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Simple Summary: This paper presents methods to pool continuous biomarker measurements from
multiple studies to estimate the dose–response curves that allow for the nonlinear association between
biomarker values and disease risks in matched/nested case–control studies. The approach can be
easily applied to pooling projects of cancer studies and user-friendly software for implementing the
method can be found on the corresponding author’s website.

Abstract: Pooling biomarker data across multiple studies enables researchers to obtain precise
estimates of the association between biomarker measurements and disease risks due to increased
sample sizes. However, biomarker measurements often vary significantly across different assays and
laboratories; therefore, calibration of the local laboratory measurements to a reference laboratory is
necessary before pooling data. We propose two methods for estimating the dose–response curves
that allow for a nonlinear association between the continuous biomarker measurements and log
relative risk in pooling projects of matched/nested case–control studies. Our methods are based on
full calibration and internalized calibration methods. The full calibration method uses calibrated
biomarker measurements for all subjects, even for people with reference laboratory measurements,
while the internalized calibration method uses the reference laboratory measurements when available
and otherwise uses the calibrated biomarker measurements. We conducted simulation studies to
compare these methods, as well as a naive method, where data are pooled without calibration.
Our simulation and theoretical results suggest that, in estimating the dose–response curves for
biomarker-disease relationships, the internalized and full calibration methods perform substantially
better than the naive method, and the full calibration approach is the preferred method for calibrating
biomarker measurements. We apply our methods in a pooling project of nested case–control studies
to estimate the association of circulating Vitamin D levels with risk of colorectal cancer.

Keywords: between-study variation; calibration; dose–response curve; nested case–control study;
pooling biomarker data; pooling project

1. Introduction

Pooling biomarker data from multiple studies can result in more precise estimates of
the associations between the biomarker levels and disease risks due to increased sample
sizes and can also facilitate subgroup analysis [1–3]. Examples of pooling project examining
biomarker-disease associations include the Circulating 25-Hydroxyvitamin D (25(OH)D)
and Colorectal Cancer [4], the 25(OH)D and the Risk of Rarer Cancers [5], the Endogenous
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Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group Studies [6,7]
and the NCI Breast and Prostate Cancer Cohort Consortium [8].

A statistical challenge in the pooling analysis is potential between-study variation in
the biomarker measurements stemmed from assay or laboratory differences. For instance,
the measurements of serum 25(OH)D concentration can vary from 20–40% across different
assays, laboratories and even seasons of a year [9–11]. Also, hormones such as estradiol
and testosterone have high variation across assays and laboratories [1–3]. Sloan et al. [12]
proposed methods for pooling biomarker data from matched/nested case–control studies
based on the regression calibration approach [13,14], which is widely used for handling the
covariate measurement error problems. To be specific, a calibration procedure is performed
by first selecting a reference laboratory, to which a subset of biospecimens from each study
are sent for re-assaying. A calibration model is then fitted for each study based on the
study-specific local laboratory and the reference laboratory measurements among the sub-
set of biospecimens selected for re-assaying. The models are used to impute the reference
laboratory measurements for the remaining observations with only local laboratory mea-
surements available. Due to their rarity, cases are not usually used for assay calibration.
Instead, controls are usually chosen for re-assaying in a reference laboratory [15].

However, the existing methods assume that biomarker measurements have a linear
relationship with the log relative risk (RR) of diseases [12]. The nonlinear dose–response
relationship between biomarker measurement and disease risk is often observed in prac-
tice [16,17]. Restricting the biomarker–disease relationship to be linear may lead to biased
estimates when the true association is nonlinear. In this paper, we proposed the method for
pooling matched/nested case–control studies to allow for a nonlinear relationship between
biomarker levels and log relative risk of diseases by using spline functions [12,18]. We first
calibrate biomarker measurements across multiple studies. We then obtain estimates for the
coefficients of the spline functions based on an approximate conditional likelihood. We also
propose an analytic variance formula for the estimated parameters of interest, which takes
account of the uncertainty due to estimating the calibration parameters.

In Section 2, we present the models and statistical methods. In Section 3, we evaluate
the performance of our methods in simulation studies. In Section 4, we apply the methods
to a pooling project investigating the relationship between circulating Vitamin D levels and
colorectal cancer, and finally, we present a discussion in Section 5.

2. Methods
2.1. Notation and Model

The logistic regression model with spline functions can be written as:

logit(P(Ysji = 1|Xsji, Zsji)) = β0sj + βT
X f (Xsji) + βT

ZZsji ,

where s ∈ {1, . . . , S} index the studies in the pooling projects, where the first Q studies only use
local laboratories for the measurement of biomarkers and thus require calibration; nsj and msj de-
note the number of cases and controls, respectively, in the j-th stratum of the s-th study, and within
each stratum, i ∈ {1, 2, . . . , msj} denotes controls and i ∈ {msj + 1, msj + 2, . . . , msj + nsj}
denotes cases. Ysji denotes the binary disease status; Xsji is the biomarker measurements from
the reference laboratory, which is included in the model through a nonlinear function f (·), and
Zsji is a p-dimensional vector of potential confounders. β0sj is the study and stratum specific
intercept, and βX and βZ are vectors of the corresponding regression coefficients. Without further
specification, all vectors are column vectors in this paper.

