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Simple Summary: Breast cancer nowadays is the most common cancer among women. Two types
refer to whether cancer has spread or not: Non-invasive and invasive breast cancers. Invasive
ductal carcinoma is responsible for approximately 80% of all breast cancers, and ductal carcinoma
in situ accounts for the majority of the remainder. Early identification of types of breast cancers
provides breast cancer patients with more options for less invasive therapy. Our study aimed
to develop a machine-learning classification model to differentiate ductal carcinoma in situ and
minimally invasive breast cancer using clinical characteristics, mammography findings, ultrasound
findings, and histopathology features. Our model showed that the five most important features were
calcifications on mammograms, lymph node presence, microcalcifications on histopathology, the
shape of the mass on ultrasound, and the orientation of the mass on ultrasound.

Abstract: Purpose: Given that early identification of breast cancer type allows for less-invasive
therapies, we aimed to develop a machine learning model to discriminate between ductal carcinoma
in situ (DCIS) and minimally invasive breast cancer (MIBC). Methods: In this retrospective study,
the health records of 420 women who underwent biopsies between 2010 and 2020 to confirm breast
cancer were collected. A trained XGBoost algorithm was used to classify cancers as either DCIS
or MIBC using clinical characteristics, mammographic findings, ultrasonographic findings, and
histopathological features. Its performance was measured against other methods using area under
the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, precision, and
F1 score. Results: The model was trained using 357 women and tested using 63 women with an
overall 420 patients (mean [standard deviation] age, 57.1 [12.0] years). The model performed well
when feature importance was determined, reaching an accuracy of 0.84 (95% confidence interval [CI],
0.76–0.91), an AUC of 0.93 (95% CI, 0.87–0.95), a specificity of 0.75 (95% CI, 0.67–0.83), and a sensitivity
of 0.91 (95% CI, 0.76–0.94). Conclusion: The XGBoost model, combining clinical, mammographic,
ultrasonographic, and histopathologic findings, can be used to discriminate DCIS from MIBC with
an accuracy equivalent to that of experienced radiologists, thereby giving patients the widest range
of therapeutic options.

Keywords: ductal carcinoma in situ; minimally invasive breast cancer; XGBoost; mammographic;
ultrasonographic; breast cancer
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1. Introduction

Among women, breast cancer is the most common cancer in the world aside from
nonmelanoma skin cancers [1]. According to the World Health Organization, 2.3 million
women were diagnosed with breast cancer in 2020, leading to 685,000 deaths worldwide.
Breast cancers are divided into two types, non-invasive and invasive, based on whether
it has spread. Among the non-invasive types, ductal carcinoma in situ (DCIS) is the most
common [2], accounting for around 84% of all in situ cancers [3]. Pathologists further
divide DCIS into four forms: papillary, cribriform, solid, and comedo [4]. High-grade DCIS
(comedo) is the quickest to progress to an invasive form. The typical treatment for DCIS
has been mastectomy; however, breast conservation therapies for invasive breast cancers
have gained acceptance, and initial attempts at using breast-conserving surgeries for DCIS
are potentially acceptable [3].

Breast cancers become invasive when they grow outside of the ducts or lobules into
the adjacent breast tissue. Up to 70% of these cases have been identified as invasive ductal
cancer, also known as infiltrating ductal carcinoma [5], wherein smaller tumor size is
associated with a greater survival rate. According to Tabár et al. [6], women with invasive
tumors no larger than 14 mm in size and accompanied by casting-type calcifications
had a 20-year survival rate of 55%. Mammography screening and improved therapies
have increased long-term survival prognoses for patients with invasive carcinomas in
this size range [7]. With early identification of cancer type, a greater range of options
for those seeking less-invasive therapies becomes available. Many studies have shown
the importance of traditional histopathological characteristics in the prediction of breast
cancer, such as lymph node status, tumor size, histological grade, margin width, and
several biological indicators [8–10]. These prognostic factors are appealing in principle and
effective with large tumors, but they present challenges when tumors are small [11].

Machine learning (ML) is a part of artificial intelligence that focuses on developing
computer algorithms that can change when new information is added. Several studies
have shown that ML techniques can be used to quickly diagnose breast cancer with great
accuracy [12,13]. However, to our knowledge, no studies have shown that ML algorithms
can be used to discriminate between DCIS and minimally invasive breast cancer (MIBC).
This study was therefore designed to develop an ML classification model to differentiate
DCIS from MIBC using clinical characteristics, mammographic and ultrasonographic
findings, and histopathologic features. A successful model can support radiologists in
disease diagnosis and decrease the time required to do so.

