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Simple Summary: Meningiomas are typically benign, common extra-axial tumors of the central
nervous system. Routine clinical assessment by radiologists presents some limitations regarding
long-term patient outcome prediction and risk stratification. Given the exponential growth of interest
in radiomics and artificial intelligence in medical imaging, numerous studies have evaluated the
potential of these tools in the setting of meningioma imaging. These were aimed at the development
of reliable and reproducible models based on quantitative data. Although several limitations have
yet to be overcome for their routine use in clinical practice, their innovative potential is evident. In
this review, we present a wide-ranging overview of radiomics and artificial intelligence applications
in meningioma imaging.

Abstract: Meningiomas are the most common extra-axial tumors of the central nervous system (CNS).
Even though recurrence is uncommon after surgery and most meningiomas are benign, an aggressive
behavior may still be exhibited in some cases. Although the diagnosis can be made by radiologists,
typically with magnetic resonance imaging, qualitative analysis has some limitations in regard to
outcome prediction and risk stratification. The acquisition of this information could help the referring
clinician in the decision-making process and selection of the appropriate treatment. Following the
increased attention and potential of radiomics and artificial intelligence in the healthcare domain,
including oncological imaging, researchers have investigated their use over the years to overcome
the current limitations of imaging. The aim of these new tools is the replacement of subjective
and, therefore, potentially variable medical image analysis by more objective quantitative data,
using computational algorithms. Although radiomics has not yet fully entered clinical practice, its
potential for the detection, diagnostic, and prognostic characterization of tumors is evident. In this
review, we present a wide-ranging overview of radiomics and artificial intelligence applications in
meningioma imaging.
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1. Background

Meningioma is the most frequent central nervous system (CNS) neoplasm, accounting
for 36% of all primary brain tumors [1]. It arises from arachnoid cap cells associated
with the dura mater or choroid plexus. Older age and female sex represent demographic
factors associated with increased meningioma risk [1]. According to the 2016 World Health
Organization (WHO) Classification of Tumors of the CNS, meningiomas are classified
into three grading subgroups, ranging from I to III [2]. This grading system has been
confirmed, with some minor changes, in the recently published 5th edition of the WHO
classification [3]. Most of these neoplasms are WHO grade I, consisting of benign, slowly
growing lesions. Atypical meningiomas (WHO grade II) represent 20–25% of cases and

Cancers 2022, 14, 2605. https://doi.org/10.3390/cancers14112605 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14112605
https://doi.org/10.3390/cancers14112605
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-7811-4612
https://orcid.org/0000-0002-1452-1574
https://doi.org/10.3390/cancers14112605
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14112605?type=check_update&version=1


Cancers 2022, 14, 2605 2 of 13

show an increased likelihood of recurrence. Finally, 1–6% are classified as WHO grade
III, presenting malignant behavior with metastatic potential. Magnetic resonance imaging
(MRI) is the modality of choice for assessing these tumors, while computed tomography
(CT) can be acquired when MRI cannot be performed or in combination with MRI to better
depict dystrophic calcifications and bone changes. In recent years, radiomics applications
have shown the potential to provide additional information from medical images of patients
affected by meningioma. Clinical implementation of radiomics-based classification and
predictive models could be of great impact in the management of these patients in the
near future.

In this review, we aim to provide an overview of radiomics studies focused on different
research areas of meningioma imaging, such as lesion segmentation, differential diagnosis,
and recurrence prediction (Table 1).

Table 1. Overview of meningioma radiomics studies.

Author Year Number of
Patients MR Sequences Aim Radiomics Analysis ROI Outcome

AlKubeyyer et al. [4] 2020 31 T2 Characterization Machine learning 2D Tumor firmness

Brabec et al. [5] 2022 30 DTI Characterization Histogram analysis 2D Tumor firmness and
presurgical grading

Cepeda et al. [6] 2021 18 CE-T1 Characterization Machine learning 3D Tumor firmness
Chen et al. [7] 2019 150 CE-T1 Characterzation Machine learning 3D Presurgical grading
Chu et al. [8] 2020 98 CE-T1 Characterization Machine learning 3D Presurgical grading

Fan et al. [9] 2022 220 CE-T1, T2 Characterization Clinic-radiomic model 3D

Differential diagnosis of
intracranial

hemangiopericytoma
and angiomatous

meningioma

Hamerla et al. [10] 2019 138 CE-T1, T2, ADC, FLAIR,
subtraction maps Characterization Machine learning 3D Presurgical grading