Note that, in nested case–control studies with density sampling [19], βT
X[ f(X

∗)− f(X∗∗)]
represents the log relative risk (RR) comparing two distinct biomarker levels X∗ and X∗∗.
We focus on methods for point and interval estimates of βX in this paper. To model the
possible nonlinear relationship between the biomarker and disease risk, we propose to use
the restricted cubic spline method [18]. Our approach works for other spline functions
as well. The restricted cubic spline method has advantages of being parsimonious, while
allowing for flexibility in characterizing nonlinear curves. Typically, the model fit is not
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heavily affected by the location of knots, but depends more on the number of knots selected.
The recommended numbers of knots are 3, 4, 5, 6, and 7 [20].

Let Wsji be the biomarker measurements from local laboratories. For each study using
a local laboratory, a subset of samples were selected and sent to the reference laboratory
for re-assaying to obtain reference biomarker measurements; we refer to this subset as
the calibration subset. Therefore, for studies that use local laboratories for biomarker
measurements, Xsji are available only in the calibration subsets, and Wsji are available for
all individuals. Since the local laboratory measurements can vary systematically across
different studies, using Wsji instead of Xsji in data analysis can lead to biased estimates of
the biomarker–disease relationship.

2.2. Approximate Conditional Likelihood and Calibration Methods

Let vectors Xsj and W sj and matrix Zsj contain the corresponding measurements of
individuals from the j-th stratum of the s-th study. The conditional likelihood contribution
from the j-th stratum of the s-th study using the reference laboratory measurements is:

L∗sj = P(Ysj1 = 0, . . . , Ysj,msj = 0, Ysj,msj+1 = 1, . . . , Ysj,msj+nsj = 1|Xsj, Zsj,
msj+nsj

∑
i=1

Ysji = nsj)

=
∏

nsj
l=1 exp

(
β0sj + βT

X f (Xsj,msj+l) + βT
ZZsj,msj+l

)
∑(i1,...,insj )∈Asj ∏

nsj
l=1 exp(β0sj + βT

X f (Xsj,il ) + βT
ZZsj,il )

=

1 + ∑
(i1,...,insj )∈A′sj

exp

(
βT

X

nsj

∑
l=1

[
f (Xsj,il )− f (Xsj,msj+l)

]
+ βT

Z

nsj

∑
l=1

[
Zsj,il − Zsj,msj+l

])
−1

,

(1)

where Asj is the set of all subsets of indices of size nsj from {1, 2, . . . , msj, msj + 1, . . . , msj + nsj};
{i1, i2, . . . , insj} corresponds to one specific such subset in Asj, and A′sj is Asj with the subset
{i1 = msj + 1, i2 = msj + 2, . . . , insj = msj + nsj} excluded [19].

However, the conditional likelihood function based on L∗sj cannot be calculated directly,
since Xsj is not available to all individuals in the studies that only use local laboratories
to measure the biomarkers. To derive an approximate observed conditional likelihood
under the matched/nested case–control study design, we make the following ‘surrogacy’
assumption [12] that takes into account of the study design:

P(Ysj|Xsj, Wsj, Zsj,
nsj+msj

∑
i=1

Ysji = nsj) = P(Y sj|Xsj, Zsj,
nsj+msj

∑
i=1

Ysji = nsj).

This assumption implies that the local laboratory measurements Wsj do not contain
additional information about the outcome, given the reference laboratory measurements,
other covariates of interest, and the matched/nested case–control study design scheme.

Under this surrogacy assumption, the observed likelihood contribution from a stratum
based on local laboratory biomarker measurements

Lsj =P

(
Ysj1 = 0, . . . , Ysj,msj = 0, Ysj,msj+1 = 1, . . . , Ysj,msj+nsj = 1|W sj, Zsj,

msj+nsj

∑
i=1

Ysji = nsj

)

can be written as:

Lsj = E
Xsj |W sj ,Zsj ,∑

nsj+msj
i=1 Ysji=nsj

(
L∗sj

)
, (2)
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where L∗sj is defined in Equation (1). For Equation (2), we further expand L∗sj in Taylor series

around X̃sj = E
(

Xsj|W sj, Zsj, ∑
msj+nsj
i=1 Ysji = nsj

)
, yielding the following approximate

likelihood contribution from the j-th stratum of the s-th study:

L̃sj =

1 + ∑
(i1,...,insj )∈A′

exp

(
βT

X

nsj

∑
l=1

[
f (X̃sj,il )− f (X̃sj,msj+l)

]
+ βT

Z

nsj

∑
l=1

[
Zsj,il − Zsj,msj+l

])−1

.

This approximation performs best when the conditional variance and covariance of
Xsj are small or when the biomarker effect is not strong. Section 1 of the Supplementary
Materials provides a detailed derivation of the approximate observed conditional likelihood
and the conditions when the approximation works well.

To obtain an estimate of X̃sji, for the studies that use local laboratories, the study-
specific calibration models can be fitted in the calibration subsets where subjects were
selected for re-assaying in the reference laboratory; these subjects therefore have biomarker
measurements from both the local and reference laboratories. The calibration models can
thus be used to impute the reference biomarker measurements for the remaining subjects
of each study that only have local laboratory measurements.