2. Materials and Methods

The Taipei Medical University Joint Institution Review Board approved this study
(TMU-JIRB No. N202203003), and patient informed consent was waived due to its retro-
spective nature.

2.1. Study Design

We defined DCIS as discrete spaces filled with malignant cells, frequently surrounded
by a recognizable basal cell layer containing normal myoepithelial cells [4]. We defined
MIBC as invasive breast cancer found to be less than or equal to 15 mm in size when
assessed histologically. Patients who underwent biopsies to confirm breast cancer between
1 January 2010 and 31 December 2020 at Wanfang Hospital of Taipei Medical University
were considered eligible for this study (n = 1377), leading to electronic medical records
reviews. Those lacking tumor measurements in pathology or with insufficient histopatho-
logic information (n = 68) were excluded, leaving 1309 patients to be consecutively enrolled
in the study. Of these, 245 were found to have DCIS, and 1064 were found to have invasive
breast cancer. From the DCIS group, 56 patients were excluded due to microinvasion, as
shown via pathology. From the MIBC group, 833 patients were excluded due to excess
tumor size (>15 mm). Finally, 420 women with either pure DCIS (n = 189) or MIBC (n = 231)
were included in the study (Figure 1).
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Figure 1. Flowchart of the study population. DCIS: ductal carcinoma in situ; MIBC: minimally
invasive breast cancer.

2.2. Data Acquisition

Our final patient set was split into three non-overlapping sets: 70% (294 patients) for
training, 15% (63) for validation, and 15% (63) for testing. Medical records were reviewed
to retrieve clinical data, such as age, body mass index (BMI), menopausal status, age at
menarche, age at first live birth, family history of breast cancer, use of hormone replacement
therapy, and clinical signs of cancer (palpable vs not palpable).

Sonographic features were interpreted using BI-RADS criteria (5th ed.) [14], specifi-
cally, breast composition and the breast mass features tumor size, shape, orientation, margin,
echo pattern, posterior features, calcifications, vascularity, and elasticity assessment. Archi-
tectural distortion, ductal changes, and the status of the axillary lymph nodes were noted.
Interval changes on follow-up ultrasound (US) examinations were recorded as well. The
sonographic features used in the models are provided in detail in Appendix A (Table A1).

Mammographic findings were also interpreted using BI-RADS criteria [14], specifically
those of the masses (size, shape, density, and margin), calcifications (morphology and
distribution), and architectural distortion. Asymmetries in density and morphology were
also recorded. Interval changes on follow-up mammograms (MMGs) were also reviewed.
The MMG features used in the models are provided in detail in Appendix A (Table A1).

Histopathologic findings from excisional biopsies or mastectomy specimens were
used as gold standards. The histologic parameters recorded were nuclear grade, presence
of comedo necrosis, architectural pattern, and the expressions of ER, PR, and HER-2
(Table A1).

2.3. Model Development

The process used to develop the classification model is shown in Figure 2. Pre-
processing improves the quality of a dataset, supplying clean data that can be used for
modeling [15]. In this study, we processed missing values, selected correlation-based
features, and labelled features using One Hot Encoder.

Data selection allows the fittest features to be chosen after ranking them using a train-
ing dataset. Feature selection, on the other hand, is choosing the combination of features
important for classification in preference to those that are less important. The feature
selection techniques used in this study were recursive feature elimination methods and
application of the XGBoost [16] ‘Feature Importance Scores,’ applying SHapley Additive
exPlanations (SHAP) [17] methods.
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To develop our model, we used a gradient boosting-based decision-tree-based ensem-
ble ML algorithm in XGBoost in which the computational complexity of determining the
optimal split, typically the most time-consuming element of decision tree building methods,
is reduced. To find the most important features, multiple values for k were tested using
the Select K Best algorithm. We trained the model based on selected features’ importance
from the training dataset and wrapped it in the SelecFromModel algorithm. After fitting it
with input data, this algorithm extracts the most viable features based on the importance
of model weights. Then, we selected the features to be used with the testing dataset to
evaluate the model.