Kanazawa et al.
[11] 2018 43 CE-T1, ADC Characterization Texture analysis 3D

Differential diagnosis of
intracranial

hemangiopericytoma
and angiomatous

meningioma
Ko et al. [12] 2021 128 CE-T1, T2 Prognosis Radiomic features 3D Recurrence

Laukamp et al. [13] 2018 211 CE-T1, FLAIR Segmentation Deep learning 3D Segmentation

Li et al. [14] 2019 67 CE-T1, ADC, FLAIR Characterization Machine learning 3D

Differential diagnosis of
intracranial

hemangiopericytoma
and angiomatous

meningioma
Lu et al. [15] 2018 152 ADC Detection Machine learning 3D Diagnosis

Morin et al. [16] 2019 303 CE-T1 Characterization
and prognosis

Radiological-radiomic
model 3D Grading, local failure,

survival

Park et al. [17] 2018 136 CE-T1, ADC, DTI Characterization Machine learning 3D Grading and
histological type

Speckter et al. [18] 2018 32 CE-T1, T2, T1, DTI Prognosis Texture analysis 3D Treatment response
after radiosurgery

Tian et al. [19] 2020 127 CE-T1, T2 Characterization Texture analysis 3D

Differential diagnosis
between

craniopharyngioma and
meningioma

Wei et al. [20] 2020 292 CE-T1, T2, T1 Characterization Clinic-radiological data
and radiomics signature 3D

Distinction of
intracranial

hemangiopericytoma
from meningioma

Yan et al. [21] 2017 131 CE-T1 Characterization Machine learning 3D Presurgical grading
Yang et al. [22] 2022 132 CE-T1 Characterization Deep learning 3D Presurgical grading

Zhai et al. [23] 2021 172 CE-T1 Characterization Machine learning 3D Meningioma
consistency

Zhang et al. [24] 2019 60 T2, ADC Prognosis Radiomic classification 3D Recurrence in skull base
meningiomas

Zhang et al. [25] 2020 235 CE-T1 Characterization Machine learning 3D
Discrimination of

lesions located in the
anterior skull base

Zhu et al. [26] 2019 222 CE-T1 Characterization Deep learning Not
reported Presurgical grading

MR: magnetic resonance; ROI: region of interest; CE: contrast-enhanced; FLAIR: fluid attenuated inversion
recovery; ADC: apparent diffusion coefficient; DTI: diffusion tensor imaging.

2. Radiomics and Artificial Intelligence

Radiomics is an emerging field of research, which has gained a great amount of
attention in the decade since its formal definition [27]. It consists of a collection of tech-
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niques aimed at obtaining quantitative image descriptors, some of which date back several
decades [28,29]. Therefore, radiomics analyses are based on the extraction and modeling of
high-dimensional, quantitative feature sets derived from regions of interest within medical
images. In the current era of precision medicine, this approach presents an enormous
potential. The hypothesis justifying the use of radiomics is represented by the correlation
of quantifiable image grey level heterogeneity within a lesion and previously established
biological, e.g., phenotypical or genotypical, characteristics of interest. If this were proven
as true, it would allow for the definition of non-invasive imaging biomarkers that could
substitute traditional pathological or genomic lesion profiling. Furthermore, entirely novel
radiomics biomarkers could be developed (e.g., radiomics signatures), with prognostic or
diagnostic value. Overall, this approach has the potential to uncover tumoral characteris-
tics, not identified by qualitative or traditional quantitative analyses, which could provide
crucial information for decision support. Typically, the radiomics workflow starts with
image acquisition and preprocessing, followed by lesion segmentation after the which
extraction of mineable features can be performed [30].

Compared to other fields of quantitative image analysis, such as brain functional MRI
or voxel-based morphometry studies, there is still no consensus on the most appropriate
tools or even specific aims of image preprocessing. In general, it is known that differences in
scanner vendor or technology, as well as differences in image acquisition parameters does
impact the reproducibility of radiomics features [31]. Noise introduced in the features due to
these issues is clearly undesirable and will result in biased models. Therefore, the rationale
behind the use of image preprocessing techniques is represented by the harmonization
of images to reduce variance caused by acquisition protocol differences. In other words,
the ideal use case is represented by heterogeneity entirely due to biological characteristics
rather than image noise or acquisition parameters. This is clearly unattainable in practice,
but denoising techniques as well as grey level normalization and discretization can mitigate
these issues. However, the specific software implementations and settings for these tasks
are still debated and may even vary based on the specific use case. One of the solutions
proposed to address this limitation is represented by domain expert working groups that
are developing common reference standards for radiomics features and the entire workflow.

