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Simple Summary: Recently, radiogenomics has played a significant role and offered a new under-
standing of cancer’s biology and behavior in response to standard therapy. It also provides a more
precise prognosis, investigation, and analysis of the patient’s cancer. Over the years, Artificial Intelli-
gence (AI) has provided a significant strength in radiogenomics. In this paper, we offer computational
and oncological prospects of the role of AI in radiogenomics, as well as its offers, achievements,
opportunities, and limitations in the current clinical practices.

Abstract: Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence
(AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology
care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical
images enveloped with personalized genomic phenotypes. It fabricates a prediction model through
various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical
outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival
prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer
study. Although AI has shown immense performance in oncology care in various clinical aspects, it
has several challenges and limitations. The proposed review provides an overview of radiogenomics
with the viewpoints on the role of AI in terms of its promises for computational as well as oncological
aspects and offers achievements and opportunities in the era of precision medicine. The review also
presents various recommendations to diminish these obstacles.
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1. Introduction

Cancer is a second leading cause of death worldwide, right after cardiovascular dis-
eases, accounting for nearly 10 million deaths in 2020. As per world health organization
(WHO) statistics, the common types of cancers that people suffer more are those of the
breast, lungs, colorectal, prostate, skin, brain, and stomach [1]. The cancer burden con-
tinues to grow globally, exerting tremendous physical, emotional, and financial strain on
individuals, families, communities, and health systems. Countries with mediocre and poor
health infrastructure do not have the access to timely, quality diagnosis and treatment for a
large number of patients [2].

In the era of precision medicine, molecular characterization of cancer using genomic
technology is essential [3,4]. In the last few years, significant progress has been observed in
molecular characterization. However, due to the technical complexity, cost, and turnaround
time, a vast scale genome-based characterization of cancer is not yet routinely adapted
for all types of cancers [5–7]. In existing clinical practices, due to the heterogeneous
behavior of cancer, molecular profiling is often limited, and heterogeneity of the tumor is
repeatedly missed when a portion of the cancer is examined [8]. Throughout the treatment,
determination of molecular targets requires ex vivo postoperative analysis of the resected
tumor or biopsy sample. This has restricted the assessment of tumors’ spatial and temporal
heterogeneity and is not possible to determine the molecular transformation of cancer
continuously [9]. Additionally, in the case of the solid type of tumors, the functional,
anatomic, and physiological properties of the whole tumor may not be fully reflected in the
histopathological samples [10,11]. Researchers and scientists worldwide have noticed the
substantial job of medical imaging in clinical treatment decision-making and in analyzing
cancers [12]. Earlier, its main job was restricted to prognosis and staging [13]. However,
recently, imaging-derived markers obtained from clinical images have significantly been
investigated to deliver insight into cancer non-invasively. Most importantly, imaging helps
characterize the peritumoral regions, as these regions are not always invasively removed
for the molecular characterization of cancer [14,15].

Recently, radiogenomics, the combination of “Radiomics” and “Genomics,” has sig-
nificantly drawn the attention of researchers to determine imaging surrogates for genomic
signatures and to advance biomarkers leveraging the numerous data types used to charac-
terize cancer. These biomarkers can be used in different clinical decision-making such as
survival prediction, tumor progression, reoccurrence, and heterogeneity analysis.

In “Radiomics,” different quantitative medical imaging features are extracted computa-
tionally that capture different imaging phenotypes; these are not easily noticed with the
uncovered eye [16]. Recent research demonstrated that cancer’s molecular information is
linked with the imaging phenotype [17]. The basic, fundamental step in radiomics includes
image data acquisition, preprocessing of image data such as filtering [18], region of interest
(ROI), segmentation [19,20], different types of features extraction [21,22], and then use
of these extracted features for appropriate analysis. ROI extraction in the imaging data
must be performed manually or semi/fully automatically using computational algorithms
approved by the expert neuropathologist (neurooncologist). Quantitative features extrac-
tion includes different features such as histogram-based, first, second, or higher-order
features [23–26]. Recently, high-level features obtained from deep learning have also been
significantly used to analyze cancer regions [27–29]. In “Genomics”, the human genome
is examined to analyze cancer by extracting several genomic features (genotypes). The
genotype basically presents the genetic information of cancer.

Further, these obtained radiomics and genomics features are used by different AI-
based methods to characterize and analyze cancer. In recent years, AI has presented
data-driven examination models that have managed the noteworthy signs of progress in
information-processing methods in radiogenomics of cancer. There have been constant and
incremental determinations to improve AI’s analytic efficiency to be endorsed for clinical
practice [30,31]. The discovery of artificial neural networks (ANN) and their subsequent
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development [32,33] presents computational learning models: machine- and deep-learning
ideologies. It is mainly accountable for the development of AI in the field of radiogenomics.

In the proposed article, our main objective is to provide and discuss different per-
spectives regarding the contemporary and inherent responsibility of AI methods in radio-
genomics of cancer, including current challenges and prospects. We will start this article by
providing an insight into radiogenomics and its achievements. Further, we will discuss
opportunities provided by AI and how it is significantly used in different recent studies
of cancers by providing an analytical form of investigation. In the end, we will conclude
with the overall perspective of using AI in radiogenomics of cancer, applied in clinical
decision-making in the epoch of individualized medicine and care.

2. Search Strategy and Statistics of Radiogenomics Studies

This section deals with the search strategy using the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) model, followed by statistical distribution
and analysis of various radiogenomics studies.

2.1. The PRISMA Model

The proposed narrative review has basically been designed to analyze the role and
impact of AI in radiogenomics study. The PRISMA model has been adapted for this
purpose, as shown in Figure 1. A detailed search was performed using top academic search
databases such as Google Scholar, PubMed, IEEE Xplore, ScienceDirect, Springer, and
MDPI. The relevant keywords used for the search included “radiogenomics”, “radiomics”,
“genomics”, radiogenomics using AI”, “machine learning for radiogenomics”, and “deep
learning for radiogenomics”. A total of 154 records were collected. The duplicate records
were removed from this collection using the “Find Duplicates” feature in EndNote software
by Clarivate Analytics, which resulted in 104 articles. The three exclusion criteria (marked
as E1, E2, and E3 in Figure 1) removed 23, 20, and 10 articles under the category of
(i) non-relevant articles, (ii) studies not related to AI, and (iii) articles with insufficient data.
Finally, 51 relevant articles were used for the qualitative synthesis to know the impact and
role of AI in radiogenomics studies.

Figure 1. The PRISMA model.
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2.2. Statistical Distributions of AI Attributes of Radiogenomics Studies
2.2.1. Statistical Distribution of Publication Trends of Radiogenomics Using AI

Since radiogenomics is a new domain of study in cancer research, the number of
publications in the initial stages is low; however, it has continued to grow over the past few
years. It has been emerging for the past five years, as shown in Figure 2a. However, the
number of publications in the form of search is low, and it is expected to increase in the
recent future as it is applicable to all kinds of cancer research, providing an extra edge over
the other methodologies.

Figure 2. (a) Publication trends; (b) country-wise distribution of radiogenomics studies.

2.2.2. Statistical Distribution of Country-Wise Study of Radiogenomics Using AI

As this is a current and trending topic in the research of the deadliest cancerous disease,
many research publications have been published across the globe. As it is an emerging
domain of research in oncology, there is evident curiosity as to the leading contributors
in terms of country. Figure 2b depicts the pie-chart distribution of county-wise research
publications on the set of radiogenomics studies we have considered. It shows that the
USA and China are the leading contributors, with maximum percentages of 39% and
31%, respectively.

2.2.3. Statistical Distribution of AI and Its Model Used in Radiogenomics Studies

Artificial Intelligence has been successfully serving every domain of computer vision
applications in the healthcare industry. AI has also helped radiogenomics studies to
become automotive. Both machine learning and deep learning under the umbrella of
AI take radiogenomics studies to a further level, with precision in performances. Under
ML, traditional radiomics features are extracted, while under DL models, the automatic
deep features help the AI model better classify the status of genomics in radiology. Our
finding indicates that ML has been used a bit more compared to DL, which is shown in
Figure 3a. Similarly, the frequency of various ML and DL models that have been used for
this proposal, including convolutional neural network (CNN), regression, random forest
(RF), support vector machine (SVM), ResNet, XGBoost, VGG, naïve Bayes, artificial neural
network, DenseNet, GoogleNet, K-NN, decision tree, and linear discriminant analysis
(LDA), is shown in Figure 3b.
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Figure 3. AI and its model used in radiogenomics studies (a) AI; (b) AI models.

2.2.4. Statistical Distribution of Image Modalities Used in Radiogenomics

MRI, CT, and PET are the prominent imaging modalities considered for radiogenomics
studies, as shown in Figure 4a. Their distributions are also shown in the pie chart, with
their corresponding share in percentages. MRI has a greater share of 45%, which indicates
that this modality can be used for all types of anatomical cancer; however, MRI is preferable
in brain-tissue characterization. Apart from MRI, CT imaging has also been used largely
with a share of 39% for the radiogenomics studies under this review, while others are
combinations of MRI, CT, and PET. Additionally, mammography is used as an important
image modality of breast cancer.

Figure 4. (a) Image modalities; (b) anatomical cancer in radiogenomics studies.

2.2.5. Statistical Distribution of Anatomical Area of Cancer in Radiogenomics

The various cancer types, according to different anatomical areas considered for this
radiogenomics review, have depicted in Figure 4b. Among these cancer types, brain,
breast, and lung cancer have been found to be more frequently analyzed for radiogenomics
compatibility, with 23%, 14%, and 15%, respectively. However, this field of radiogenomics
applies to all types of cancer that developed from the mutation of genes. The other
prominent cancer types considered here for radiogenomics include liver, ovarian, collateral,
gastric, prostate, kidney, head and neck, and skeletal muscle, as shown in Figure 4b.

2.2.6. Statistical Distribution of Dataset Used in Radiogenomics

The dataset size considered for the radiogenomics studies under this review includes
the number of patients considered for the corresponding study. This includes all the
objectives and the modality used in the study. As radiogenomics is a relatively new field
of research, the dataset is not easily available for public use, even if not volumetric. It is
observed that all the studies considered have datasets within nearly 1000 objects, and a few
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studies have also been limited to below 100 objects, as depicted in Figure 5. A higher data
size is expected for better evaluation of a radiogenomics AI system to avoid data imbalance
and over-fitting conditions.