Using the same set of features, our model’s performance was compared against other
ML algorithms, such as random forest, single vector machine, Gaussian naive Bayes, K-
nearest neighbor, and decision tree classifier. The hyperparameters of the XGBoost model
were manually tuned and fixed throughout the training process by comparing errors during
training, validating using the testing dataset, and automating the determination of the best-
fit hyperparameters using a grid search method. To generate more robust models and avoid
overfitting, k-fold cross validation was applied when using XGBoost. The hyperparameters
of our model are provided in the Table A2 (Appendix B).

We also compared model performance (i.e., classifying DCIS vs MIBC) with the
diagnostic performance of radiologists. The testing set of patients was separated into three
groups: those to be used with MMG alone, those to be used with US alone, and those
where both were used. We also compared the sensitivities and specificities of the groups
that comprised the entire sample. Each was independently assessed by 2 radiologists of
Wanfang hospital (Radiologist 1 was a first-year resident, and Radiologist 2 had more than
ten years of breast imaging experience) for diagnoses. All diagnoses by radiologists and by
the model were compared with pathological results. Model performance was evaluated
using a number of metrics: accuracy, area under the receiver operating characteristic curve
(AUC), precision, recall, sensitivity, and specificity.

2.4. Statistical Analysis

Statistical analyses were performed using SPSS, version 25 (SPSS Inc., Chicago, IL,
USA). Clinical characteristics of the two types of cancers were compared using the χ2 test for
categorical variables and the Mann–Whitney test for continuous variables. The McNemar
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test for sensitivity and specificity was used to compare the diagnostic performance of
the model with those of the radiologists. The significance of the differences between
evaluation metrics was estimated using the 95% confidence interval (CI), using p < 0.05 to
find significant differences.

The evaluation metrics were calculated as follows:

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• Accuracy = TP+TN
TP+FP+TN+FN

• F1 score = 2 x Precision x Recall
Precision+Recall

• Specificity = TN
TN+FP

• Sensitivity = TP
TP+FN

where TP, FP, TN, and FN are true positive, false positive, true negative, and false
negative, respectively.

3. Results
3.1. Study Population

The clinical characteristics of our study group, both as a whole and as divided by
cancer type, are summarized in Table 1. The characteristics of the two groups are similar,
showing statistically significant differences only in age at first live birth, family history of
breast cancer, and BMI group (p < 0.05). A larger portion of the DCIS group bore their first
child between the ages of 20 and 29 years compared to the MIBC group. Conversely, a larger
portion of the MIBC group were nulliparous. The DCIS group had a greater frequency of
familial breast cancer history (p < 0.05) and a lower frequency of low BMIs (<18.5 kg/m2).
The MIBC group had the greatest frequency of BMIs in the 24–27 kg/m2 range (p < 0.05).

Table 1. Clinical characteristics of the study population.

Characteristic Study Group
(n = 420)

DCIS Group
(n = 189)

MIBC Group
(n = 231) p Value b

Age a, y 57.1 (12.0) 57.1 (12.0) 57.3 (12.0) 0.694

Age group 0.086

<40 y 22 (5.2) 6 (3.2) 16 (6.8) . . .

≥40 y 398 (94.8) 183 (96.8) 215 (93.2) . . .

Menopause 0.643

Premenopause 145 (34.5) 63 (33.3) 82 (35.3) . . .

Postmenopause 275 (65.5) 126 (66.7) 149 (64.5) . . .

Age at menarche 0.837

NA 93 (22.1) 44 (23.2) 49 (21.2) . . .

<12 y 27 (6.4) 13 (6.9) 14 (6.1) . . .

12–14 y 222 (52.9) 99 (52.4) 123 (53.2) . . .

≥15 y 78 (18.6) 33 (17.5) 45 (19.5) . . .

Age at first live birth 0.002

<20 y 12 (3.6) 1 (0.7) 11 (6.0) . . .

20–29 y 166 (49.7) 91 (60.3) 75 (41.0) . . .

≥30 y 82 (24.6) 34 (22.5) 48 (26.2) . . .

Nulliparous 74 (22.1) 25 (16.5) 49 (26.8) . . .
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Table 1. Cont.

Characteristic Study Group
(n = 420)

DCIS Group
(n = 189)

MIBC Group
(n = 231) p Value b

Family history of BC 0.002

Yes 83 (19.8) 50 (26.5) 33 (14.3) . . .

No 333 (80.2) 139 (73.5) 198 (85.7) . . .

History of HRT use 0.464

Yes 31 (7.4) 12 (6.3) 19 (8.2) . . .

No 389 (92.6) 177 (93.7) 212 (91.8) . . .