We make the calibration assumption [12] that, given the local laboratory measurements,
the mean reference laboratory measurements are approximately independent from other
covariates, that is:

E

(
Xsj|W sj, Zsj,

msj+nsj

∑
i=1

Ysji = nsj

)
≈ E

(
Xsj|W sj,

msj+nsj

∑
i=1

Ysji = nsj

)
.

We further assume a linear relationship between the reference laboratory measure-
ments and local laboratory measurements, leading to the following calibration model:

E

(
Xsji|Wsji,

msj+nsj

∑
i=1

Ysji = nsj

)
= as + bsWsji, (3)

where as and bs are study-specific model parameters. Note that these calibration pa-
rameters are the same across different strata in each study. However, we can relax
this constraint by including matching factors in the calibration model; that is, assuming
E
(

Xsji|Wsji, Msji, ∑
msj+nsj
i=1 Ysji = nsj

)
= as + bsWsji + cT

s Msji, where Msji is the vector of
matching factors. Sloan et al. [15] suggested that Model (3) is sufficient in most study settings.
In (3), although a linear term of Wsji is typically sufficient to model the Xsji-Wsji relationship,
nonlinear terms in Wsji can also be included if appropriate.

The study-specific calibration models are usually fitted only among controls because
case biospecimens are often not available in the calibration study subsets. Therefore, the
calibration model in practice is typically:

E
(
Xsji|Wsji, Ysji = 0

)
= as,co + bs,coWsji,

where we use as,co and bs,co to denote the parameters in the calibration model fitted among
controls only. Note that âs,co and b̂s,co are generally not consistent estimates of as and bs

in (3). Sloan et al. [12] provide conditions for âs,co ≈ âs and b̂s,co ≈ b̂s under the bivariate
normality of Xsj and W sj in a 1:1 matched/nested case–control study. It is straightforward
to generalize their results to the nsj : msj matching scenarios. Specifically, b̂s,co ≈ b̂s when

Var(Xsj|∑
msj+nsj
i=1 Ysji = nsj) ≈ Var(Xsj|Ysj = 0), and âs,co ≈ âs when Var(Xsj|∑

msj+nsj
i=1 Ysji =

nsj) ≈ Var(Xsj|Y sj = 0) and E(Xsj|∑
msj+nsj
i=1 Ysji = nsj) ≈ E(Xsj|Y sj = 0). In addition, if

the biomarker effect is small (i.e., βX ≈ 0), âs,co and b̂s,co will also be close to âs and b̂s.
In studies that used the local laboratory for measurement, for the internalized calibration

method,the biomarker value in the approximate likelihood L̃sj is X̃sji = Xsji if reference laboratory
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measurement Xsji is available, and X̃sji = Ê(Xsji|Wsji, Ysji = 0) otherwise. For the full calibration
method, X̃sji = Ê(Xsji|Wsji, Ysji = 0) regardless of whether reference laboratory measurement
Xsji is available or not [12]. Therefore, for studies using local laboratories for biomarker measure-
ment, all participants’ biomarker measurements are calibrated under the full calibration method
while, under the internalized calibration method, the biomarker measurements are calibrated for
participants who only have local laboratory measurements available.

2.3. Parameter Estimation

Define a =
[
a1, a2, . . . , aQ

]
, b =

[
b1, b2, . . . , bQ

]
and the dose–response parameters

β = [βX , βZ]. The collective set of parameters to be estimated is therefore θ = [a, b, β].

The joint estimating equations are
[
ψa, ψb, ψβX

, ψβZ

]
= 0, where ψa, ψb, ψβX

, ψβZ
are the

estimating functions for their corresponding parameters. Section 2 in the Supplementary
Materials contains the technical details.

We can obtain the point estimate of β using a two-step pseudo-maximum likelihood
method [21]. In the first step, the estimates of a and b of the calibration models are obtained
by fitting linear regressions on the subset of controls chosen for re-assaying in the reference
laboratory, and in the second step, β is obtained using pseudo-maximum conditional
likelihood method by solving the estimating equations

[
ψβX

(â, b̂), ψβZ
(â, b̂)

]
= 0, where

â and b̂ are the estimates obtained in the first step.
We can use the sandwich variance formula over the joint estimating equations[

ψa, ψb, ψβX
, ψβZ

]
= 0 to estimate Var(θ̂). See Section 3 of the Supplementary Materials

for technical details.

3. Simulations

We performed a simulation study for a 1:1 matched case–control study design. Define
εsji as the error term in the linear model of Xsji on Wsji. We assumed a similar multivariate
normal distribution of Xsji, Wsji and εsji, as in Sloan et al. [12], such that: Xsji

Wsji
εsji

 ∼ MVN

 µx
(µx − as)/bs

0

,

 σ2
x bsσ2

ws σ2
x − b2

s σ2
ws

bsσ2
ws σ2

ws 0
σ2

x − b2
s σ2

ws 0 σ2
x − b2

s σ2
ws

.

This distribution yields the calibration model E(Xsji|Wsji) = as + bsWsji and
Cov(Wsji, εsji) = 0. The data were generated for each stratum of each study first, and
then a case and a control were randomly chosen in each stratum. In the simulation, we set
µx = 0 and σ2

x = 1. We assumed four studies in the pooled analysis with 500 case–control
pairs (i.e., 1000 total subjects) in each study, and the calibration parameters were set to be
a = [−3, 1,−1, 3] and b = [0.5, 0.75, 1.25, 1.5]. We set Var(Wsji) = σ2

ws = [3.8, 1.7, 0.6, 0.4]
to ensure a wide range of variation in local laboratory measurements. The stratum-specific
intercept β0sj was assumed to follow a normal distribution with a mean of 0 and a variance
of 0.01, which was chosen to save computer time in the data generation process.