The most well-known and successful of such groups is represented by the Image
Biomarker Standardization Initiative (IBSI), which provide guidelines [32], aimed at in-
creasing reproducibility and to allow for the translation of radiomic studies to the clinical
setting. This is especially relevant for the extraction process since there are different tech-
niques and formulas that may be implemented to calculate textural descriptors. Radiomics
data include morphologic features as well as first-, second-, and higher-order statistics.
Morphologic features describe geometric characteristics of the region of interest, such as
volume, surface area, compactness, and sphericity. First-order statistics include grey level
histogram-derived features, while second-order characteristics describe the spatial varia-
tion in pixel intensities (texture features). It should be noted that all previously mentioned
groups of features can be obtained not only from the original pre-processed images but
also after the application of noise reduction and/or texture-enhancing filters. For example,
commonly used filtering tools are wavelet decomposition and Laplacian of Gaussian [33].

Considering the large amount of data to be analyzed, classical statistical approaches
are generally not preferable for conducting the entire analysis. On the contrary, data
analysis techniques based on artificial intelligence are particularly fitting for this task.
Often, radiomics pipeline includes a combination of classical statistics and machine learning
algorithms. The first are commonly used for data pre-processing and feature selection,
the latter for feature selection and classification or regression modeling. Machine learning
tools are a subset of artificial intelligence (AI) that deals with systems that produce models
directly based on the data available for their training process. These algorithms have an
incredible potential and may also be improved over time by increasing the amount of
available training data.
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Three main machine learning approaches are commonly described:

• Supervised learning: the algorithm input is provided as a labeled training dataset
(ground truth); this is the most commonly employed technique in medical imaging.
Supervised learning includes classification and regression algorithms. Classification
algorithms aim to assign specific categories to new data instances. Linear classifiers,
support vector machines, decision trees, and ensemble methods (e.g., random forest)
are common types of classification algorithms. On the other hand, regression algo-
rithms attempt to estimate the mapping function from input variables to continuous
output variables.

• Unsupervised learning: the algorithm explores the underlying patterns and predicts
the output without a labeled database; for this reason, the post hoc interpretation of
the resulting clusters may be very complex, and a large amount of training data is
usually required.

• Reinforcement learning: based on feedback loops (negative and/or positive reinforce-
ment) and requires a trial–error process. This approach has been commonly applied in
robotics, telecommunications, and game theory fields.

These types of learning can work singularly or in combination (example: semi-
supervised learning). Deep learning is a subfield of machine learning which progressively
extracts higher-level features from the raw input using multiple layers of data process-
ing nodes, in a hierarchy of increasing complexity and abstraction. It is based on neural
networks, whose circuits of interconnected artificial neurons (i.e., nodes) were originally
inspired by the human brain’s architecture.

Independently of the type of training and algorithm architecture, any model obtained
from radiomics data should undergo thorough validation. There are several strategies
that allow for better estimation of model performance on new data, such as resampling
the data through k-fold cross-validation. In this approach, the training data is split in k
folds which are iteratively employed for model training (k-1 folds of data) with the final
subset for validation. The resulting mean accuracy metrics are more robust to variations in
performance due to the random split of the data in training and validation sets, especially
if the entire process is repeated multiple times. However, an external validation of the
final model is also crucial. This can be more informative of the actual performance in a
clinical setting, even though the limited availability of medical imaging data still represents
a significant limitation compared to other domains. Particular care should also be taken
to distinguish analyses performed to compare and tune different hyperparameters of a
radiomics pipeline and those that assess the overall accuracy of the resulting model on new
data. Both these processes may be referred to as validation or testing, based on the study
design and common practice in the research group’s reference domain (e.g., healthcare,
machine learning, statistics), but the interpretation of the resulting accuracy metrics should
be appropriately presented to the general readership.