BMI a (kg/m2) 24.02 (4.40) 24.02 (4.39) 24.00 (4.41) 0.542

BMI group 0.002

BMI < 18.5 kg/m2 14 (3.33) 4 (2.12) 10 (4.32) . . .

18.5 ≤ BMI < 24 kg/m2 227 (54.05) 98 (51.85) 129 (55.84) . . .

24 ≤ BMI < 27 kg/m2 82 (19.52) 44 (23.28) 38 (16.45) . . .

BMI ≥ 27 kg/m2 97 (23.10) 43 (22.75) 54 (23.39) . . .
Unless otherwise indicated, data in the table are expressed as number (percentage) a Expressed as mean (standard
deviation). b DCIS group vs. MIBC group. DCIS: ductal carcinoma in situ; MIBC: minimally invasive breast
cancer; NA: not available; HRT: hormone replacement therapy; BMI: body mass index; BC: breast cancer.

As shown in Table 2, the training set consisted of 294 patients (mean [standard devia-
tion] age, 56.8 [11.5] years; BMI, 24.0 [4.6] kg/m2) of which 130 (44%) were diagnosed with
DCIS. On the other hand, the testing set contained 35 (55.5%) patients with DCIS.

Table 2. Characteristics of the training and testing sets.

Characteristic Training Set Testing Set p Value

No. of patients 357 63

DCIS 161 (45.1) 35 (55.5)

MIBC 196 (54.9) 28 (45.4)

Age a, y 57.1 (11.6) 58.5 (12.8) >0.05

BMI a, kg/m2 24.1 (4.7) 24.1 (4.9) >0.05

Premenopause 124 (34.7) 21 (33.3) >0.05

Postmenopause 233 (65.3) 42 (66.7) >0.05

Family history of BC 61 (18.7) 16 (25.4) >0.05
Unless otherwise indicated, data in the table are expressed as number (percentage) a Expressed as mean (standard
deviation). DCIS: ductal carcinoma in situ; MIBC: minimally invasive breast cancer; BMI: body mass index; BC:
breast cancer.

3.2. Model Development
3.2.1. Missing Value Processing

We examined 187 features across sonographic, mammographic, and histopathologic
findings. Of the 420 patients in our study group, MMG and US were not performed in
99 (24%) and 22 (5%) of the patients, respectively, leading to a number of missing features in
those patients. The degree to which these initial features were missing is shown in Figure 3.
Those features that were missing more than 30% of the time were excluded from the model.
Those features that were missing less than 30% of the time were imputed when missing.



Cancers 2022, 14, 2437 7 of 22Cancers 2022, 14, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 3. Initial degree of missing features. 

3.2.2. Correlation-Based Feature Selection 
After imputing the missing values, a correlation analysis of the features was per-

formed to avoid using features that were highly correlated with the other features, creat-
ing a linear correlation and having little additional impact on the dependent variable. 
When the correlation exceeded 0.8, that feature was eliminated from the dataset in favor 
of those with lower means. The correlation analysis is visualized in Figure 4. 

 
Figure 4. Correlation analysis. 

3.3. Performance of XGBoost and Feature Importance Analysis 
Using the final feature set, the final data were entered into XGBoost, yielding a model 

accuracy of 0.79 (95% CI, 0.72–0.83) and an AUC of 0.81 (95% CI, 0.73–0.84) as a baseline. 
To improve on that, a feature importance analysis was used to rank feature importance 
based on their scores as determined by the XGBoost classifier combined with Select K Best. 
A set of 147 features (k= 147) yielded the greatest accuracy, F1 score, recall, and precision. 
As shown in Figure 5, The AUC of the testing dataset reached 0.93 for the breast cancer 
classification task, producing an overall accuracy of 0.84. Model sensitivity was 0.91 (95% 
CI, 0.76–0.94) and specificity was 0.75 (95% CI, 0.67–0.83). The scores of the 147 features, 
based on the XGBoost model, are shown in Figure 6. 

Figure 3. Initial degree of missing features.