The spline functions were chosen to be restricted cubic splines and for presenta-
tional simplicity, we chose three knots, fixed at the (25th, 50th, 75th) quantiles of N(0, 1).
We assumed the following risk model without additional covariates:

logit
(

P(Ysji = 1|Xsji)
)
= β0sj + βX1 f1(Xsji) + βX2 f2(Xsji),

where f1(Xsji) = Xsji, f2(Xsji) = (Xsji − t1)
3
+ − (Xsji − t2)

3
+

t3−t1
t3−t2

+ (Xsji − t3)
3
+

t2−t1
t3−t2

, and
t1, t2, t3 are the three knots mentioned above [18]. Note that βX2 = 0 implies a linear
relationship between the biomarker level and the log relative risk of disease.

The simulations were performed 1000 times for different combinations of (βX1 , βX2),
and calibration proportions, defined as the proportion of controls re-assayed in the reference
laboratory. We set |βX1 | at relatively large values to evaluate the performance of our method,
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even when the effect of the biomarker is relatively strong, and βX2 was determined so that
the nonlinear relationships across the ranges of βX1 considered in the tables is moderate.
The calibration proportions were 5%, 10%, or 30% in each contributing study, which
represents a reasonable range for the size of the calibration subsets in practice.

We compared the performance of both the internalized (IN) and full (FC) calibration

methods in terms of percent bias ( β̂−β
β × 100%) over the simulation replicates and coverage

rate, which is defined as the proportion of the estimated 95% confidence intervals containing
the true value. We also included the naive (N) method for comparison, where no calibration
was performed, and the conditional logistic regression was fitted using the local laboratory
measurements directly.

The simulation results in Tables 1 and 2 are for a biomarker that had an inverse effect
on the disease risk and the Supplementary Tables S1 and S2 in Supplementary Materials
are for a biomarker that had a positive association with the disease risk. The naive method
performed poorly in all scenarios regardless of the calibration proportions. The percent
biases of the naive estimates were typically larger than 30%, and the coverage rates were
typically below 70%. The internalized and full calibration estimates had consistently better
performance than the naive method. Full calibration estimates were robust over many
combinations of coefficients and calibration proportions, where the percent biases were
typically below 10% when the calibration proportion was 5% and below 5% when calibra-
tion proportions were 15% and 30%. The coverage rates ranged from 93% to 97%, which
were close to the 95% nominal level. The internalized calibration estimates were less robust
than the full calibration estimates, and they tended to be more biased when the calibration
proportion was large. Section S4 of the Supplementary Materials contains a mathematical
justification for the relative performance of the internalized and full calibration methods.

We also plotted the curves reflecting the biomarker-disease association. The x-axis rep-
resents the biomarker values, and the y-axis is the log RR. Figure 1 is for the scenario where
βX1 = − log(1.5) ≈ −0.41 and βX2 = 0.14, and the calibration proportions were set to be 5%
and 30%, respectively. We can see that the curve estimated using the naive method deviated
from the true curve substantially, while the curves estimated using the internalized and full
calibration methods were closer to the true curve. As the calibration proportion increased,
the curve estimated using the full calibration method was closer to the true curve than the
internalized calibration method. Supplementary Figure S1 in the Supplementary Materials is
for the scenario when βX1 = log(1.75) ≈ 0.56 and βX2 = −0.16, and the calibration propor-
tions were also set to be 5% and 30%, respectively. We can see similar behaviors of the three
estimated curves, where the full calibration method led to the estimated curve that was closest
to the true curve and was robust over all calibration proportions.

In addition, we changed σ2
ws in the simulation setup to vary the ratio of σ2

ws
σ2

x
. This ratio for

each study was chosen among 0.75, 0.85, 0.90, and 0.95. The simulation results in Table 3 shows
that the performance of the calibration models improved when this variance ratio increased;
that is, when the error term in the calibration model X|W became smaller. The full calibration
method was more robust than the internalized calibration method with smaller percent biases
and coverage rates closer to the 95% nominal level for all the variance ratios considered.
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Table 1. Comparison of operating characteristics for βX under the model P
(

Ysji = 1|Xsji

)
= β0sj + βX1 f1(Xsji) + βX2 f2(Xsji) for Internalized calibration (IN), Full

calibration (FC), and Naive methods (N). Relative bias is computed using β̂−β
β , and the reported value in the table is the average over the 1000 simulation replicates.

Coverage rate is the proportion of simulations that yield a 95% confidence interval covering the true parameter. Standard deviation is the square root of the empirical
variance of parameter estimates over all replicates; we report 103 times the standard deviation. The calibration proportions (denoted as Calib. size in the table) were
set to be 5%, 15%, and 30%. βX2 is fixed at 0.08.