Figure 5. Dataset of radiogenomics studies.

2.2.7. Performance Analysis of Radiogenomics Studies

Performance evaluation has been the final and essential part of an AI-based diagnosis
system. The higher the values of performance evaluation parameters, the better the AI
system. Most of the radiogenomics studies have considered accuracy and area under the
receiver-operating characteristic curve (AUC) as suitable performance evaluation parame-
ters. However, sensitivity, specificity, precision, and other methods of statistical evaluation
have been partly used. The mean and standard deviation (SD) of the radiogenomics studies
were found to have an accuracy, in percentage, (84.34 ± 9.37) and AUC (expressed in
percentage, 85.42 ± 7.95), respectively, as shown in Figure 6.

Figure 6. Performances of radiogenomics studies.

3. An Insight of Radiogenomics

The following subsections describe the components of radiogenomics. The entire
pipeline is also presented, depicting different modules in radiogenomics.

3.1. Conventional and Deep Radiomics

Radiomics deals with the mining and extraction of quantitative medical imaging fea-
tures that are helpful in clinical assessment methods to expand the prognostic, diagnostic,
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and predictive precision of disease. Radiomics technology can be applied to medical imag-
ing of any disease; however, it is gaining importance in cancer research for personalized
treatments. It has been applied quite successfully for all anatomical areas of cancerous
images of multiple modalities such as MRI, CT, PET, US, etc. Each modality has its own
peculiarities, while considering the tissue-level radiography of various anatomical sec-
tions. The conventional radiomics models primarily depend on explicitly hand-crafted
features from radiological images [34,35]. These wide ranges of radiomics features can be
texture, geometric, intensity, shape, histogram, dynamics curve, angiogenesis, metabolic,
morphological, spatial, and statistical features, and even some high-dimensional features
too [36–39]. Each feature has special importance for defining the imaging phenotype and
revealing key components of the tumor phenotype. The most prominent texture features
define the pattern and spatial arrangement of colors or intensities of the tumor. The geo-
metric features describe the 3D shape, size, location, and dynamics curve characteristics
of the tumorous image. The intensity features demonstrate the pixel or voxel intensities
within the tumor image.

However, in recent years, the development of deep-learning technologies in computer
vision has attracted the application of radiomics. The automatic feature-extraction of deep
radiomics helps find relevant and useful features to extract on a large scale. The deep
radiomics features depend upon the network’s depth, with stacks of convolutional and
fully connected deep layers [40]. The automatic process of deep radiomics also includes
the auto feature-selection process, which may not be available with traditional radiomics.
Traditional and deep radiomics find the appropriate phenotype information of cancer to
classify the tumor diagnosis, prognosis, and personalized cancer treatments. Figure 7
shows the differences in extracting phenotype information by traditional radiomics and
deep-learning methods. The next subsection describes the role and significance of genomics
study in cancer research.

Figure 7. Traditional vs. deep radiomics: traditional radiomics consists of different approaches such
as ROI detection, feature-extraction selection, and analysis, while deep radiomics consists of all steps
in a single go [35].

3.2. Significance of Genomics Study in Cancer Research

Genomic study of cancer is a relatively new area that considers the benefits of the
recent advances in technology to examine the human genome, which comprises the entire
set of DNA. By comparing DNA and RNA sequencing of cancer cells with the normal
tissue, scientists and researchers identify genetic differences which could be the root cause
of cancer [41].
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Basically, cancer is caused by the unbounded germination of the cancerous cell [42].
DNA is the central control system of the cell with lots of genetic features (genotype) and
defines the cell’s behavior. The uncontrolled growth of cells may include DNA mutations,
deletions, rearrangements, amplification, and the addition or removal of the chemical
mark. The genotype is basically the investigation of the genetic constitution of an in-
dividual organism. Some prominent genotype of the human body includes Isocitrate
dehydrogenase (IDH), Tumor Protien53 (TP53), epidermal growth-factor receptor (EGFR),
O6-methylguanine-DNA methyltransferase (MGMT), etc. [43]. This genomics has a wide-
ranging functionality in the human body for complete nourishment and growth. One
example is TP53, a genomics protein that helps with DNA repair and cell growth. Due
to some external factors, alteration of these genes can cause fatal cancer with severity,
along with the effect of the mutations. Currently, next-generation sequencing (NGS) is an
emerging applied science for ascertaining the chronology of RNA or DNA to study the
genetic variation correlated with cancers or other biological phenomena. It enables rapid
identification of common and rare genetic variation with genome sequencing, investigation,
and identification. Table 1 shows some essential genotypes and their information, such as
their function within the body and their alteration effect for different types of cancer.

3.3. Overall Flow of Radiogenomics

So far, we have discussed radiomics and genomics separately, and their functionality.
The workflow (Figure 8) of the radiogenomics (“Radiomics” + “Genomics”) study can
be broadly partitioned into five different stages: image acquisition followed by image
preprocessing, appropriate feature extraction, and dimensionality reduction (selection) such
as PCA [38], the association of radiomics and genomics features, data analysis, and finally,
the outcomes of radiogenomics. All prominent cancer types of various anatomical sections
such as the brain, lungs, breast, kidney, liver, prostate, bladder, colorectal, gastric, pancreatic,
ovarian, head and neck, and retinoblastoma can be studied through radiogenomics.

Figure 8. Radiogenomics pipeline of 5 stages including data acquisition (radiological imaging),
preprocessing steps, features (low and high-end) extraction and selection, the association of radiomics
and genomics, analysis, and finally, the radiogenomics outcome [8].

Different Stages of Radiogenomics:
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(i) Data acquisition and preprocessing: Image acquisition in cancer patients is a tedious
task due to the severity of the patient’s condition [14]. However, there are several medical
imaging modalities, such as CT Scan, MRI, PET, Ultrasound [44,45], etc., which can locate
and visualize cancer [46,47]. Each modality has its own peculiarities while considering the
tissue-level radiography of various anatomical sections. The corresponding genomic data
of cancer patients are collected as part of the genomics study. The preprocessing steps are
an integral part while handling medical images. Preprocessing steps basically involve bias
field correction, normalization, pixel or voxel resampling, and image registration [48,49].
However, data handling such as class imbalance, data augmentation, randomization, and
standardization is important for cancerous images’ radiomics data [47]. The initial stage of
the radiogenomics study needs the region of interest (ROI) of the radiomics data, where
the exact radiomics features of cancer are available. ROI is, however, a crucial part because
of the unclear margin, shape, size, and location of the tumor. The preprocessing, data
handling, and segmentation of radiomics data provide better accuracy on the AI model for
better diagnosis and prognosis of cancer [8].

(ii) Feature extraction and selection: The radiomics features in a clinical context include
the essential geometric features such as the shape and size of cancer; texture features such as
first-order, second-order, and higher-order texture features; intensity features of pixel and
voxel values; and statistical features such as histogram analysis and wavelet features [50].
There are two prominent categories of feature-extraction process for phenotype information
of cancer radiography, namely hand-crafted feature and deep features, as shown in Figure 7.
Feature selection or dimensionality reduction are crucial steps for radiomics data as they
lead to high dimension, which subsequently lowers the performance of the AI model. Like
the phenotype information, radiogenomics study also combines the genotype information
to be extracted corresponding to the phenotype information of each cancer patient. The
various genotypes whose alterations can cause cancer are IDH, TP53, MGMT, EGFR, PTEN,
HER2, and Ki-67, as shown in Table 1.

(iii) Association of radiomics and genomics: In this step, both the radiomics features
and genomics features of the cancer patients are combined to understand the tissue-level
characterization of the cancerous regions or non-cancerous regions from the radiomics
feature [51–53].

(iv) Data analysis: This is the most important stage to demonstrate different capabilities
of AI in radiogenomics, which involves various techniques such as machine learning, deep
learning, statistical tools for feature extraction, dimensionality reduction, classification,
prediction, cross-validation, and lesion (ROI) localization. The customary machine-learning
models include the k-nearest neighbors, artificial neural network, support vector machine,
logistic regression, decision tree, random forest, naive Bayes, XGBoost, and Ensemble
models [54]. Several such applications of ML have been demonstrated in medical imaging
such as point-based models, including problems related to gene classification and anal-
ysis [33], neonatal and infant mortality [55], and diabetes [56,57]. Further, when using
point-based ML system design for classification, there have been innovations in medi-
cal imaging such as lung segmentation [58], carotid plaque classification [26,51,59–61],
rheumatoid arthritis [62], thyroid cancer classification [63], liver [64,65], plaque tissue
classification (PTC) [66], coronary [67], ovarian cancer classification [68–70], breast cancer
classification [71], prostate cancer classification [72], skin cancer [73,74], Wilson disease [75],
and ophthalmology [32]. Even though these are ML-based classification techniques, they
used tissue properties from images: so-called “radiomics”. The other name is commonly
known as “tissue characterization” [76].

The deep model includes the deep neural network (DNN), convolutional neural
network (CNN) [77], and deep temporal models such as the recurrent neural network
(RNN) and long-short term memory (LSTM) model for temporal genetic data [54]. Similarly,
various statistical tests, performance evaluation parameters, and performance analysis
metrics have been involved in the data analysis of radiogenomics. The lesion localization
analysis can be conducted by heatmap analysis for deep diagnosis [52].
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(v) Radiogenomics outcome: This step of radiogenomics is the decision support system
that includes various endpoint outcomes such as tumor grading, survival prediction
of patients, generating imaging biomarkers, clinical decision, precision medicine, risk
stratification, and personalized treatment-planning of cancer patients.

Table 1. Some essential genotypes with their function and mutation effect.