3. Lesion Segmentation

Segmentation represents a critical step in the radiomics workflow as features are
extracted from the segmented regions of interest (ROI). Furthermore, in the context of
meningiomas, volumetric assessment may also be relevant for therapy planning and
monitoring. While manual segmentation, although more accurate, is time consuming
and prone to inter-observer variability, semi-automated and fully automated approaches
are faster and may reduce inter-observer inconsistencies [30]. In this regard, artificial
intelligence has proved promising in developing models for automated lesion segmentation.
In a recent study, Laukamp et al. [13] used a multi-parametric deep learning model for
fully automated detection and segmentation of meningiomas, demonstrating a strong
correlation with manual segmentation even though MRI images from different scanners
were included in the study. In detail, average Dice coefficients were 0.81 ± 0.10 (range:
0.46–0.93) for the total tumor volume, using FLAIR- and contrast enhanced T1-weighted
images. Similarly, Chen et al. [34] developed a modified U-Net convolutional neural
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network segmentation model based on contrast enhanced T1-weighted images, reporting
Dice scores of 0.920 ± 0.009 (Figure 1).
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Figure 1. Manual and automated segmentation comparison in a meningioma of the left frontal convexity.
The sharply demarcated lesion demonstrates intense contrast enhancement. Vasogenic edema of the
surrounding white matter is also evident. Manual and automated segmentation are correctly matched.
Three-dimensional rendering of the segmented tumor and edema volumes is also presented. T1-CE:
contrast-enhanced T1-weighted imaging; FLAIR: fluid attenuated inversion recovery. Adapted from
Ref. [13], under the terms of the Creative Commons Attribution-NonCommercial 4.0 License.

As previously stated, reliable lesion segmentation is also crucial before radiation
therapy or radiosurgery, important treatment options for meningiomas, to establish the
gross target volume. In this setting, Florenz et al. [35] proposed the use of multiparametric
MRI texture-based features to improve the differentiation between tumor and edema for
gross target volume definition (AUC > 0.71).

4. Differential Diagnosis

Imaging is generally sufficient to characterize expansive extra-axial lesions such as
meningiomas. In some circumstances, however, it may be difficult to distinguish them
from other similar neoplasms, in particular solitary fibrous tumor (also known as heman-
giopericytoma), very vascularized, potentially causing massive bleeding during surgery,
and difficult to differentiate from an angiomatous meningioma on MRI. The differential
diagnosis of angiomatous meningioma versus hemangiopericytoma was investigated by
Kanazawa et al. [11] They used a texture analysis approach based on contrast enhanced
T1- and T2-weighted sequences as well as apparent diffusion coefficient (ADC) maps. The
authors showed that ADC entropy and T2 skewness were higher in the case of heman-
giopericytoma compared to angiomatous meningioma. Additionally, the mean ADC value
was able to differentiate the two lesions with a positive predictive value of 62.5% and
specificity of 62.5%. Likewise, Li et al. [14] assessed whether a machine learning model
based on texture analysis could allow a differential diagnosis between hemangiopericy-
toma and angiomatous meningioma. The authors compared clinical and texture features
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(obtained from FLAIR-, contrast enhanced T1-weighted images and DWI), training four
different support vector machine classifiers. They obtained the highest AUC (area under
the curve) value (=0.90) when using a contrast enhanced T1-weighted sequence-based
classifier. In another study, Wei et al. [20] used a combination of clinical and radiological
data to develop an integrated diagnostic tool for preoperative distinction of intracranial
hemangiopericytoma from meningioma (Figure 2). This tool demonstrated a remarkable
diagnostic accuracy, with an AUC of 0.917 in the validation cohort. Finally, Fan et al. [9]
developed a diagnostic model based on a combination of clinical and radiomics features to
distinguish the two neoplasms, reporting an AUC of 0.91 in the validation set.
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Figure 2. MR and pathological images of a hemangiopericytoma (upper row) and a meningioma
(lower row). Nomogram (A), calibration curves (B,C), and decision analysis curves (D,E) in the train-
ing and validation cohorts for differential diagnosis between the two conditions. IHPC: intracranial
hemangiopericytoma; HMDT: IHPC and Meningioma Diagnostic Tool. Adapted from Ref. [20], under
the terms of the Creative Commons Attribution-NonCommercial 4.0 License.

Another relevant differential diagnosis for meningiomas in the sellar region is represented
by craniopharyngiomas. In this regard, Tian et al. [19] investigated the ability of qualitative
and quantitative MR features in differentiating these two lesions. They found four qualitative
and three quantitative parameters, which however could be related to each other, showing
significant difference between the two neoplasms. In this context, Zhang et al. [25] investigated
the accuracy of machine-learning models in preoperative differentiation of skull base lesions,
using both radiomic and clinical features. In the differentiation between meningiomas and
craniopharyngiomas the authors obtained an AUC of 0.807 in the testing group, adopting a
linear discriminant analysis as the classification algorithm.