Calib. Size βX1

Relative Bias of βX1 (SD) Coverage Rate of βX1 Relative Bias of βX2 (SD) Coverage Rate of βX2

IN FC N IN FC N IN FC N IN FC N

5% − log(1.25) −1.6% (2.621) −0.1% (2.959) −44.4% (0.110) 0.970 0.972 0.458 −3.6% (0.192) −0.6% (0.196) −72.2% (0.018) 0.968 0.971 0.222
− log(1.5) −1.2% (2.601) −0.3% (2.972) −23.7% (0.160) 0.964 0.966 0.518 −5.2% (0.220) −2.1% (0.228) −36% (0.025) 0.962 0.962 0.736
− log(1.75) −1.1% (2.846) −0.4% (3.288) −16.6% (0.207) 0.964 0.966 0.569 −8.5% (0.258) −5.3% (0.257) −7.6% (0.033) 0.957 0.959 0.941
− log(2) −1.4% (2.828) −0.8% (3.212) −12.8% (0.261) 0.968 0.970 0.642 −11.9% (0.337) −8.7% (0.339) 18.2% (0.040) 0.955 0.958 0.888
− log(2.25) −1% (3.707) −0.5% (4.481) −10% (0.324) 0.975 0.980 0.707 −10.8% (0.357) −7.5% (0.371) 41.1% (0.051) 0.954 0.955 0.766
− log(2.5) −1.1% (3.785) −0.6% (4.486) −8.2% (0.405) 0.961 0.963 0.754 −12% (0.385) −8.5% (0.393) 62% (0.066) 0.944 0.944 0.609
− log(2.75) −1% (4.444) −0.6% (5.136) −7.2% (0.452) 0.965 0.963 0.788 −12% (0.517) −8.7% (0.535) 78% (0.075) 0.954 0.954 0.497

15% − log(1.25) −7.1% (0.694) −2.3% (0.874) −44.1% (0.120) 0.966 0.969 0.476 −13.6% (0.095) −4.3% (0.096) −70.8% (0.019) 0.944 0.953 0.267
− log(1.5) −3.9% (0.854) −1.1% (1.134) −24.2% (0.154) 0.957 0.956 0.511 −13.4% (0.115) −3.8% (0.115) −36.4% (0.024) 0.947 0.952 0.739
− log(1.75) −2.4% (0.836) −0.3% (1.123) −17.1% (0.197) 0.955 0.962 0.564 −12.8% (0.145) −2.9% (0.147) −8.8% (0.031) 0.941 0.950 0.937
− log(2) −1.8% (0.911) 0% (1.243) −12.7% (0.265) 0.961 0.966 0.638 −11.9% (0.174) −1.9% (0.175) 19.4% (0.043) 0.951 0.949 0.897
− log(2.25) −1.4% (1.218) 0.3% (1.797) −9.7% (0.326) 0.961 0.972 0.722 −14.9% (0.215) −4.6% (0.217) 42.1% (0.051) 0.944 0.947 0.765
− log(2.5) −2.1% (1.108) −0.6% (1.595) −8.3% (0.395) 0.941 0.948 0.761 −18.4% (0.247) −7.6% (0.249) 62.0% (0.064) 0.938 0.950 0.620
− log(2.75) −1.4% (1.273) 0.1% (1.926) −6.7% (0.461) 0.948 0.960 0.805 −16.9% (0.295) −6.1% (0.299) 79.7% (0.076) 0.941 0.950 0.481

30% − log(1.25) −9.9% (0.519) −0.3% (0.455) −43.3% (0.113) 0.943 0.955 0.477 −21.1% (0.083) −2.3% (0.084) −70.8% (0.019) 0.937 0.954 0.265
− log(1.5) −5.1% (0.514) 0.6% (0.561) −23.2% (0.164) 0.944 0.951 0.533 −19.7% (0.096) −0.5% (0.096) −35.9% (0.026) 0.948 0.957 0.751
− log(1.75) −4.5% (0.564) −0.2% (0.659) −16.7% (0.211) 0.940 0.960 0.576 −23.6% (0.129) −4.1% (0.129) −7.7% (0.034) 0.941 0.962 0.926
− log(2) −4.0% (0.581) −0.3% (0.755) −12.8% (0.258) 0.937 0.961 0.631 −25.5% (0.156) −5.4% (0.155) 18.7% (0.042) 0.936 0.956 0.900
− log(2.25) −3.6% (0.661) −0.3% (0.885) −10.1% (0.328) 0.926 0.931 0.698 −28.1% (0.193) −7.4% (0.193) 41.1% (0.052) 0.922 0.933 0.769
− log(2.5) −3.1% (0.719) 0.1% (0.988) −8.3% (0.409) 0.939 0.954 0.749 −24.2% (0.233) −3% (0.234) 62.1% (0.065) 0.938 0.948 0.613
− log(2.75) −3.5% (0.835) −0.6% (1.109) −7.2% (0.459) 0.926 0.954 0.794 30.1% (0.274) −8.9% (0.272) 78.6% (0.076) 0.910 0.943 0.506
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Table 2. Comparison of operating characteristics for βX under the model P
(

Ysji = 1|Xsji

)
= β0sj + βX1 f1(Xsji) + βX2 f2(Xsji) for Internalized calibration (IN), Full

calibration (FC), and Naive methods (N). Relative bias is computed using β̂−β
β , and the reported value in the table is the average over the 1000 simulation replicates.