SN Genotype Function Mutation Effect Prominent Cancers

1 TP53 (p53) [46] Tumor suppressor gene, Initiating
apoptosis, DNA repair

Genetic instability, reduced
apoptosis, angiogenesis

Breast, brain, bone,
leukemia, lung

2 IDH1, IDH2 [78] Control citric acid cycle Loss of normal
enzymatic function

Leukemia, bone,
brain, prostate

4 MGMT [79] Coding for a protein that
repairs DNA

Reduces binding of
transcription factors and
decreases gene expression;
cause of glioblastomas

Brain

5 EGFR and PTEN [80] Protein on cells helps them grow Tumorigenesis of glioblastoma;
predictor of poor survival Brain, lung

6 ER/PR [81] Transcription of millions of genes
leads to cell proliferation

Mammary gland development
and cell proliferation Breast

7 RB1 [82] Tumor suppressor Blocks cell-cycle progression Retina, brain

8 Histone H3 [83] DNA repair Poor prognosis Brain, bone

9 ATRX [84] Protein formation for
normal development

Intellectual disability, genital
abnormalities, hypotonia,
facial disorder

Brain

10 BRAF [85] Encode B-Raf protein Melanoma and
colorectal cancer Skin, colon

11 HER2 [86] Control cell growth
Breast, bladder, ovarian,
pancreatic, and
stomach cancers

Breast, ovarian,
pancreas, lung

12 Ki-67 [87]
Cell proliferation,
Prevent aggregation of
mitotic chromosomes

Inhibition of ribosomal RNA;
synthesis; prostate, brain, and
breast carcinomas,
nephroblastoma, and
neuroendocrine tumors

Prostate, brain,
breast, kidney

13 PD-L1 IHC [88]

Controls the induction and
maintenance of immune tolerance
within the tumor
microenvironment

Squamous cell carcinoma Skin

14 NF1 [89] Production of neurofibromin
protein for cell growth

Deprivation of neurofibromin
only causes uncontrolled
cell growth

Skin, nervous system

15 MYB family [90] Proliferation and differentiation of
hematopoietic progenitor cells

Deletion in the C-terminal
domain that causes cancer Leukemia, glioma

16 BRCA1 and
BRCA2 [91]

Repair damaged DNA and
tumor suppressor

Abnormal cell growth, which
can lead to cancer Breast, ovarian

17 CDKN2A/B
Family [92]

Produce the p14(ARF) and
p16(INK4A) proteins.

40% of melanoma,
95% of pancreatic tumors

Melanoma,
glioblastoma,
and pancreatic

18 MSH2, MSH6, and
MLH1 [93]

Repair damaged DNA and
tumor suppressor

Lynch syndrome; complete
loss of MSH6
protein production.

Colon
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Table 1. Cont.

SN Genotype Function Mutation Effect Prominent Cancers

19 CDH1 [94] Produce protein called epithelial
cadherin or E-cadherin

Hereditary diffuse gastric
cancer (HDGC) Gastric

20 KRAS [95] Making a protein called K-Ras
32% of lung cancers; 85% to
90% of pancreatic cancer; 40%
of colorectal cancers,

Lung, pancreatic,
colorectal

21 PBRM1 [96] Tumor suppressor,
chromatin remodeling

40% of clear cell renal cell
carcinoma (ccRCC) Kidney

22 TERT [96]
Produce enzyme called telomerase;
protect from
chromosome degrading

Potential as biomarkers of
various cancer

Brain, melanoma,
leukemia

23 SMARCB1 [97] Chromatin remodeling Coffin–Siris syndrome (CSS) Brain and kidney

24 PDGFRA [98] Produce protein PDGFRA Amino acid residue changes Gastric

4. The Era of Radiogenomics in Precision Medicine

The popularity of precision medicine has grown over the last few decades, especially
in oncology care. Precision medicine involves optimizing medication according to an
individual’s phenotypic and genotypic characteristics and the nature of the disease, taking
the ‘one size fits one’ approach [99,100]. This encompasses mathematical modeling and
biology, including metabolomics, transcriptomics, proteomics, and genomics [99]. Precision
medicine involves identifying specific treatment targets and developing means of checking
the changes in these targets using non-invasive and reliable methods [99]. Artificial intel-
ligence in ‘-omics’ and imaging modalities have been utilized in this context to develop
models that can predict changes in the targets’ environment and monitor the therapeutic
outcomes, apart from the available standard care [101].

The shift from the traditional ‘one size fits all’ to the ‘one size fits one’ route involves
implementing advances across several cross-sectoral, interdisciplinary, and multidisci-
plinary fields [102]. These advances range from developing tools for big data analysis
and research in individualized medicine to standardization of possession, repositioning,
and sharing of patients’ computerized health reports and the involvement of the patients
themselves [103,104]. The key to the success of precision medicine is a computationally in-
tensive task. To develop computationally effective means of merging radiomics, genomics,
and clinical data for data mining [102], the use of radiogenomics research demonstrates
its significant potential for developing non-invasive diagnostic and prognostic markers,
especially in the field of oncology [102].

Over the past few years, the rise of radiogenomics in cancer medicine can be at-
tributed to various factors [105]. First is the gap existing between molecular pathology
and traditional radiology. A deeper understanding of tumor components has driven the
development of tailored cancer therapeutics [106,107]. Second is the rising interest in
incorporating artificial intelligence with oncology medicine. The application of ML algo-
rithms to a large-scale imaging database has further driven this process [108]. The third
is the growing understanding of the tremendous potential that imaging data hold. This
is of particular importance in the case of oncology, where there are temporal and spatial
limitations of tissue sampling [105].

As discussed, radiomics involves extracting quantifiable data available from clinical
radiography and integrating these data with patient data to generate a searchable database.
Radiogenomics is then utilized to provide complete information for a heterogeneous tumor
or a metastatic disease, guiding the development of therapy suitable for the individual [99].
Large-scale databases are possible due to the enormous amount of imaging data. Min-
ing important and significant radiomics information from these radiological databases
is necessary to generate valuable information employing advanced techniques, frame-
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works, analytics, and algorithms [100]. However, the more significant challenge remains
in maintaining clarity and consistency in performing such studies. Hence, developing a
standardized workflow and internationally consented methods is necessary for effective
and robust studies [100].

Consortiums have been developed to standardize radiogenomics studies [100]. The
Transparent Reporting of a multivariable prediction model for individual prognosis or
Diagnosis (TRIPOD) report is a set of instructions prepared to cover the studies with
validation or development of different multivariable prediction models [109]. The Image
Biomarker Standardization Initiative (IBSI) was founded to deliver a standard for calcu-
lating commonly used radiomics features (machine and deep) and the image-processing
technique required earlier for radiomics features [100,110]. For clinical translation, stan-
dardization of methods of radiomics is a prerequisite. Apart from standardizing, detailing
of quality of the radiomics study is also of utmost importance. Radiomics researchers
should practice findability, accessibility, interoperability, and reusability (FAIR) ushering
philosophy and ensure that the research objectives are findable, interoperable, accessible,
and recyclable [111]. This will ensure validation and quality assurance of radiomics study.

5. What Have We Achieved So Far in Radiogenomics?

Radiogenomics can prove to be a beneficial tool for optimal patient selection in on-
cology [101]. It can act as a digital, non-invasive biopsy technique with the ability to
identify and quantify tumor infiltration and helps with the development of personalized
immunotherapy regimens and continuous monitoring of therapeutic response. The com-
bination of imaging data with radiomics looks promising to improve disease diagnosis,
prognosis, and the prediction of disease outcomes [101]. This field’s progress can be well
illustrated with the application of radiogenomics studies in numerous cancers such as
glioblastoma, hepatocellular carcinoma, non-small cell lung cancer, hematopoietic tumors,
etc. [101,102].

The dawn of radiogenomics imitates an alteration in research from the radiology–
pathology level to a genetic level [100]. Over the past decade, radiogenomics has experi-
enced steady growth by mining radiomics, genetic, and clinical data [102]. The development
of deep learning and big data programming is instrumental in radiogenomics research
and contributes to the development of newer algorithms, workflow, and methods [112].
A significant achievement in radiogenomics is developing a fully automated system com-
bined with a radiological workflow, shown in Figure 9 [113]. This reduces the overall
time involved in performing repetitive and tedious tasks while improving efficiency and
productivity [114,115]. Another advantage is the real-time monitoring of treatment by
simultaneously comparing several images from the database [113,114].

The success of radiogenomics in developing personalized medication regimens is
highly dependent on the reproducibility and transparency of the predictive tools and
programming algorithms [116]. The availability of guidelines such as the TRIPOD has
played a crucial role in progressing towards these goals [100]. At the same time, it is of
utmost importance to see that applying these advanced radiogenomics methods accounts
for the intricacies of the in-place radiobiology knowledge [116]. Imperfect and faulty
datasets available in a radiogenomics database may be conjugated with prior knowledge of
the outcomes to establish new conclusions [117].
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Figure 9. AI improves entire radiology workflow from clinical protocol selection to the treatment
prognosis [118].

6. Artificial Intelligence in Radiogenomics
6.1. What AI Offers: A Computational Perspective

Advancements of different estimation techniques, such as genomic sequencing and
medical radiography of cancer, have enormously augmented the quantity of patient data
accessible to the clinician perspective to radiogenomics. Indeed, AI, the advanced set
of computational algorithms, is perfect for this and can easily deal in radiology from
image acquisition, image reconstruction, feature extraction and selection, data analysis, and
developing models to analyze cancer, treatment prognosis, follow-up planning, and many
other aspects [8]. Figure 10 represents how AI improved the entire radiological workflow
in current clinical practice.

Figure 10. Artificial Intelligence and its subsets (machine learning; neural network; deep learning)
perspective to the radiological data [119].
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The reason for choosing AI in radiology (radiogenomics) is its excellent handling of a
considerable proportion of data compared with the traditional statistics-based methods.
AI-trained models recognize the data by analyzing patterns using different phenotypes
and (or) genotype features. Further, these models can be used in predicting (estimating)
unseen cohorts to check and validate the accuracy. Apart from classification or regression
techniques in radiogenomics, AI could be used in several other applications such as cancer
heterogeneity analysis, progression of tumors, recurrence, etc. [8]. AI improves the entire
radiological workflow in three key ways: productivity, quantity, and precision. Produc-
tivity increases via automation and prioritizing routine jobs. In terms of quantity, it can
extract and quantify information semi-automatically or fully automatically. For precision,
by ensuring that the correct information is accessible, this is obtained by separating unnec-
essary information. AI, machine learning, and deep learning are interchangeable terms and
create some confusion. Basically, AI provides broad ways of designing intelligent methods
through radiological data mining that can efficiently and creatively address radiological
problems. Under the umbrella of AI, numerous ML algorithms such as artificial neural
networks, support vector machines, decision trees, random forest, and k-nearest neighbors
have proven phenomenal. Again, neural networks have been working as parental con-
cepts that range from very simpler to complex architectures, such as multilayer perceptron
(MLP) and deep learning (DL). The following diagram depicts AI and its subsets in the
prospect of radiological data analysis. The Venn diagram in Figure 11 presents the role of
AI in its components in oncology care perspective to different applications in imaging and
digital pathology, drug discovery, precision oncology, patient data management system,
next-generation sequencing, etc.