3.2.2. Correlation-Based Feature Selection

After imputing the missing values, a correlation analysis of the features was performed
to avoid using features that were highly correlated with the other features, creating a linear
correlation and having little additional impact on the dependent variable. When the
correlation exceeded 0.8, that feature was eliminated from the dataset in favor of those with
lower means. The correlation analysis is visualized in Figure 4.
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3.3. Performance of XGBoost and Feature Importance Analysis

Using the final feature set, the final data were entered into XGBoost, yielding a model
accuracy of 0.79 (95% CI, 0.72–0.83) and an AUC of 0.81 (95% CI, 0.73–0.84) as a baseline.
To improve on that, a feature importance analysis was used to rank feature importance
based on their scores as determined by the XGBoost classifier combined with Select K
Best. A set of 147 features (k = 147) yielded the greatest accuracy, F1 score, recall, and
precision. As shown in Figure 5, The AUC of the testing dataset reached 0.93 for the breast
cancer classification task, producing an overall accuracy of 0.84. Model sensitivity was
0.91 (95% CI, 0.76–0.94) and specificity was 0.75 (95% CI, 0.67–0.83). The scores of the
147 features, based on the XGBoost model, are shown in Figure 6.
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combinations of features, including and excluding a given feature to evaluate its contribution to the 
prediction. The farther away from the y-axis (positive or negative x) a dot is placed, the more impact 
this attribute has on the machine learning model output for that woman. Dot color indicates the 
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the right. The color was determined separately for each feature based on the patient’s feature values. 

Figure 6. (A) Feature importance according to XGBoost. (B,C) Contribution of the top 20 features as
ranked by SHapley Additive exPlanations (SHAP). The features are arranged in descending order
on the y-axis according to their mean absolute influence on classification. Each dot represents the
SHAP value for a certain feature for a certain patient. The SHAP algorithm evaluates all conceivable
combinations of features, including and excluding a given feature to evaluate its contribution to the
prediction. The farther away from the y-axis (positive or negative x) a dot is placed, the more impact
this attribute has on the machine learning model output for that woman. Dot color indicates the
feature’s original value from low (blue) to high (magenta), as indicated by the color array stripe on
the right. The color was determined separately for each feature based on the patient’s feature values.
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By using the SHAP method, we found the 20 most important features that had the most
influence on positive prediction of MIBC (Figure 6). See Appendix B (Tables A3 and A4)
for the feature contribution analysis corresponding to this figure.

3.4. Performance as Compared with Other ML Methods

The performance of this classification model, using XGBoost, was compared with
those of four other algorithms, using the F1 score, recall score, accuracy, precision, and
AUC. Results are shown in Table 3 and Figure 5. All five methods showed good results in
F1 score, accuracy, and recall; however, XGBoost and the random forest classifier models
performed the best using these metrics.

Table 3. Performance comparisons of five models.

Model Accuracy F1 Score Recall Precision

XGBoost 0.84 [0.76–0.91] 0.87 [0.79–0.93] 0.91 [0.76–0.94] 0.82 [0.71–0.92]

GaussianNB 0.75 [0.67–0.84] 0.79 [0.67–0.86] 0.88 [0.68–0.93] 0.72 [0.65–0.92]

KNeighbors
Classifier 0.63 [0.54–0.69] 0.73 [0.56–0.80] 0.87 [0.57–0.92] 0.62 [0.55–0.90]

DecisionTree
Classifier 0.73 [0.64–0.82] 0.76 [0.64–0.84] 0.77 [0.64–0.86] 0.75 [0.64–0.86]

RandomForest
Classifier 0.82 [0.74–0.89] 0.84 [0.76–0.91] 0.89 [0.73–0.93] 0.81 [0.78–0.91]

Data in the table are expressed as value [95% confidence interval].

3.5. Performance as Compared with Radiologists

Classification by radiologist, when performed using MMG alone or using US alone,
yielded lower sensitivity and specificity compared to the use of MMG plus US are shown
in Table 4. Compared to the model, Radiologist 1 achieved significantly lower performance
metrics for classifying DCIS vs MIBC (p < 0.05), achieving a specificity of 0.64 (95% CI,
0.57–0.66) and a sensitivity of 0.74 (95% CI, 0.68–0.79). On the other hand, Radiologist 2
achieved sensitivity and specificity metrics similar to those of the model (p > 0.05).

Table 4. Performance comparison of the XGBoost model and two radiologists.