Coverage rate is the proportion of simulations that yield a 95% confidence interval covering the true parameter. Standard deviation is the square root of the empirical
variance of parameter estimates over all replicates; we report 103 times the standard deviation. The calibration proportions (denoted as Calib. size in the table) were
set to be 5%, 15%, and 30%. βX1 is fixed at − log(1.5).

Calib. Size βX2

Relative Bias of βX1 (SD) Coverage Rate of βX1 Relative Bias of βX2 (SD) Coverage Rate of βX2

IN FC N IN FC N IN FC N IN FC N

5% 0.02 −1.3% (2.838) −0.4% (3.140) −6.5% (0.178) 0.968 0.970 0.898 −21.6% (0.215) −9.3% (0.218) 188.8% (0.029) 0.962 0.958 0.624
0.06 −2.2% (3.199) −1.2% (3.528) −18.1% (0.159) 0.960 0.967 0.686 −12.9% (0.234) −8.8% (0.247) −12.4% (0.025) 0.949 0.954 0.938
0.10 −2.5% (2.515) −1.6% (2.956) −29.5% (0.144) 0.968 0.969 0.339 −8.1% (0.197) −5.6% (0.206) 50.8% (0.023) 0.959 0.957 0.399
0.14 −1.5% (2.815) −0.6% (3.179) −41.7% (0.131) 0.967 0.970 0.078 −4.1% (0.194) −2.3% (0.198) −69.3% (0.021) 0.953 0.951 0.010
0.18 −2.1% (2.636) −1.2% (3.149) −52.8% (0.127) 0.968 0.969 0.012 −5.0% (0.219) −3.6% (0.225) −78.0% (0.020) 0.950 0.954 0.000

15% 0.02 −2.7% (0.889) 0.1% (1.072) −5.8% (0.176) 0.951 0.953 0.922 −49.7% (0.126) −11.7% (0.126) 191.9% (0.027) 0.928 0.938 0.630
0.06 −3.3% (0.771) −0.5% (0.994) −17.7% (0.161) 0.954 0.970 0.699 −19.0% (0.122) −6.2% (0.123) −11.6% (0.026) 0.938 0.948 0.933
0.10 −3.3% (0.867) −0.5% (0.982) −29.8% (0.143) 0.942 0.944 0.335 −10.3% (0.114) −2.6% (0.113) −52.1% (0.023) 0.933 0.948 0.376
0.14 −3.7% (0.790) −0.9% (1.059) −41.8% (0.136) 0.952 0.961 0.083 −7.9% (0.113) −2.3% (0.114) −69.2% (0.022) 0.954 0.962 0.008
0.18 −4.3% (0.851) −1.4% (1.163) −53.6% (0.118) 0.959 0.964 0.003 −7.2% (0.108) −2.7% (0.109) −78.5% (0.019) 0.956 0.958 0.000

30% 0.02 −6.0% (0.546) −0.5% (0.569) −6.5% (0.175) 0.945 0.963 0.916 −85.6% (0.110) −10.4% (0.111) 189.7% (0.028) 0.932 0.957 0.640
0.06 −5.6% (0.556) 0.0% (0.583) −18.0% (0.162) 0.939 0.955 0.682 −28.5% (0.101) −2.9% (0.101) −12.3% (0.026) 0.926 0.952 0.928
0.10 −6.1% (0.536) −0.4% (0.619) −29.4% (0.151) 0.927 0.943 0.342 −19.2% (0.097) −3.6% (0.097) −51.7% (0.024) 0.929 0.942 0.369
0.14 −6.4% (0.458) −0.8% (0.528) −41.1% (0.135) 0.951 0.954 0.080 −13.9% (0.092) −2.7% (0.091) −68.2% (0.022) 0.927 0.953 0.011
0.l8 −6.9% (0.493) −1.2% (0.618) −53.6% (0.125) 0.935 0.957 0.006 −11.8% (0.090) −2.8% (0.091) −78.6% (0.020) 0.920 0.950 0.000
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Table 3. Comparison of operating characteristics for βX under the model P
(

Ysji = 1|Xsji

)
= β0sj + βX1 f1(Xsji) + βX2 f2(Xsji) for Internalized calibration (IN), Full

calibration (FC), and Naive methods (N) with different σ2
ws

σ2
X

. Relative bias is computed using β̂−β
β , and the reported value is the average over the 1000 simulation

replicates. Coverage rate is the proportion of simulations that yield a 95% confidence interval covering the true parameter. Standard deviation is the square root of
the empirical variance of parameter estimates over all replicates; we report 103 times the standard deviation. The calibration proportions (denoted as Calib. size in
the table) were set to be 5%, 15%, and 30%. βX1 = −0.25, βX2 = 0.08.