5. Tumor Consistency

Pre-operative tumor consistency assessment, differentiating soft from firm neoplasms,
is of fundamental importance for the neurosurgeon but poorly appraisable with conven-
tional imaging. This information is crucial for surgical strategy and patient treatment, and
potentially affects the degree of resection. Indeed, the resection of softer tumors is less
challenging for the neurosurgeon, and they have a lower rate of recurrence and morbidity.
In particular, soft meningiomas can be removed by means of cutting and suctioning while
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firm lesions, especially skull base meningiomas, may require additional surgical devices
(e.g., ultrasonic aspiration, intraoperative navigation, and electrophysiological monitoring).
For this reason, a preoperative imaging-based technique to predict tumor consistency could
significantly improve patient management, and several radiomics studies have investigated
this topic.

AlKubeyyer et al. [4] demonstrated that local binary pattern features from T2-weighted
images yielded an AUC of 0.87 when coupled with a k-nearest neighbor classifier for menin-
gioma tumor firmness prediction. In line with this, Zhai et al. [23] validated a radiomics
nomogram for predicting meningiomas consistency, based on a logistic regression classifier,
which showed an AUC of 0.960 in the test cohort (Figure 3). In a further investigation by
Brabec et al. [5], histogram analysis of tensor-valued diffusion MRI has proven promising
not only for consistency prediction, but also for grade and type (psammomatous vs. other
pooled meningioma types) assessment. Finally, MR-based radiomic features meningiomas
have been used to predict consistency estimation obtained with intraoperative ultrasound
elastography, with an AUC of 0.96 and classification accuracy of 94% [6].
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Figure 3. Representative flowchart and radiomics nomogram for meningioma consistency prediction.
(A) After region of interest delineation, the value of radiomics signature calculated by the algorithm
was 0.3444, corresponding to >90% probability of a firm consistency; (B) in this case, the radiomics
signature was −0.2181, corresponding to a 30% probability of a firm consistency. Consequently,
the meningioma consistency was predicted to be soft. In both cases, the predicted consistency
was confirmed at surgery. Reproduced from Ref. [23], under the terms of the Creative Commons
Attribution-NonCommercial 4.0 License.

6. Grading

The WHO pathological classification of CNS tumors (4th Edition) stratifies menin-
giomas in three grades. The majority of these neoplasms are WHO grade I and include
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meningothelial, fibrous, microcystic, transitional, psammomatous, angiomatous, secretory,
metaplastic, and lymphoplasmacyte rich subtypes. Atypical meningiomas, WHO grade II,
are defined by 4–19 mitotic figures/10 high-power field or brain invasion or three of these
histologic features:

• Increased cellularity;
• Small cells with high N/C ratio;
• Large and prominent nucleoli;
• Patternless or sheet-like growth;
• Foci of “spontaneous” or geographic necrosis.

Furthermore, atypical meningiomas include clear cell and chordoid subtypes.
Finally, WHO grade III anaplastic meningiomas are defined by 20 or more mitotic fig-

ures/10 high-power field or sarcomatous or carcinomatous histology and include rhabdoid
and papillary subtypes.

Higher-grade meningiomas (WHO grades 2 and 3) are more prone to recurrences,
progression, and overall worse prognosis. For this reason, having this information through
noninvasive radiomic analysis could be convenient before surgery, to justify a more aggres-
sive surgical approach or to schedule adjuvant radiotherapy after surgery while waiting
for pathology report.

The new 5th Edition of the WHO classification of CNS tumors has maintained this
grading system but apported some minor changes (e.g., inclusion of TERT promoter
mutation among criteria for grade 3 definition) [3]. While these do not currently represent
an issue, the natural evolution of grading systems over time in medical imaging and
pathology represents a factor to be considered when developing machine learning models.
As data labels may change their usefulness or meaning over time, this specific type of data
drift is peculiar in the field of medical imaging and will require specific research to address
it in the future.