Figure 11. AI, its components, and the perspective of its application to oncology health care [120].

Machine learning, a subspace of AI that maneuvers the medical imaging features
added with genomics features such as mutational status, could be used in several applica-
tions such as classification, regression, clustering, dimensionality reduction, and density
estimation presented in the following Figure 12. These methods can be classified based
on the type of learning it provides, such as supervised, unsupervised, and reinforcement
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learning; in the first one, which is most frequent in radiogenomics, the data are labeled
prior to the training procedure. Further, these labels are also used as the reference standard
to assess algorithm performance in the test cohort [119]. No prior labels are considered for
unsupervised learning, and the algorithms/methods automatically cluster the given inputs
based on specific characteristics [120]. In reinforcement learning, the algorithms/methods
learn based on the non-stop response to their performance in the particular assigned task,
or we can say that from its errors [120]. To conclude, all these methods may be united to
augment forecast performance and analysis in the radiogenomics study of cancer, as shown
in the following figure. Recent radiogenomics studies based on machine learning produced
encouraging outcomes for cancer prognosis and treatment planning [8]. However, it is
clearly observed the trend is shifting from machine learning to the end-to-end deep-learning
model [121]. Deep learning, a subset of machine learning, consists of algorithms motivated
by artificial neural networks. A neural network contains several layers with a number of
nodes. First, there is an input radiological image or lesion (tumor or certain ROI), followed
by several hidden layers. In the end, the output layer comprises the queries the network is
assumed to respond such as tumor type classification, survival prediction, etc. The basic
flow is given below in Figure 13.

Figure 12. Machine learning tasks (classification, regression, clustering, density estimation, dimen-
sionality reduction).
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Figure 13. A deep neural network.

Basically, a node at each layer, the output of the previous layers gets computed and
further passed to the next layer. Specifically, training the deep neural network is nothing
but figuring out the best output for an individual node, and when all the nodes are
united, the deep model produces the correct response or outcomes. Radiogenomics studies
[24,122–124] based on deep learning produced a significant outcome. Therefore, it has been
seen that AI including machine- and deep-learning perspectives to radiogenomics study of
cancer plays a very significant role.

6.2. Cross-Validation: A Crucial Step

Cross-validation is a technique to measure the effectiveness of an AI-based model.
In radiology, it has a very crucial role to make a generalizable model. Basically, it is a
resampling technique that evaluates how a model will perform on the independent cohort.
If an algorithm is not properly cross-validated then it gives a very biased results perspective
of accuracy. In Table 2, a summary of the different types of cross-validation is presented.

Table 2. AI-based model using cross-validation.

SN Cross-Validation Type Brief Description

1 Leave one out cross-validation
An extreme type of CV that leaves one data sample out of the total data sample,
then n − 1 samples are used to train the model and one sample is used as the
validation set.

2 Hold-out cross-validation This is the usual train/test split of the dataset is a CV technique in which the
dataset is arbitrarily partitioned into 2 parts of training and testing (validation).

3 k-fold cross-validation
In the k-fold cross-validation, the dataset is partitioned into k parts such that each
time, one of the k parts is used as the training set and the other k − 1 subsets as
the validation set.

4 Stratified k-fold cross-validation It is a small variation of k-fold CV, in which each fold contains approximately the
same strata of samples.

5 Nested cross-validation
Otherwise known as double cross-validation, in which k-fold cross-validation is
employed within each fold of cross-validation often to tune the hyperparameters
during model evaluation.

6.3. Performance Metrics: An Essential Step in the Evaluation of the AI Models

Accurate evaluation of the algorithm is a very important step. Table 3 includes all the
metrics used for evaluation in different studies of radiogenomics in oncology.
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Table 3. Performance metrics of AI models.

SN Performance Matrix Description

1 Accuracy
It is set out as the number of correct predictions made as a ratio of all predictions made.

Accuracy = TP+TN
TP+FP+FN+TN

2 Sensitivity or Recall
It is defined as the number of positive predictions made.

Sensitivity = TP
TP+FN

3 Specificity
It is defined as the number of negative predictions made.

Speci f icity = TN
TP+FN

4 Precision

It is defined as the number of correct positive results divided by the number of
positive results predicted by the classifier.

Precision = TP
TP+FP

5 F1 - Score
It is defined as the weighted average of precision and recall.

F1− Score = 2∗(Precision∗Recall)
Precision+Recall

6 Area under ROC curve (AUC) It is a probabilistic measure that defines how much the model is capable of
distinguishing between classes.

7 Kaplan-Meier Curve It is the visual representation of the function that shows the probability of an event at
a respective time interval.

8 Mean Absolute Error (MAE)

It is defined as the average of the difference between the ground truth and the
predicted values by the regression model.

MAE =
∑N

i=0|yi−yp
i |

N

9 Mean Square Error (MSE)

It is defined as the average of the squared difference between the target value and the
predicted value by the regression model.

MSE =
∑N

i=0(yi−yp
i )

2

N

10 R2 (R-Squared)

It is defined as the statistical measure of fit that indicates how much total variation of a
dependent variable is explained by the independent variable by the regression model.

R2 = 1− Unexplained variation
Total variation

Where TP—true positive; TN—true negative; FP—false positive; FN—false negative; yi and yp
i are the target

variable and predicted values; N represents the total number of samples.

6.4. Is AI Efficient for Radiogenomics?

The application of AI in radiogenomics is highly promising [125]. The first step in-
volved using AI at the detector level to process data for reconstructing images, which also
includes corrections for scattering, attenuation, etc. [126]. Further use of AI includes process-
ing images (fusion [48], segmentation [74], etc.). Finally, AI is used to generate models for
personalized medicine based on information extracted from the images obtained from the
database [126]. The quality, generalizability, and robustness of the algorithms/classification
models will determine the radiomic and artificial intelligence [127].

Although AI and radiogenomics research is growing exponentially, clinical implemen-
tation is yet to be achieved. For improved implementation, models should be presented so
that clinicians can understand results and interpret them adequately for carrying out appro-
priate treatment decisions. Models must be validated and well trained and, at the same time,
must be transparent in providing risk information as per an individual’s prediction [127].

7. AI in Radiogenomics Studies of Different Cancer Types

According to the World Health Organization (WHO) [128], brain, breast, and lung
cancer, etc., is one of the leading causes of death in the global population with an average
age of 70. In Table 4, the role of AI-based radiogenomics in different types of cancer studies
is explained briefly in terms of the motivation of the research, radiomics and genomics
information, AI-based imaging signatures for predicting the status of genomics, cohort
information of radiogenomics, and different performance metrics involved with limitations
and suggestions.
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It is observed that both machine- and deep-learning imaging signatures have been
used in nearly the same proportions for predicting the status of genetics information from
the radiomics features provided. However, ML-based signatures have been used more,
as discussed in statistical analysis in Section 2 along with Figure 3a. The application and
cohort sizes play a premier role for the selection of AI models using machine-learning or
deep-learning paradigms [129,130]. For supervised learning using smaller cohort sizes,
augmentation is adapted during the training framework, while no augmentation is applied
for the testing data. The ML-based imaging signatures provide the hand-crafted radiomics
features based on shape, size, grade, tissue, texture, histogram, etc., whereas for those
that are DL based, we have generated an automatic deep radiomics feature to predict the
model behaviors for genetics information. Therefore, the DL-based imaging signature
provides more automation power in comparison to the machine-learning models. As a
result, the researchers are biased toward ML-based imaging signatures when they want to
avoid more training time; also they have a lower amount of data with which to train the
models. Additionally, deep learning is a data-hungry model that needs more radiogenomics
data with more training time to provide more precisive results. The most fundamental
challenge in the current research is the hands-on access to the radiogenomics datasets. It is
recommended that such datasets be publicly available for the development of the advanced
AI tools leading to product design for clinical settings. Hence, there is a trade-off between
both technologies for predicting the status of genomics information in case of certain tumor.
Under the machine-learning methodologies, the SVM, RF, DT, NB, XGBoost, Ensemble,
Univariate, and multivariate regression models are used in more proportion compared to
other ML or DL models.

The radiogenomics approach of diagnosis using artificial intelligence is gaining in-
creased popularity in the case of more frequently occurring cancers such as breast, brain,
and lung cancers. The frequently used genomics prediction using AI-paradigm for the
cancer types, namely MGMT, IDH1/2, BRCA1/2, Lumina A/B, ER, PR, EGFR, Ki-67, and
HER2, are shown in the table below. Again, due to a lack of sufficient genomics data
availability, machine-learning approaches are preferred for these types of tumors. Since
radiogenomics is more prevalent in medical sciences compared to engineering sciences,
to avoid a larger delay in learning curve by the medical practitioners, AI tools such as
machine learning and deep learning are likely to prove a foundational strategy for patient
management [131,132]. The performance metrics generated by the AI-based imaging sig-
natures such as accuracy and area under the curve (AUC) are mostly adopted by many
authors as the standard parameters. However, other parameters such as sensitivity, speci-
ficity, precision, F1-score, and other statistical measurement tools can be used for further
validation of the performances of the AI models.