Sensitivity pse Specificity psp

Radiologist 1

Using MMG alone 0.65 (0.61–0.71) 0.59 (0.57–0.62)

Using US alone 0.67 (0.62–0.72) 0.59 (0.55–0.63)

Using both US and MMG 0.74 (0.68–0.79) <0.05 0.64 (0.57–0.66) <0.05

Radiologist 2

Using MMG alone 0.81 (0.74–0.86) 0.68 (0.65–0.72)

Using US alone 0.77 (0.73–0.82) 0.64(0.61–0.74)

Using both US and MMG 0.83 (0.74–0.88) >0.05 0.71 (0.68–0.74) >0.05

XGBoost Model 0.91 (0.76–0.94) 0.75 (0.68–0.78)
Data in the table are expressed as value (95% confidence interval). DCIS: ductal carcinoma in situ; MIBC:
minimally invasive breast cancer; MMG: mammogram; US: ultrasound. pse, psp indicate the probability of
significant differences in sensitivity and specificity, respectively, between the XGBoost model and the radiologist.

4. Discussion

The ML model used clinical features, mammographic features, ultrasonographic
features, and histopathologic features extracted from patient medical records to classify
DCIS and MIBC. It achieved an AUC of 0.93 (95% CI, 0.87–0.95), a sensitivity of 0.91, and a
specificity of 0.75.
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Our results support those of others who showed that the age at which a woman bears
her first child, a family history of breast cancer, and BMI were associated with the ability
to distinguish DCIS from MIBC. Louise et al. reported significant trends in identifying
invasive cancer based on the age at which a woman’s first child is born, showing relative
risks on the order of 2.2 to 2.7 when the first child is born after 30 years of age compared to
before 20 years of age [15]. They further found that a woman’s BMI was slightly associated
with the risk of small invasive lesions [15]. The key contributors for classifying DCIS vs.
MIBC, therefore, might be age at first live birth, family history of breast cancer, and BMI.

The ML model developed in this study used clinical features, MMG features, US
features, and histopathological features to distinguish DCIS from MIBC. When interpreting
US and MMG features, BI-RADS criteria (5th ed.) were used. Using all the features, the
XGBoost model achieved an AUC of 0.81 (95% CI, 0.73–0.83). By ranking the features and
selecting a subset of 147 features based on k score, the model was trained. The five features
that contributed the most to the classification task were identified by SHAP analysis as:
the appearance of calcification on the MMG, a non-parallel orientation of the mass on US
imaging, the presence of microcalcification as identified by histopathology, enhancement
of the posterior feature of the mass on US imaging, and BMI group. On the other hand,
XGBoost identified the five most important features as: the appearance of calcification on
the MMG, the existence of lymph nodes, the presence of microcalcification as identified
by histopathology, an irregular shape of the mass on US imaging, and a non-parallel
orientation of mass on US imaging. These findings are consistent with those of others.
Compared to DCIS, invasive tumors are more irregular in shape, non-parallel in orientation,
and yield a hypoechoic or complicated echo pattern [18]. Chen et al. [19] reported that
an internal echo pattern was the most important feature differentiating invasive cancers
from DCIS.

When four additional ML methods were used, the best-performing model was the
random forest classifier, but XGBoost achieved better performance metrics across the
board. Furthermore, a multilayer cross-validation method was used to optimize model
hyperparameters and avoid overfitting, thereby boosting model generalizability. Several
studies have applied artificial intelligence on oriented radiological tasks, particularly those
that differentiate breast cancers as benign or malignant. For example, in 2015, Mandeep
Rana et al. [20] developed a Support Vector Machines sequential minimum optimization
model that combined a K-nearest neighbors algorithm approach with Manhattan measures
and other ML techniques to classify breast cancers. In 2018, Maysanjaya et al. [21] combined
two algorithms to develop a Computer-aided Detection based method and a naive Bayes
algorithm that achieved an accuracy of 99.27%. Ezgi Mercan et al. [22] built a classification
model to discriminate between invasive and non-invasive breast cancer based on breast
pathology structures using Digital WSIs for breast biopsies. The accuracy of the model
reached 0.98, and the sensitivity was 0.84. In addition, Shikha Roy et al. [23] demonstrated
that DCIS and invasive ductal carcinoma can be classified based on gene expression with
RNA-seq gene expression profiles from The Cancer Genome Atlas (TCGA). In addition,
Niyazi Senturk et al. [24] proposed an AI model to assess the risk of BRCA variation
of breast cancer. Unlike the models in these studies, which required the use of many
algorithms and a large number of images, ours uses only XGBoost with optimization,
reducing training time and model complexity. Furthermore, we focused on distinguishing
DCIS from MIBC rather than benign from malignant, a greater challenge for radiologists.