Chen et al. [7] investigated whether texture-analysis-based machine learning algo-
rithms could help identify a non-invasive imaging biomarker for presurgical grading menin-
giomas from postcontrast T1-weighted images. They obtained an accuracy of 75.6% on the
test group using a linear discriminant analysis algorithm. In line with this, Chu et al. [8] ob-
tained an accuracy rate in the test group of 92.9%, with an AUC of 0.948, based on a logistic
regression model trained with nine features extracted from contrast-enhanced T1-weighted
images. Furthermore, in their multi-center radiomics study based on multiparametric MRI
examinations, Hamerla et al. [10] reported an AUC of 0.97 using an XGBoost classifier,
despite heterogeneous protocols across different centers. Similarly, Laukamp et al. [36]
investigated the role of radiomics-based shape and texture analysis on multiparametric MRI
exams from different scanners and institutions for grading meningiomas. In a multivariate
logistic regression model, the combination of these features led to an AUC of 0.91.

An important contribution of ADC in meningioma grading has been pointed out
by Yiping Lu et al. [15]. In their work, a decision forest classifier, built with 23 selected
texture features and the ADC value from the training dataset, achieved an accuracy of
79.51% in the testing cohort. Morin et al. [16] confirmed the value of ADC for this purpose.
They investigated prognostic models based on clinical, radiologic, and radiomic features
to preoperatively identify meningiomas at risk for poor outcomes, finding that low ADC
values were associated with high-grade meningioma, and low sphericity was associated
both with increased local failure and worse overall survival. In their work, integrated
prognostic models combining clinical, radiologic, and radiomic features demonstrated
improved accuracy for meningioma grade, local failure, and overall survival (AUC of 0.78,
0.75, and 0.78, respectively) compared to models based on clinical features alone. Park
et al. [17] evaluated the role of radiomics based on postcontrast T1-weighted images, ADC
maps, and fractional anisotropy maps, in grading and histological subtyping meningiomas.
They achieved an AUC of 0.86 in the validation set. MRI-based radiomics was also used by
Yan et al. [21] to predict meningioma grade. They found three texture and three shape fea-
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tures which were significantly different between high-grade and low-grade meningiomas.
The SVM classifier achieved the best performance, with an AUC of 0.87 (Figure 4).
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A deep learning approach was adopted by Zhu et al. [26], who developed a model
based on an improved LeNet-5 model of convolutional neural network using an oversam-
pling technique to address an unbalanced dataset. The accuracy of the model reached
a promising value of 83.33% for the classification of meningiomas from MR images. In
line with this, a deep learning radiomics model based on routine post-contrast MRI ob-
tained an AUC of 0.811 (Zhu et al. [37]). The authors also demonstrated a superior deep
learning performance over typical, hand-crafted features. A further enhanced T1-weighted
image-based deep learning model was used by Yang et al. [22] in differentiating low- and
high-grade meningiomas. In their study, the combined deep learning–radiomics model
outperformed both the deep learning and hand-crafted radiomics models working alone
(test AUC: 0.935 vs. 0.918 vs. 0.718).

A recent meta-analysis of machine learning studies for the pre-operative prediction
of meningioma grading from brain MRI revealed an overall AUC of 0.88 with a standard
error of 0.02. However, low radiomics quality scores of the included studies were reported.
For this reason, future studies with higher methodological quality and adequate standard-
ization are necessary before machine learning implementation into clinical practice [38].

7. Prediction of Progression and Recurrence

In 1957, a grading scale describing the extent of meningioma resection was introduced
by Simpson [39]. This classification, based on residual tumor or infiltrated dura, has demon-
strated prognostic significance and for this reason it has been widely used in neurosurgery
since its introduction. In particular, a Simpson grade I consists of a complete tumor resec-
tion with removal of affected dura and underlying bone. A grade II is defined by tumor
resection and coagulation of its dural attachment, while incomplete dural coagulation or
bone excision (non-depictable by MRI but based on the neurosurgeon’s opinion) determine
a grade III. In Simpson grade IV, a macroscopic residual tumor is visible on MRI. Finally,
an incisional biopsy with conspicuous remaining neoplastic tissue determines a grade V.

As is obvious to expect, the presence of residual tumor tissue or infiltrated dura repre-
sent risk factors of tumor regrowth. Nevertheless, a subset of meningiomas, even if belong-
ing to Simpson grade I, presents early or, less frequently, delayed progression/recurrence
(P/R) after their resection which is very difficult to predict. Conventional MRI findings
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related to P/R include tumor size, bone invasion, and proximity to the major sinuses, but
are unable to accurately predict P/R.