By going through Table 4 (a–h) we can clearly observe the significant role of AI
radiogenomics in different types of cancer in the era of precision medicine. Table 4 (a)
discusses some recent AI-based studies in radiogenomics for breast oncology care. This
cluster of studies basically focuses on the genomics status prediction of the most prominent
genetic mutant in case of breast cancer such as BRCA1/2, Luminal A/B, HRE2, Ki67, ER,
and PR. To predict the status of these relevant mutants, machine-learning models such
as SVM, RF, DT, NB, XGBoost, Ensemble, Univariate, and multivariate regression models
seem to be very promising, as of adaptation by several researchers. However, deep-learning
models have been used in some scenarios. To implement the radiogenomics aspects in case
of breast cancer care involves a few popular datasets such as The Cancer Imaging Archive
(TCIA), The Cancer Genome Atlas (TCGA), and Full-Field Digital Mammography (FFDM).
The standard performance measure metric used to check the imaging signature is area
under the curve (AUC). As per the studies considered, the typical performance of these
models for the above said genomics is near ~60% and ~80% in all cases.
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Table 4 (b) focuses on brain oncology care using AI-based imaging signatures. Some
more promising studies predicting the brain cancer mutant are considered here. The
frequently used mutants are IDH1, IDH2, MGMT, EGFR, PTEN, PDGFRA, CDKN2A,
TP53, and RB1. It can be concluded from the considered radiogenomics studies that the
most common type of genetic alterations of brain cancer are IDH1, IDH2, and MGMT.
To predict the status of these relevant types of genomics, the relevant imaging signatures
found are a mixture of both machine and deep learning. However, ML-based imaging
signatures such as logistic regression, XGBoost, random forest, and decision tree are
predominantly used compared to DL-based models. The common cohort available for the
radiogenomics of brain cancer using AI-paradigms are The Cancer Imaging Archive (TCIA),
The Cancer Genome Atlas (TCGA), and some personalized data from multicenter hospital
environments. The performance metrics for measuring the model performances are under
the curve (AUC) along with accuracy, sensitivity, specificity, precision, and f1-score. The
standard AUC for these studies is near ~85%. The accuracy parameters values are near ~85%.

Lung cancer is the most observed cancer type and has been discussed in Table 4 (c).
The genetic mutation of genes such as EGFR, KRAS, TP53, and a few RNA sequencings
is considered to be the most frequently associated. To predict the genomics status, the
most popular AI-based imaging signatures include a mixture of both ML and DL. This
includes models such as CNN, 3DCNN, SVM, random forest, and generalized ML-linear
models. The common type of database for the radiogenomics of lung cancer include The
Cancer Imaging Archives (TCIA) and other multi-institutional databases. The AUC is the
most observed performance metric with a mean value of ~80% from the cluster of models
considered under this category.

Further, Table 4 (d) discusses some recent AI-based models in radiogenomics for liver
oncology care. The motivation for this category of cancer diagnosis using radiogenomics
is the prediction of early recurrence of Hepatocellular carcinoma (HCC) and the survival
prediction involved in it. The genomics alteration for the HCC includes TP53, TOP2A,
CTNNB1, CDKN2A, AKT1, alpha-fetoprotein, AFP, and DCP. Again, the machine learning
imaging signature is considered to be the preferred one, with the standard mean AUC
observed as ~85%. However, other statistical measures of Kaplan–Meier analysis and Cox
regression are also involved in the measurement process.

The recent AI-based models in radiogenomics for prostate oncology care have been
discussed in Table 4 (e). The common type of diagnosis for prostate cancer involves the
prediction of tumor aggressiveness in the prostate. Machine- and deep-learning models
are used for this purpose with standard performance metrics AUC and accuracy. In these
studies, authors focused on deep-learning-based models such as CNN, Resnet 101, and
LSTM for building radiogenomics-based models and obtained very promising AUC that
is more than 0.9. However, to make more generalizable and robust models, the use of
multi-institutional cohort is highly recommended for future prospects.
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Table 4 (f) discusses the involvement of an AI imaging signature for studies in radio-
genomics for ovarian oncology care. The major task under this category of care involves the
prediction of PFS in advanced HGSOC and PM in ovarian cancer. Here, mainly machine-
learning models such as KNN, SVM, Logistic regression, and ensemble-based learning
have been taken into consideration for building models with very promising AUCs around
85%. From a database point of view, even though The Cancer Imaging Archive (TCIA) is
the common database, multi-institutional databases are also used for this purpose. For
future prospects, the use of multiple multiparametric scans is highly recommended instead
of using only single modality for ovarian-based radiogenomics studies.

Table 4 (g) discusses the oncology studies of collateral with radiogenomics using AI
imaging signatures. Prediction of KRAS mutations is the measure of genomics associated
with this type of cancer. The other mutants involved here are NRAS, BRAF, and AF. To
determine genomic mutational status, machine-learning models such as SVM, Naïve bayes
classifier, decision tree, and RELIEF have been implemented. However, they obtained
AUC in the majority of the studies, which is more than 85%. Various public medical
institute databases and TCIA have been used for building predictive models. An increase
in the testing cohort size is highly recommended here to make a robust imaging (genomic)
signature.

Table 4 (h) narrates some recent AI-based imaging signatures in radiogenomics of
gastric oncology care. Predicting lymph node metastasis and prediction of PD-L1, and
PM status in gastric cancer (GC) is the major objective under radiogenomics using AI. The
machine-learning paradigms such as SVM, decision tree, random forest, and multivariate
logistic regression are dominating in predicting the status of genomics over deep-learning
models. Traditional machine-learning features such as intensity, first- and second-order
statistics are very promising to analyze imaging phenotypes in gastric cancer with impres-
sive AUC more than 75% for the testing cohort.

Though radiogenomics studies of cancer using AI-paradigms have several key benefits,
there are certain challenges (described in the next section) that demonstrate why AI in
radiogenomics is a bit concerning for oncologists to use frequently in current clinical
practice.
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Table 4. Recent AI-based studies in radiogenomics for various oncology care.

CIT * Motivation Radiomics
Information

Genomics
Information AI-Based Models Dataset PM $ Performance

Measure Outcomes

(a)

[133] Risk assessment in
breast cancer

Traditional
Radiographic,

Texture Analysis,
Pretrained CNN
for deep features

BRCA1/2 SVM
Model

456 clinical
FFDM patients AUC

BRCA1/2 gene-mutation:
AUC = 0.86

unilateral cancer patients:
AUC = 0.84

Fusion classifiers performed
significantly better.

Deep features performed
very well.

[134]

Association
Assessment
of imaging

phenotype with
molecular subtype.

529 tumor
and tissue

imaging features.

Luminal A,
ER, PR,

EGFR, Ki67, HRE2

ML-based
multivariate

models

922 patients
(Proprietary data) AUC

Luminal A subtype:
AUC = 0.697,

TNBC: AUC = 0.654,
ER: AUC = 0.649%,
PR: AUC = 0.622%

Application in early
diagnosis with association

relation between the
MRI-based imaging

features and
genomic features.

[135]

Prediction of
molecular

subtypes and
prognostic
biomarkers

CT perfusion
features include

lymph node status,
tumor grading,

tumor size

ER, PR,
Luminal A,
Ki67, HRE2

SVM, RF, Decision
tree, Naïve Bayes

723 patients
(Proprietary data) AUC, ACC.

Random Forest: AUC: 0.86,
Tumor grade and size:

AUC: 0.88 and 0.85 ER and
PR status: AUC: 0.88 and

0.85 HER2 and Ki67: AUC:
0.88 and 0.85

Molecular subtypes:
AUC: 0.82

Helps in non-invasive
diagnosis by performing a

depth analysis of the
relation between molecular

subtype and CT-based
imaging features.

[123]
Classification of

breast cancer
molecular subtype

Deep features Luminal A Google Net, VGG,
& CIFAR network

272 patients
(Proprietary data) AUC Deep features: AUC = 65%

TL: AUC = 60%

Provides a non-invasive
way to detect Luminal A
tumor subtype with the

help of DL.

[136] Diagnosis of
breast cancer

Features: tumor
shape, size,

morphology, en-
hancement texture,

enhancement-
variance kinetics,

and kinetic
curve assessment.

RNA sequencing,
KEGG, GSEA Radiogenomics TCGA/TCIA - -

Detailed analysis of the
association between the

gene pathways and
imaging features provides a

future direction for the
non-invasive diagnosis of

breast cancer.
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Table 4. Cont.

CIT * Motivation Radiomics
Information

Genomics
Information AI-Based Models Dataset PM $ Performance

Measure Outcomes

(b)

[137] CAD system

Traditional
features:

morphological,
intensity, and

textural features.

IDH1 Logistic
regression

32 (WT IDH) and 7
(mutant IDH)
patients from

TCIA

ACC, SENS,
SPEC

Morphology:
ACC = 51% (20/39),
SPEC = 50% (16/32),
SENS = 57% (4/7);

Intensity:
ACC = 59% (23/39),
SPEC = 59% (19/32),

SENS = 57% (4/7); Texture:
ACC = 85% (33/39),
SENS = 86% (6/7),

SPEC = 84% (27/32).

Non-invasive diagnosis of
tumor CAD system.

[138] Prediction of IDH1
for LGG tumor

Texture, intensity,
shape, and

wavelet features.
IDH1 CNN

151 patients from
the Department of

Neurosurgery,
Huashan Hospital.

AUC, ACC,
SPEC, SENS,

NPV, PPV,
MCC

IDH1 estimation, in
radiomics method:
AUC = 86%, DLR:

AUC = 92%,
DLR based on

multiple-modality MRI,
AUC = 95%

Provides a direction for
early researchers to choose

the models as it gives a
comparative performance

analysis of DL-based
radiomics and normal

radiomics methods.

[139] Classification of
MGMT promoter

Nine textures,
histogram, gray

level-based
features

MGMT, IDH1 XGBoost 262 subjects from
TCGA and TCIA

AUC, ACC,
SENS, SPEC,

F1 score
AUC = 89.6%

Yields better treatment
planning for patients with
IDH1 wildtype GBM in the
primary diagnosis phase.

[140]

Characterization of
genetic

heterogeneity over
enhancing and non-
enhancing tumor.

MR imaging
texture features

EGFR, PTEN,
PDGFRA,

CDKN2A, TP53
and RB1.

Predictive
decision-tree

models.

18 GBM
Patients

(Proprietary data)

ACC,
LOOCV,

Accuracy for 6 driver genes:
EGFR = 75%, PDGFRA =
77.1%, CDKN2A = 87.5%,

TP53 = 37.5%, RB1 = 87.5%,

In primary diagnosis and
better treatment planning of

patient with GBM.
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Table 4. Cont.

CIT * Motivation Radiomics
Information

Genomics
Information AI-Based Models Dataset PM $ Performance

Measure Outcomes

(c)

[141]
Prediction of

EGFR and
KRAS mutation

Texture and
Non-texture

features
EGFR and KRAS

Ensemble model
based on ML and

CNN.

99 patients from
the TCIA

AUC, ACC,
SENS, SPEC

AUC for ML models:
EGFR = 75%,
KRAS = 72%,

For DL models:
EGFR = 82.8%
KRAS = 72.2%.

Enhancing the performance
of non-invasive diagnosis of
lung cancer by predicting

EGFR and KRAS mutation
in a small dataset

[142]

Prediction
histology and

tumor
Recurrence.