Calib. Size σ2
ws

σ2
x

Relative Bias of βX1 (SD) Coverage Rate of βX1 Relative Bias of βX2 (SD) Coverage Rate of βX2

IN FC N IN FC N IN FC N IN FC N

5% 0.75 −14.1% (22.094) −5.1% (27.250) −40.6% (0.145) 0.970 0.983 0.509 −35.0% (1.966) −15.2% (2.444) −69.5% (0.023) 0.942 0.968 0.375
0.85 −9.0% (8.468) −4.4% (9.954) −40.9% (0.128) 0.966 0.976 0.479 −20.5% (0.700) −10.4% (0.800) −68.2% (0.020) 0.944 0.958 0.364
0.90 −5.3% (4.876) −2.5% (5.373) −40.5% (0.125) 0.967 0.976 0.460 −10.6% (0.316) −4.4% (0.336) −67.0% (0.020) 0.943 0.954 0.338
0.95 −1.5% (2.398) −0.2% (2.626) −38.0% (0.123) 0.950 0.953 0.504 −4.7% (0.184) −1.7% (0.187) −64.7% (0.019) 0.947 0.953 0.352

15% 0.75 −31.1% (5.298) −3.9% (6.133) −40.7% (0.151) 0.908 0.976 0.528 −71.3% (0.392) −11.7% (0.420) −68.9% (0.024) 0.808 0.957 0.383
0.85 −15.6% (2.250) −1.8% (2.826) −39.8% (0.135) 0.954 0.975 0.500 −35.4% (0.200) −5.0% (0.213) −67.0% (0.021) 0.927 0.966 0.344
0.90 −10.4% (1.456) −1.7% (1.794) −38.7% (0.124) 0.951 0.960 0.504 −24.6% (0.145) −5.4% (0.152) −65.5% (0.020) 0.933 0.960 0.351
0.95 −4.5% (0.732) −0.5% (0.838) −38.6% (0.130) 0.961 0.961 0.476 −11.4% (0.097) −2.5% (0.098) −65.6% (0.020) 0.949 0.960 0.318

30% 0.75 −58.0% (3.127) −4.4% (3.189) −40.3% (0.144) 0.639 0.977 0.547 −130.8% (0.209) −13.4% (0.224) −68.3% (0.023) 0.390 0.951 0.379
0.85 −31.6% (1.467) −4.0% (1.350) −40.1% (0.132) 0.837 0.967 0.494 −70.5% (0.128) −9.8% (0.131) −67.3% (0.021) 0.780 0.951 0.361
0.90 −18.9% (0.913) −1.7% (1.008) −39.1% (0.127) 0.91 0.961 0.478 −42.8% (0.105) −4.9% (0.108) −66.4% (0.020) 0.891 0.957 0.336
0.95 −9.5% (0.475) −1.4% (0.456) −37.7% (0.122) 0.924 0.935 0.492 −22.9% (0.083) −5.1% (0.084) −64.0% (0.019) 0.920 0.935 0.336
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Figure 1. The average of the dose–response curves over 1000 simulations. X-axis is the biomarker
measurement, and y-axis is the log RR of the disease. The solid line is the true curve, and the
dotted and dashed lines were estimated using internalized (IN) and full calibration methods (FC),
respectively, while the dashed-dotted line is estimated using the naive method (N). The calibration
proportion is 5% (left) and 30% (right), and the coefficients of the spline functions are set to be
−log(1.5) ≈ −0.41 and 0.14, respectively.

Lastly, we set the coefficient of the nonlinear term to 0 (i.e., βX2 = 0) and evaluated
the performance of our methods for testing the null hypothesis of no nonlinear effect.
Simulation results are reported in Supplementary Tables S4 and S5. Both the full and
internalized calibration methods have coverage rates of 95% confidence intervals close to
95% for βX2 = 0, suggesting that when there is no nonlinear effect, the Wald test based on
the point and variance estimates in the full and internalized calibration methods will have
a type-I error rate close to 0.05. However, the naive method has coverage rates ranging
from 8% to 70%, indicating that directly pooling biomarker measurements together without
calibration may lead to false positive evidence for a nonlinear effect.

4. Applied Example

We applied our methods to evaluate the association of 25(OH)D with colorectal
cancer incidence. This example was based on two large cohort studies in the United States:
Nurses’ Health Study (NHS) [22] and Health Professionals Follow-up Study (HPFS) [23].
In the NHS, 121,701 female nurses aged 30 to 55 were enrolled in 1976, while in the HPFS,
51,529 male health professionals aged 40 to 75 were enrolled in 1986. To account for as-
say differences or laboratory drift over time, within each study, all measurements were
calibrated to a common assay prior to the analyses. In all, our pooling analysis consisted
of 1876 subjects with a nested case–control study design. The matching factors mainly
included age at blood collection and date of blood collection. For the calibration subsets,
controls in each study were divided into 10 deciles based on the 25(OH)D levels, and three
subjects were randomly sampled in each decile, except for one decile, where only two
subjects were selected [4]. A total of twenty-nine controls in each nested case–control study
were selected to have their blood samples re-assayed at Heartland Assays, LLC (Ames,
IA, USA), the reference laboratory, from 2011 to 2013. We refer readers to the paper by
McCullough et al. [4] for detailed patient selection criteria.

Table 4 presents sample sizes and parameter estimates along with standard errors of the
study-specific calibration models. The potential confounders that were adjusted for in the
conditional logistic regression model included smoking (yes/no), BMI (greater or less than
25), physical activity (continuous), and family history of myocardial infarction (yes/no).
We used the restricted cubic spline with three knots at the 25%, 50%, and 75% quantiles
of the reference 25(OH)D measurements to estimate how the log RR changes with the
Vitamin D levels. Table 5 presents the coefficient estimates along with corresponding 95%
confidence intervals.
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Table 4. Number of cases and controls, size of the calibration study (ncal), and the estimated intercept
and slope of the calibration model for each study in the pooled analysis.