Ko et al. [12] applied pre-operative MR-based radiomics to predict P/R in menin-
giomas for which a gross total resection was obtained (Simpson grades I–III), employing a
support vector machine algorithm. Using the model’s output score, an AUC of 0.80 was
obtained for predicting P/R. A shorter progression-free survival was also associated with
higher support vector machine scores.

In 20–30% of meningiomas, the lesion originates from the skull base and for this reason it
is very challenging to achieve complete surgical resection while avoiding neurological compli-
cations, due to the complex neurovascular anatomy of this location. A subtotal tumor resection
represents a favorable strategy in these cases but may lead to early P/R. Zhang et al. [24]
developed a MR radiomics model showing an accuracy of 90% for P/R prediction in skull
base meningiomas undergoing gross-total resection (Simpson grades I–III).

8. Prediction of Radiosurgery Response

Complete surgical resection represents the first-line treatment for meningiomas, while
stereotactic radiosurgery is reserved for inoperable lesions, representing a complemen-
tary or definitive treatment modality for selected patients. In this setting, prediction of
volumetric control after stereotactic radiosurgery can provide important information for
selecting an adequate treatment strategy. Speckter et al. [18] used a radiomics approach to
identify the best feature subsets capable of predicting volumetric changes in meningiomas
after treatment with stereotactic radiosurgery (Gamma Knife), using T1- and T2-weighted
MR sequences and diffusion tensor imaging (DTI). They demonstrated a higher correla-
tion of meningioma volume reduction with DTI-derived data, followed by T2-weighted
image-derived parameters.

9. Limitations

Although radiomics analyses are extremely promising in evaluating various aspects of
meningiomas, as shown in the previous sections of this review, there are several limitations
that also need to be discussed. First of all, the retrospective monocentric design of most
current radiomics studies poses several challenges. Such study design could lead to
a patient selection bias, with samples having limited representativeness of the general
population [40]. Similarly, data in this setting originates from a limited range of equipment
vendors and acquisition protocols. Random patterns tied to these could also introduce
biases in the models, which can be challenging to detect without access to more varied
datasets. In general, these issues may result in models which are not able to reproduce
their performance in new clinical settings (i.e., they do not “generalize”). The second issue
is partially tied to the prior and consists of the low standardization of imaging protocol
standardization in radiology, which could also affect model generalizability and therefore
clinical implementation. Novel techniques for data augmentation and harmonization could
also be valuable for addressing this issue [41–43].

Another concern is represented by relatively small sample sizes in the current literature,
potentially leading to overfitting of the prediction model. Further limitations include the
extreme heterogeneity of the adopted segmentation, feature extraction, feature selection,
and modeling steps. In general, all the mentioned issues represent a potential source of
undesirable heterogeneity, originated by patient cohort and imaging data characteristics
rather than reflecting underlying biological lesion characteristics. The risk is that radiomics
pipelines will detect such heterogeneity as a source of information and incorporate it into
the model’s classification process instead of recognizing it for the noise it truly represents
and discard it.

In consideration of the aforementioned issues, future efforts should focus on a greater
standardization of the radiomics pipeline, as well as on prospective multicentric study
designs. Together with this, the creation of high-quality, ideally public, datasets with inte-
gration of radiomics, genomics, and proteomics information as well as clinical-prognostic
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and neuropathological data, could represent the key to success for a real clinical implemen-
tation of big data analysis in the field of precision medicine. The benefits that other domains
have obtained from such large-scale dataset building efforts [44] indeed seem to support
this concept. Even though still in their infancy, efforts are being made both to raise aware-
ness on methodological issues affecting current radiomics research [38,45], raise awareness
in editors and reviewers to pose greater attention to technical aspects and clinical relevance
of these papers [46,47], increase awareness of potential buyers of commercial solutions
based on radiomics [48,49], and collect curated, open medical imaging datasets [50,51].

10. Conclusions

Radiomics has the potential to provide valuable information for the management
of patients affected by meningioma and many studies have investigated its feasibility in
recent years. While some implementations are commercially available, such as for the
segmentation of these neoplasms, others, including grading, prognostic and predictive
assessment are still far from translation to clinical practice. These models still require
more rigorous investigations, especially focused on reproducibility and generalizability of
their performance, to allow their inclusion in clinical decision support software and actual
improvement of meningioma patient management.
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