117 radiomic
features based on

GLM.

KRAS, TP53,
EGFR

ML and
Generalized linear

model

151 Institutional
databases

ACC,
F1-score AUC = 87%

Compressive analysis of
showing a correlation
between genomic and

tumor subtype.

[143]

Prediction of
tumor

Recurrence in
Non-small cell

lung cancer
(NSCLC.

Handcrafted:
GLCM,

histogram-based
statistics, Laplace

of Gaussian.
Deep features

The
RNA-sequencing.

Genotype-guided
radiomics method

162 patients from
the TCIA dataset

AUC, ACC,
SENS, SPEC

AUC = 76.67% and
ACC = 83.28%

Showing an effective
prediction method with low

cost and improved
accuracy.

[144] Risk prediction of
lung cancer

Feature: patient’s
current and prior

CT volumes
- 3D CNN

6716 National
Lung Cancer

Screening Trial
cases

AUC AUC = 94.4% in
risk prediction

Clinical validation proves
its low-biased performance
and allows enhancement of

the screening process via
CAD and automated

screening to the radiologist.

[143] Classification of
histology subtype

1695 quantitative
radiomic features

(LOG, GLCM)

Histological
subtypes

Incremental
Forward Search

and SVM

278 patients (181
NSCLC and

97 SCLC)
AUC

SCLC vs. NSCLC: 74.1%,
SCLC vs. AD: 82.2%, SCLC

vs. SCC 66.5% and
AD vs. SCC: 66.5%

Detailed analysis of
phenotypic variation exists
among various lung cancer
histological subtypes in CT

images.

[145] Classify somatic
mutations

Radiomic
signature

including tumor
volume and
maximum

diameter, intensity.

EGFR and KRAS Random Forest

Four independent
datasets

(PROFILE,
TIANJIN,
MOFFITT,

xHARVARD-RT)

AUC

AUC: 80% EGFR+ and
KRAS+, 69% with EGFR+

and EGFR−, 63% with
KRAS+/KRAS−

radiomic signatures

Relation between the
imaging phenotype

captured with a genotype
and EGFR mutant tumors

has a clinical impact in
selecting patients for
targeted therapies.
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Table 4. Cont.

CIT * Motivation Radiomics
Information

Genomics
Information AI-Based Models Dataset PM $ Performance

Measure Outcomes

(d)

[146] Prediction of early
recurrence of HCC

21 CT
image-based

radiomic signature
- Machine learning

Proprietary data
(215 HCC
patients)

AUC, SENS,
SPEC

Radiomic features:
AUC = 81.7%, clinical data
AUC = 78.1%, combined

model AUC = 83.6%

Shows a direction towards
preoperative estimation in

early prediction of
recurrence less than 1 year
and helps radiologists with
better treatment planning.

[147] Diagnosis in HCC

Features include
texture features,

first-order
histogram, and

GLCM.

TP53, TOP2A,
CTNNB1,

CDKN2A and
AKT1

Machine learning 27 patients from
TCGA, and TCIA.

AUC, SPEC,
SENS.

TP53: AUC = 86.61%,
TOP2A 78.0%,

CTNNB1: 86.8%

Ability to categorize HCC
tumors on a genetic level

which helps the radiologist
for early diagnosis of HCC

patient

[148]

Prediction of
progression-free

survival (PFS) and
overall survival

in uHCC

SUV statistics,
co-occurrence

matrix,
neighborhood

intensity,
neighborhood

gray level
dependence

Alpha-fetoprotein Machine learning Proprietary data
(371 patients) -

For survival PFS:
[PFS-pPET-RadScore < 0.09]

vs. 4.0 mo [95%
CI(Confidence Interval):

2.3–5.7 mo]
in high-risk group.

median of 11.4 mo [95% CI:
6.3–16.5 mo]

in a low-risk group.
[OS-pPET-RadScore < 0.11]
vs. 7.7 mo [95% CI: 6.0–9.5

mo] in high-risk
group.[PFS-pPET-RadScore

> 0.09]; p = 0.0004) and
OS(Overall Survival):

median of 20.3 mo
[95% CI: 5.7–35 mo] in

low-risk group.
[OS-pPET-RadScore > 0.11];

p = 0.007)

Helps in better treatment
planning for the patients
undergoing transarterial
radioembolization using

Yttrium-90.
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Table 4. Cont.

CIT * Motivation Radiomics
Information

Genomics
Information AI-Based Models Dataset PM $ Performance

Measure Outcomes

[149]
Prediction of

overall survival
in HCC

Features including
maximum
diameter,

histogram-based
texture features

AFP, DCP Machine learning 178 patients
(Proprietary data

Kaplan-
Meier

analysis

Random survival
forest model’s

high and low predicted
individual risks are

p = 1.1 × 10−4 for DFS,
4.8 × 10−7 for OS

respectively, and based on
the multivariate Cox

proportional hazards model,
high predicted individual

risk (hazard ratio = 1.06 per
1% increase, p = 8.4 × 10−8)

OS prediction shows a
better direction towards the

improving survival
of the patient.

(e)

[150] Diagnosis of
prostate cancer

Features: Gabor
texture, Gleason
grade, and gland

lumen shape

Gleason score, QH ML
54 patients from
UPenn and 17

patients from SV
AUC

Prediction of Gleason grade
based on Gabor texture

features AUC = 69%,
prediction of QH based on
gland lumen shape features

AUC = 0.75

Relation between in vivo
T2w MRI phenotype
predicting prostate

cancer status.

[151]

Prediction of
tumor

aggressiveness in
prostate

Multiparametric
(mp) MRI and
68Ga-PSMA-

PET/CT
phenotypes.

CNAs -
5 patients of the

University of
Heidelberg

-
Highly significant CNAs
(≥10 Mbp) were found in

22 of 46 biopsies.

Correlating the most
aggressive lesion with

imaging features helps in
future prostate cancer

diagnosis and prognosis.

[152] Diagnosis of
prostate cancer

Texture Based
features,

morphological
features

- LSTM and
ResNet101

230 for MRI by the
Health Insurance

Portability.

AUC, SENS
ACC, SPEC,
NPV, PPV,

MCC

LSTM: AUC = 0.9999,
ResNet − 101AUC = 100%

Detection of prostate cancer
prediction is better on a

DL-based model.

[153] CAD for prostate
cancer

564 radiomic
features of texture,

intensity, shape,
and orientation.

- CNN DL,
radiomic model.

644 patients from
healthcare centers

in Netherland.

AUC, ACC,
SENS, SPEC.

DL: AUC = 89%,
Active Surveillance dataset

using Radiomic model
AUC = 83%

Developed a tool for
significant-PCA

classification with
radiomic model.



Cancers 2022, 14, 2860 26 of 40

Table 4. Cont.

CIT * Motivation Radiomics
Information

Genomics
Information AI-Based Models Dataset PM $ Performance

Measure Outcomes

(f)

[154]
predicting early

recurrence in
HGSOC

Radiomic
nomogram - KNN, SVM, and

LR
Proprietary data

(256 patients)

AUC,
Kaplan-
Meier

survival
analysis and

Decision
curve

analysis

C-index for clinical factors
model = 82% [95% CI

(0.75–0.88)] (training set)
(validation set): 77% [95%

CI (0.59–0.90)]
Radiomics nomogram
C-index = 0.91 [95% CI

(0.85–0.95)] (training set)„
the C-index = 0.85 [95% CI
(0.69–0.95)] (validation set)

Helps in early
individualized recurrence

prediction in patients
with HGSOC

[155]
Classification of
ovarian cancers

(SOCs).

Features include
Histogram,
Formfactor,

GLSZM, RLM.

CEA, CA125 ML Proprietary data
(110 patients)

AUC, SPEC,
SENS AUC = 85.4%

The model using radiomic
features of arterial phase of
CT with clinical features is
the first study to develop a

useful tool for
differentiating the

POC and SOC.

[156] Prediction of PM
in ovarian cancer.

Radiomics
features: T2WIs,

T2WIs,
multi-value DWIs

- LR
89 patients Shanxi

Medical
University

AUC. AUC = 96.3% (training)
AUC of 0.928 (validation)

Treated as a biomarker for
risk stratification.

[157]
Prediction of PFS

in advanced
HGSOC.

Imaging features Pelvic fluid, and
CA-125

261 patients
(Proprietary data) AUC AUC = 96.9% The quantitative solution to

predict PM in OC patients.

[158]
Assessments of CT
imaging features

of HGSOC

Ovarian mass, size
of pleural

effusions and
ascites, mesenteric

implants and
infiltration, lym-
phadenopathy,

and distant
metastases.

- ML 92 patients
(Proprietary data)

Estimates of
Krippen-

dorff α and
coverage

probabilities

Pleural effusion and
Ascites: α = 0.78,

Intraparenchymal splenic
metastases: α = 0.08

Experimental results show
evidence of the clinical and
biological validity of these

image features.
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Table 4. Cont.

CIT * Motivation Radiomics
Information

Genomics
Information AI-Based Models Dataset PM $ Performance

Measure Outcomes

(g)

[159]

Prediction of
mutation status
and prognostic

values in
colorectal cancer

-

PIK3CA exon 9
and 20, NRAS
exon 2 and 3,

KRAS exon 2, 3
and 4, and BRAF

exon 15

PCR and direct
sequencing

353 CRC patients
at Zhongda

Hospital
-

13.9% (49 out of 353) CRC
patients carried mutations
at RAS exons outside the

KRAS exon 2.

Provides the importance of
these novel molecular

features in CRCs

[160]

Prediction of
KRAS/NRAS/BRAF

mutations in
colorectal cancer

(CRC).

Features include
shape features,
GLCM features,

and GLRLM
features.

KRAS/NRAS/BRAF RELIEFF and SVM 117 patients
(Proprietary data)

AUC, SENS,
SPEC.

Prediction of
KRAS/NRAS/BRAF

mutations, AUC = 86.9%

The predicted association is
useful for the analysis of
tumor genotype in CRC

and hence helps in
therapeutic strategies.

[161]
Prediction of

KRAS mutations
using MRI

polypoid pattern,
axial tumor length KRAS - 275 patients

(Proprietary data) -

The frequency of KRAS
mutations was higher in the

N2 stage (53.70%), and
polypoid tumors (59.09%).

Helps in finding the
imaging predictor of KRAS
which helps the radiologist

to make a better
therapy strategy.

