediated cleavage [231]. However, activation of ADAM10/17 seems
to be influenced by the presence of active and mature PKC [231], since pharmacological
treatments with its agonists (PMA) or antagonists (sotrastaurin) were able to modulate
Notch processing [90,231] (Figure 4D).

These data were somewhat confirmed in the context of CLL [90], where PMA could
efficiently trigger ligand-independent cleavage of NOTCH1 and promote HES1 and DTX1
transcription. This observation allows us to hypothesize a strong functional connection
between the two pathways: although the former can induce ligand-independent NOTCH1
activation, the latter has direct effects on IgM signaling, further enhancing anti-IgM re-
sponses [90]. It has to be noted that these results were mostly significant within NOTCH1-
mutated CLL, which are more prone to display significant and prolonged changes, whereas
wild-type cases were less responsive, possibly due to the rapid degradation of NICD.

The presence and relevance of a functional connection between the BCR and NOTCH1
pathways in CLL is also supported by the lower redistribution of lymphocytosis and
lower nodal shrinkage of NOTCH1-mutated CLL during ibrutinib treatment [232], and the
peculiar association of NOTCH1 mutations with a specific stereotyped configuration of the
BCR (IGHV4-39/IGKV1 (D)-39) defined as subset 8, which is characterized by robust BCR
signaling and exhibits the highest risk for Richter transformation [233].

5.6. AKT towards Richter Syndrome

One last, recently published, piece of evidence has uncovered a functional connection
between Notch signaling and the AKT pathway. Although novel in the CLL setting, such
AKT-NOTCH1 interactions have been previously reported in drosophila and T-ALL [234,235].

In their study, Kohlhaas and colleagues [236] demonstrated that B cell-restricted activa-
tion of AKT in the eµ-TCL1 mouse model drives transformation to an aggressive lymphoma.
This evolution closely resembled Richter transformation (RT), with an intermediate pheno-
type between CLL and DLBCL, massive splenomegaly, and reduced overall survival. The
authors observed that transformed B cells with active AKT signaling showed upregulation
of genes associated with Notch signaling; specifically, they detected increased expression
of NOTCH1 and NOTCH3 receptors, as well as increased intracellular NICD in adult mice
with a fully transformed RT phenotype. Interestingly, they also observed increased levels
of Notch Dll1 ligand on CD4+ FoxP3+ T cells, but not on other cell types, and suggest that
constitutive Akt activation may induce expansion of T cells overexpressing Dll1, in turn
sustaining Notch1 activation and facilitating CLL to RT transformation.

These results, in line with the established role of NOTCH1 signaling in RT [237,238],
suggest that constitutive AKT activation may initially amplify NOTCH1 signaling or add
additional signals that accelerate transformation. These signals may later further cooperate
with upcoming NOTCH1 mutations at later disease stages to increase survival and immune
escape [239,240].

6. Conclusions

Deregulation of NOTCH1 signaling is one of the most consistent results in the last
decade of CLL research. In particular, the proof of aberrant activation was first presented by
Rosati and colleagues, even before the discovery of NOTCH1 mutations [6]. The notion of a
significantly deregulated NOTCH1 pathway was later confirmed by the Dalla-Favera group
to include CLL cells beyond genetic mutations, i.e., affecting also “bona fide” NOTCH1-
wild type CLL cases. Increasing evidence, summarized in this review, suggests multiple
mechanisms that ultimately result in chronic activation of a Notch-related transcription



Cancers 2022, 14, 2997 17 of 27

program involving either Notch-related genes (e.g., FBXW7, SPEN, MED12) or, more
surprisingly, apparently unrelated cellular pathways (e.g., SF3B1, BCR, AKT). The emerging
picture supports a model of multifaceted genetic pressure and environmental stimuli
insisting on the NOTCH1 pathway; this may reflect a strategy where the neoplastic CLL cell
is trying to exploit a physiological signal, normally required for B lymphocyte maturation
and differentiation, for its own proliferative advantages [18].

Stimulation of the Notch pathway, along with the other main pathways induced by
microenvironmental contacts through the BCR and integrins, may therefore be considered
one of the hallmark signaling events distinguishing CLL cells from normal B cells that is
necessary for CLL pathogenesis, progression, and Richter transformation [237,238]. One
significant piece of evidence supporting this perspective is the typically low expression of
the CD20 antigen in CLL, which has long been one of the main phenotypic CLL peculiarities
recognized in CLL-specific scores [241], which occurs due to mechanisms related to the
activation of the Notch pathway [128,134,175].

From a therapeutic standpoint, direct and effective therapeutic targeting of the NOTCH1
pathway has proven difficult [131] and even treatment with ibrutinib is not decisive [230,232].
Nevertheless, the landscape of therapeutic strategies targeting Notch signaling is rapidly
expanding (reviewed in [242]) and may provide novel approaches, e.g., targeting DLL4-
NOTCH1 interactions [146,243,244], or combinational therapies [245] to hit the Notch
pathway in CLL.
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