Study Cases/Controls ncal â (SE) b̂ (SE)

NHS 348/694 29 −3.56 (2.72) 1.13 (0.97)
HPFS 267/519 29 3.38 (2.95) 0.05 (0.04)

As shown in Table 5, we obtained similar point and confidence interval estimates of
coefficients from the internalized and full calibration methods. We observed a significant linear
relationship between 25(OH)D measurements and log RR of colorectal cancer (p-value = 0.0211
and 0.0217, for the internalized and full calibration methods, respectively), while the nonlinear
term was not significant (p-value = 0.2162 and 0.2219, for the internalized and full calibration
methods, respectively). Therefore, we concluded that circulating Vitamin D level had a
significant linear association with the log relative risk of colorectal cancer.

Table 5. Point estimates and 95% confidence intervals for the nonlinear (and linear) association of
circulating 25(OH)D (nmol/L) with colorectal cancer after adjusting for BMI (overweight or not),
physical activity (continuous), smoking (never/ever), and family history of colorectal cancer (yes/no).

Method βX1 βX2

Internalized calibration −0.0116 (−0.0214, −0.0017) 7.9307×10−6 (−4.6375×10−6,
2.0499×10−5)

Full calibration −0.0115 (−0.0213, −0.0017) 7.9885×10−6 (−4.8290×10−6,
2.0806×10−5)

Linear model (FC) −0.0059 (−0.0108, −0.0010) -

After dropping the nonlinear term from the conditional logistic regression model and
refitting the model using the linear method proposed by Sloan et al. [12], in Table 5, the point
estimate of the biomarker effect on the log RR of colorectal cancer based on full calibration
method was −0.0059 (RR = 0.9941) for a 1 nmol/L increase in 25(OH)D, with a p-value of
0.0177, and the 95% confidence interval was (−0.0108, −0.0010), suggesting a significant
negative linear relationship between levels of circulating 25(OH)D measurements and the
log relative risk of colorectal cancer.

In Figure 2, we plotted the log RR of colorectal cancer on circulating 25(OH)D mea-
surements under both models with and without the nonlinear spline term. We set the
reference level to be individuals with the minimum 25(OH)D measurement 9.734 nmol/L
in the aggregated study.
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Figure 2. Log colorectal cancer RR for levels of circulating 25(OH)D compared to the reference level,
9.734 nmol/L, based on the full calibration method.



Cancers 2022, 14, 2783 12 of 14

5. Discussion

In this paper, we propose statistical methods for analyzing pooled matched/nested
case–control studies. To apply our method, an assumption is that, for each study, the
relationship between the measurements from the local laboratory and those from the
reference laboratory estimated in the calibration subset represents that in the entire study.
This assumption is likely to be violated for laboratories that do not follow good laboratory
practices, even if the calibration subset is selected randomly. Our methods can estimate a
possibly nonlinear dose–response curve between biomarker measurements and the diseases
and can evaluate whether the relationship is linear or not. We focus on the common
situation in which only controls are selected for re-assaying in the reference laboratory.
We derived an analytic expression for the variance–covariance matrix of the estimated
coefficients in the conditional logistic regression model that takes account of the uncertainty
from fitting the study-specific calibration models.

Several remarks and recommendations can be drawn from our work. The full calibration
method led to estimates with smaller percent biases in all simulation scenarios, and coverage
rates were closer to the 95% nominal level. As the calibration proportion increased, the inter-
nalized calibration method became more biased than the full calibration method. Since the
calibration model was fitted among controls only, estimates of the model parameters were
slightly biased. The bias in the intercept was canceled out in the approximate likelihood func-
tion in the full calibration method but not in the internalized calibration method. Therefore, we
recommend using the full calibration method for analyses that require the calibration of local
laboratory measurements to a reference laboratory. When designing a new study, as discussed
in Sloan et al. [15], the calibration set sample size should be sufficiently large so that the esti-
mates in the calibration models are stable. Based on our simulation study, the full calibration
method can perform reasonably well when the calibration proportion is at least 5% in studies
with 500 case–control pairs and the laboratory errors are moderate.

Our method can be used to estimate dose–response curves between biomarkers and
disease risks. Based on the proposed analytic variance estimators that account for the calibration
process, the method can also be used to perform statistical tests to evaluate the existence of
nonlinear trends. When, in fact, βX2 = 0, the estimated coefficient of the linear term from our
method including both linear and nonlinear terms should be similar to that from the linear
model method by Sloan et al. [12], but the variance in the estimated coefficient of the linear
term from our model may be slightly larger than that from the model including the linear term
alone due to estimating additional coefficients for the nonlinear terms in our method. If there
is not enough evidence to reject the null hypothesis of no nonlinear effects, we recommend
re-fitting the model using the linear method proposed by Sloan et al. [12].

The R code for pooling matched/nested case–control study using restricted cubic
spline functions is available at https://www.hsph.harvard.edu/molin-wang/section-3-
pooling-biomarker-data/ (accessed on 1 April 2022) .

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14112783/s1. Supplementary Table S1: βX2 = −0.16;
Supplementary Table S2: βX1 = log(1.5); Supplementary Table S3: βX1 = 0.48, βX2 = −0.16;
Supplementary Figure S1: Curves reflecting the association of biomarker measurements on disease
risk when βX1 = log(1.75), βX2 = −0.16.
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