[162]

Prediction of the
mutation status

molecular subtype
in colorectal

cancer.

Features: tumor
size, degree of the
tumor, C-reactive

protein level,
differentiation,
and TNM stage

KRAS Machine Learning 58 patients
(Proprietary data) AUC AUC on predicting the

KRAS mutant = was 86.5%

Provides a higher
performance for the

prediction of the KRAS
mutation status in CRC.

[163]
Classification of

imaging
predictors.

- KRAS Naive Bayes
classifier

457 patients
(Proprietary data) - -

Ability to identify disease
course relation with

mutated oncogenes and
provides a cheaper, quicker

substitute for
genome sequencing.
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Table 4. Cont.

CIT * Motivation Radiomics
Information

Genomics
Information AI-Based Models Dataset PM $ Performance

Measure Outcomes

(h)

[164]
Predicting of
lymph node
metastasis.

Features include
intensity features,
shape, GLZLM,

GLRLM, GLCM.

- SVM 490 patients
(Proprietary data). AUC

LN+, AUC = 82.4%
(training and
validation),

AUC = 76.4%
(test data)

Shows a promising tool for
the preoperative prediction

of LN status in patients
with GC.

[115]

Prediction of
PD-L1 status in

gastric
cancer (GC).

- PD-L1 SVM and RF
358 patients of
Nanjing Drum
Tower Hospital

AUC
Using SVM AUC = 70.4%,

79.9% in primary and
validation cohort.

A promising tool to predict
PD-L1 status and helps to

improve clinical
decision-making about

immunotherapy.

[165]

PET based
radiomic model
for prediction of

PM of gastric
cancer.

Features including
GLCM, GLZLM,

NGLDM, and
GLRLM

CA 125, PM,
SUVmax. Multivariate LR 355 patients

(Proprietary data). AUC

Radiomics model:
AUC = 86%, 87%,

Clinical prediction model:
AUC = 76% and 69%

Provides a novel tool for
predicting peritoneal

metastasis of
gastric cancer.

[166]

Prediction and
investigation of
the efficiency of

neoadjuvant
chemotherapy in

survival
stratification.

Texture, filter
transformed, and
wavelet features.

- Randomized tree 106 patients
(Proprietary data) AUC Rad_score: AUC = 82%,

clinical score: AUC = 62%

Effective prediction
treatment for neoadjuvant

chemotherapy and
stratifying patients into
various survival groups.

[167]
Predict the status

of lymph node
metastasis (LNM).

Shape-based
features,

first-order based,
texture-based

features.

Genome stable,
Epstein–Barr

virus-positive,
chromosomal and

microsatellite
instability.

Multivariate LR 768 patients
(Proprietary data) AUC

AUC = 92% (training
cohort), AUC = 86%
(validation cohort)

AUC = 85% (EGC patients)

Serves as a non-invasive
tool for preoperative

evaluation of LNM in EGC.

Note: ACC—accuracy; SPEC—specificity; SENS—sensitivity; HCC—hepatocellular carcinoma; NSCLC—non-small cell lung cancer; small-cell lung cancers (SCLC); LOG—laplacian
of Gaussian; HGSOC—high-grade serous ovarian cancer; CAN—chromosomal copy number alterations; CA 125—carbohydrate antigen 125; QH—quantitative histomorphometry;
UPenn—University of Pennsylvania; SV—St. Vincent’s Hospital; GLZLM—gray-level zone length matrix; NGLDM—neighborhood gray-level dependence matrix; GLRLM—gray-level
run-length matrix; GLCM—Gray-level co-occurrence matrix; MCC—Mathews correlation coefficient; GLSZM—gray-level size zone matrix; RLM—run-length matrix; PM—peritoneal
metastasis; PES—progression-free survival; LNM—lymph node metastasis; T2-weighted images—T2WIs; fat suppressed—T2WIs; diffusion-weighted images—DWIs; Logistic
Regression—LR; Machine Learning—ML; CIT *—citations; PM $—Performance metrics.
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8. Benchmarking: Comparison between Different Radiogenomics Reviews

We have observed that recent progress in AI and genomic sequencing of cancers
provided new hope in radiogenomics study in individualized and precision medicine. For
this reason, it has drawn significant attention from researchers and scientists. Recently,
some reviews based on radiogenomics have been performed by different groups around
the world. The benchmarking of the proposed review with existing work is provided in
Table 5. Here, benchmarking was performed based on four components: the first includes
humans’ different anatomical cancers; the second covers the different aspects of AI, such as
machine learning and deep learning, cross-validation, and performance metrices; the third
covers radiogenomics aspects such as conventional and deep radiomics and genotypes,
and the last component covers the cohort description. The main aim of the proposed review
is to cover all the aspects of radiogenomics, including the brief fundamentals of AI, and its
offers with different genotypes of multiple cancers of the human anatomy. It also provides
artificial intelligence’s achievements and challenges in current clinical practice. Therefore,
this review reaches a different height in comparison with other studies.
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Table 5. Benchmarking between different radiogenomics reviews.

Discussion of Fundamentals of Various
AI Components Radiogenomics Components

Citation Year Anatomical Cancers
Discussed PM CV ML/DL Conv.

Radiomics
Deep

Radiomics
Essential

Genotypes Dataset

Singh et al. [168] 2021 Brain 8 8 3 3 3 3 3

Razek et al. [113] 2021 Brain 8 8 3 3 3 3 3

Liu et al. [169] 2021
Gastrointestinal, Lung,
Liver, Ovarian, Renal,

Head and Neck,
8 8 8 3 3 3 8

Singh et al. [170] 2021 Brain, Breast, Lung 3 8 3 3 3 3 3

Wong et al. [171] 2020 Lung 8 8 8 3 3 3 8

Trivizakis
et al. [172] 2020

Breast, Pancreatic, Oral,
Bladder, Head and neck,

Rhabdomyosarcoma,
3 8 8 8 3 3 8

Nougaret et al. [173] 2020 Ovarian 8 3 3 3 8 3 8

Gullo et al. [174] 2020
Breast, Brain, Lung,

Gynecological, Liver,
Kidney, and Prostate

8 8 8 3 8 3 3

Bodalal et al. [4] 2019
Brain, Lung, Breast,

Ovaries, Liver, Kidney,
Colorectal, Prostate

8 8 8 3 3 3 8

Pinker et al. [99] 2018 Breast 8 8 3 3 8 3 8

Proposed Review
Brain, Breast, Lung, Liver,

Colorectal, Gastric,
Prostrate, Ovarian

3 3 3 3 3 3 3

PM—performance metrics; CV—cross-validation; ML—machine learning; DL—deep learning; Conv.—conventional.
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9. Clinical Challenges and A View for the Future

The potential of radiogenomics in tumor diagnosis, prognosis, and prediction is
immense; however, translations into clinical settings are slow due to several associated
challenges [175]. Adopting radiogenomics practices into clinical settings needs to overcome
these significant challenges. The biggest challenge is the storage, management, extraction,
analysis, integration, visualization, and communication of the information generated from
the myriad of available data [176]. Integrating such heterogeneous and multifactorial data
in a cost-effective, standardized, and secure manner is essential. Initiatives such as the
Cancer Research UK’s Stratified Medicine Program (Cancer Research UK, 2013) and the
Center for Advancing Translational Science under the National Institutes of Health (NIH,
2011) have been started for better management of radiomics research in oncology [176].

The nature and variability of data are also critical standing challenges. Although
vast imaging data are readily available, institutional heterogeneity (either inter- or intra-)
exists because of the differences in scan protocols, hardware, and post-processing steps,
thereby limiting generalizing findings [176]. Differences in image acquisition parameters,
arguments, and distinctions in contrast enhancement protocols exist [127,177]. A study
reported that even if the same scanning protocol was utilized for image acquisition, it
still resulted in differences in radiomic feature calculations [178]. This leads to reduced
reproducibility of results and impedes the development of appropriate radiogenomics
models [178]. Therefore, it is necessary to implement certain standard practice guidelines
to ensure the reliability and accuracy of radiogenomics studies [100].

Data availability from genetic tests is still limited and carrying out large-scale genetic
testing may not be cost-effective, in addition to being challenging. The use of genetic and
imaging repositories may provide a cost-effective solution [172]. Current data generated
using radiogenomics are from retrospective studies with a small patient cohort; therefore, a
conclusion is usually limited and cannot be generalized, warranting more extensive prospec-
tive studies [99]. Inadequacy in data stratification may result from the lack of the required
volume of data leading to compromised data adaptation, optimization, and evaluation [100].
Limited-size datasets pose a high risk of overfitting models, leading to poor generalization.
This can lead to incompetent decision-making with high false-positive examination rates
from multicenter with different devices and imaging protocols [172,179,180]. In clinical on-
cology practices, it is also required to have the availability of quantitative descriptors with
interpretability. This will enable a better investigation to address the heterogeneity of
tumors [100,181].

A significant task involved in radiogenomics is the interpretation of the algorithms,
which are highly complex, and interpretation of their inner workings is not easy; it is
referred to as ‘black box’ nature [182]. This hinders the acceptance of such technology in
healthcare. An easy-to-explain algorithm allows evaluation of its outputs and provides
feedback for improvement. These algorithms are highly dependent on the standards
available for interpreting data, which, although highly relevant, may also serve as a
source for bias [183]. In various instances, outcomes of these algorithms have been proven
to be more reproducible and consistent than human readings, but this induces more
patient examinations and results in overdiagnosis [182]. At the same time, personalized
management decisions recommended by complex algorithms may be difficult to explain,
and errors and biases may become harder to detect [184].
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Another significant challenge associated with radiogenomics research is the limited
number of laboratories conducting such research due to the cost and challenges related
to the same [172]. Further, laboratory certifications and personnel expertise are required
to make the process cumbersome. Additionally, in most cases, molecular and genetic
analysis usually takes place outside hospital settings, making data integration a herculean
task due to the application of different genome sequencing technologies by commercial
platforms [172]. This culminates in having limited imaging and genomic datasets, limiting
the expansion of radiogenomics approaches.

Though AI in radiogenomics has accomplished a great deal of development in oncol-
ogy, as mentioned in several studies, still there is a long way to go until oncologists regularly
use it in clinics. Apart from the challenges discussed above, a significant challenge is the
effective organization and preprocessing of the multi-institutional cohort of large-scale data.
Though handling the multi-intuitional data is a challenging process in terms of processing,
costs, and ethical clearance procedure of different institutions. However, if it is achieved in-
telligently then it would make the radiogenomics study the best and most clinically reliable.
For example, if—due to some ethical issue—institutions cannot share their data, in this case,
they can share their developed AI models and conduct tests on their cohort, and researchers
can combine the models effectively and conduct further analysis. Therefore, researchers
could perform their study with more robust and generalizable results. Additionally, one
crucial concern of the radiogenomics study is that properly nested cross-validation must
be performed to avoid overfitting, which is the common case in AI. Many studies have
shown very high accuracy for cancer’s perspective, ignoring the fact that these cancers are
heterogeneous, and it is not easy to learn the exact imaging phenotype by the AI model. By
the way, from the future perspective, AI will become an essential tool in the radiogenomics
of cancer if the challenges discussed are handled appropriately.

10. Conclusions

Nevertheless, in recent years, AI in radiogenomics has presented novel solutions to
the current clinical challenges for treating cancers and has shown promising outcomes for
personalized prognosis and treatment planning. As discussed, it is applied tremendously
in various studies of cancers such as survival prediction, progression-free survival, cancer
heterogeneity analysis, etc., in the era of precision medicine. However, we have noticed that
certain studies have been conducted with low amounts and a lack of (i) multi-institutional
data, (ii) proper cross-validation analysis, (iii) generalizable results, and (iv) robustness,
thereby posing more challenges and shaking the oncologists’ confidence regarding its use
in regular clinical practice. In the future, we suggest that further studies will emphasize
eliminating the current limitations of AI in radiogenomics and making their AI methods
more efficient for clinical purposes.
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ATRX Alpha-Thalassemia/intellectual Disability syndrome X-linked.
AUC Area under the ROC Curve.
BRAF B-Raf proto-oncogene.
BRCA1 Breast cancer susceptibility gene 1.
BRCA2 Breast cancer susceptibility gene 2.
CA125 Carbohydrate antigen 125).
CDKN2A Cyclin-dependent kinase inhibitor 2A.
CEA Carcinoembryonic antigen.
CNN Convolutional Neural Network.
CT Computed tomography.
DCE Dynamic contrast enhanced.
DNA Deoxyribonucleic acid.
ER Estrogen-receptor.
FDG PET-CT Fluorodeoxyglucose PET/CT.
FLAIR Fluid-attenuated inversion recovery.
GBM Glioblastoma.
GSEA Gene Set Enrichment Analysis.
HCC Hepatocellular carcinoma.
HER2 Human epidermal growth factor receptor 2.
HGSOC High-grade serous ovarian cancer.
ICC Intrahepatic cholangiocarcinoma.
INHBB Inhibin subunit beta B.
KRAS Carcinogenic Kirsten rat sarcoma viral oncogene homolog.
KEGG Kyoto Encyclopedia of Genes and Genomes.
MGMT O6-methylguanine-DNA methyltransferase.
NF1 Neurofibromatosis 1.
PDGFRA Platelet-derived growth factor receptor A.
PD-L1 Programmed death ligand 1.
PET Positron emission tomography.
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha.
PR Progesterone-receptor.
PTEN Phosphatase and tensin homologue.
RB1 Retinoblastoma protein.
SUV Standardized Uptake Value.
TACE Trans arterial chemoembolization.
TNBC Triple-negative breast cancer.
TP53 Tumor protein p53.
US Ultrasound.
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47. Koçak, B.; Durmaz, E.Ş.; Ateş, E.; Kılıçkesmez, Ö. Radiomics with artificial intelligence: A practical guide for beginners. Diagn.

Interv. Radiol. 2019, 25, 485–495. [CrossRef]
48. Khalifa, F.; Beache, G.M.; Gimel’farb, G.; Suri, J.S.; El-Baz, A.S. State-of-the-Art Medical Image Registration Methodologies: A

Survey. In Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies; Springer: Boston, MA, USA,
2011; pp. 235–280.

49. El-Baz, A.S.; Acharya, U.R.; Mirmehdi, M.; Suri, J.S. (Eds.) Multi Modality State-of-the-Art Medical Image Segmentation and
Registration Methodologies; Springer: Boston, MA, USA, 2011; ISBN 978-1-4419-8194-3.

50. Mirmehdi, M. Handbook of Texture Analysis; Imperial College Press: London, UK, 2008; ISBN 1848161166/9781848161160.
51. Acharya, U.R.; Faust, O.; Sree S, V.; Alvin, A.P.C.; Krishnamurthi, G.; Seabra, J.C.R.; Sanches, J.; Suri, J.S. Understand-

ing symptomatology of atherosclerotic plaque by image-based tissue characterization. Comput. Methods Programs Biomed.
2013, 110, 66–75. [CrossRef]

52. Sanagala, S.S.; Nicolaides, A.; Gupta, S.K.; Koppula, V.K.; Saba, L.; Agarwal, S.; Johri, A.M.; Kalra, M.S.; Suri, J.S. Ten fast transfer
learning models for carotid ultrasound plaque tissue characterization in augmentation framework embedded with heatmaps for
stroke risk stratification. Diagnostics 2021, 11, 2109. [CrossRef]

53. Sanagala, S.S.; Gupta, S.K.; Koppula, V.K.; Agarwal, M. A Fast and Light Weight Deep Convolution Neural Network Model for
Cancer Disease Identification in Human Lung(s). In Proceedings of the 2019 18th IEEE International Conference on Machine
Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; IEEE: Piscatway, NJ, USA, 2019; pp. 1382–1387.

54. Jena, B.; Saxena, S.; Nayak, G.K.; Saba, L.; Sharma, N.; Suri, J.S. Artificial intelligence-based hybrid deep learning models for
image classification: The first narrative review. Comput. Biol. Med. 2021, 137, 104803. [CrossRef]

55. Maniruzzaman, M.; Suri, H.S.; Kumar, N.; Abedin, M.M.; Rahman, M.J.; El-Baz, A.; Bhoot, M.; Teji, J.S.; Suri, J.S. Risk factors of
neonatal mortality and child mortality in Bangladesh. J. Glob. Health 2018, 8, 010417. [CrossRef]

56. Maniruzzaman, M.; Rahman, M.J.; Al-MehediHasan, M.; Suri, H.S.; Abedin, M.M.; El-Baz, A.; Suri, J.S. Accurate Diabetes Risk
Stratification Using Machine Learning: Role of Missing Value and Outliers. J. Med. Syst. 2018, 42, 92. [CrossRef]

57. Maniruzzaman, M.; Kumar, N.; Menhazul Abedin, M.; Shaykhul Islam, M.; Suri, H.S.; El-Baz, A.S.; Suri, J.S. Compara-
tive approaches for classification of diabetes mellitus data: Machine learning paradigm. Comput. Methods Programs Biomed.
2017, 152, 23–34. [CrossRef] [PubMed]

58. Noor, N.M.; Than, J.C.M.; Rijal, O.M.; Kassim, R.M.; Yunus, A.; Zeki, A.A.; Anzidei, M.; Saba, L.; Suri, J.S. Automatic Lung
Segmentation Using Control Feedback System: Morphology and Texture Paradigm. J. Med. Syst. 2015, 39, 22. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.cmpb.2019.04.008
http://doi.org/10.1002/mp.13678
http://doi.org/10.1038/s41598-017-10649-8
http://doi.org/10.1016/j.compbiomed.2015.07.021
http://doi.org/10.1016/j.cmpb.2015.11.013
http://doi.org/10.1016/j.cmpb.2016.02.004
http://doi.org/10.21037/cdt.2019.09.03
http://www.ncbi.nlm.nih.gov/pubmed/31737514
http://doi.org/10.1049/el.2020.2102
http://doi.org/10.1159/000051161
http://www.ncbi.nlm.nih.gov/pubmed/12751482
http://doi.org/10.1101/cshperspect.a001008
http://doi.org/10.5152/dir.2019.19321
http://doi.org/10.1016/j.cmpb.2012.09.008
http://doi.org/10.3390/diagnostics11112109
http://doi.org/10.1016/j.compbiomed.2021.104803
http://doi.org/10.7189/jogh.08.010421
http://doi.org/10.1007/s10916-018-0940-7
http://doi.org/10.1016/j.cmpb.2017.09.004
http://www.ncbi.nlm.nih.gov/pubmed/29054258
http://doi.org/10.1007/s10916-015-0214-6
http://www.ncbi.nlm.nih.gov/pubmed/25666926


Cancers 2022, 14, 2860 36 of 40

59. Acharya, R.U.; Faust, O.; Alvin, A.P.C.; Sree, S.V.; Molinari, F.; Saba, L.; Nicolaides, A.; Suri, J.S. Symptomatic vs. Asymptomatic
Plaque Classification in Carotid Ultrasound. J. Med. Syst. 2012, 36, 1861–1871. [CrossRef] [PubMed]

60. Acharya, U.R.; Mookiah, M.R.K.; Vinitha Sree, S.; Afonso, D.; Sanches, J.; Shafique, S.; Nicolaides, A.; Pedro, L.M.; Fernandes e
Fernandes, J.; Suri, J.S. Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated
classification: A paradigm for stroke risk assessment. Med. Biol. Eng. Comput. 2013, 51, 513–523. [CrossRef]

61. Molinari, F.; Liboni, W.; Pavanelli, E.; Giustetto, P.; Badalamenti, S.; Suri, J.S. Accurate and Automatic Carotid Plaque Char-
acterization in Contrast Enhanced 2-D Ultrasound Images. In Proceedings of the 2007 29th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; IEEE: Piscatway, NJ, USA, 2007;
pp. 335–338.

62. Khanna, N.N.; Jamthikar, A.D.; Gupta, D.; Piga, M.; Saba, L.; Carcassi, C.; Giannopoulos, A.A.; Nicolaides, A.; Laird, J.R.; Suri,
H.S.; et al. Rheumatoid Arthritis: Atherosclerosis Imaging and Cardiovascular Risk Assessment Using Machine and Deep
Learning–Based Tissue Characterization. Curr. Atheroscler. Rep. 2019, 21, 7. [CrossRef]

63. Acharya, U.; Vinitha Sree, S.; Mookiah, M.; Yantri, R.; Molinari, F.; Zieleźnik, W.; Małyszek-Tumidajewicz, J.; Stępień, B.; Bardales,
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