Our model could classify breast cancers with a specificity and sensitivity similar to
or greater than those achieved by our radiologists. Greater sensitivities and specificities
were achieved by the radiologists when using both MMG and US images compared to
using only one of these imaging modalities. This confirms the results of others who have
also shown better breast cancer detection when using both MMG and US imaging [25,26].
Compared to a first-year resident, our model’s specificity and sensitivity were greater
(0.75 vs. 0.64, p < 0.05; and 0.91 vs. 0.74, p < 0.05, respectively). Compared to a ten-year
veteran radiologist, even with using MMG plus US image, however, the differences were
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not significant. Even though the ML model cannot replace diagnostics by radiologists, their
workloads can be reduced when this ML model is implemented.

This study has several limitations. First, it was implemented in a single center, and
external validation of the best-performing model was not performed. Doing so could have
further demonstrated its generalizability. Second, it was a retrospective study based on a
limited number of patients. Therefore, studies employing larger sample sizes are needed to
confirm our results. On the other hand, a deep learning approach, such as a convolutional
neural network, might outperform this model when combined with radiomic features (such
as MMG image or magnetic resonance images) or genetic data to enhance the performance
of our model.

5. Conclusions

In conclusion, the XGBoost model developed in this study, when provided with
clinical characteristics, mammographic and ultrasonographic findings, and histopathologic
features from medical records, can successfully discriminate DCIS from MIBC at the
level of experienced radiologists, thereby providing patients with more options for less-
invasive therapies.
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Appendix A

Sonographic Features
At our hospital, physicians performed bilateral whole-breast real-time ultrasound

imaging on 389 of the 420 patients included in this study. The device used was a high-
resolution GE LOGIQ E9 equipped with a high-frequency linear array transducer capable
of producing 5 to 13 MHz.

Two radiologists with more than ten years of experience in interpreting breast ul-
trasound images reviewed the sonographic images, blinded to the pathological results.
The sonographic features were interpreted using BI-RADS criteria (5th ed.), analyzing
breast composition and the breast mass features of tumor size, shape, orientation, margin,
echo pattern, posterior features, calcifications, vascularity, and elasticity assessment. Color
power findings using Doppler sonography were routinely reported on hardcopy pictures
and in physician notes, indicating the presence or absence of intralesional vascularity.
Architectural distortion, ductal changes, and the presence of the axillary lymph node were
also noted. Interval changes on follow-up ultrasound were recorded.

Mammographic features
In total, 321 patients underwent mammograms. Standard two-view mammography

was performed using a Siemens digital full field system (Mammomat Revelation), and
additional views were obtained if necessary. Each set of images was read by two radiologists
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with more than ten years of experience in the field, applying BI-RADS criteria (5th ed.) to
classify the masses (measurements, shape, density, and margin), calcifications (morphology
and distribution), and architectural distortion. Asymmetries in density and morphology
were noted. Interval changes on follow-up mammograms were also reviewed.

Table A1. Description of features.

Features Description

Age age of patient

BMI body mass index of patient

Mass_measure_US size of mass on ultrasound

Mass_Measure_MMG size of mass on mammography

Asymetry_measure size of asymmetry on mammography

Age_N.1 <40

Age_N.2 ≥40

Menopause.0 premenopause

Menopause.1 menopause

Menarche.0 not available

Menarche.1 menarche: <12

Menarche.2 menarche: 12–14

Menarche.3 menarche: ≥15

X1st_live_birth.0 age at 1st live birth: <20

X1st_live_birth.1 age at 1st live birth: 20–24

X1st_live_birth.2 age at 1st live birth: 25–29

X1st_live_birth.3 age at 1st live birth: ≥30

X1st_live_birth.4 nulliparous

BMI_n.1 BMI < 18.5

BMI_n.2 BMI 18.5–24

BMI_n.3 BMI 24–27

BMI_n.4 BMI ≥ 27

Family_history.0 have family history of breast cancer

Family_history.1 do not have family history of breast cancer

HRT.0 have history of use hormone replacement therapy

HRT.1 do not have history of use hormone replacement therapy

Chief_complaint.0 screening

Chief_complaint.1 have symptom

Breast_composition_US.1 breast composition category A on ultrasound

Breast_composition_US.2 breast composition category B on ultrasound

Breast_composition_US.3 breast composition category C on ultrasound

Mass_US.0 have mass in ultrasound

Mass_US.1 do not have mass in ultrasound

Mass_shape_US.0 not available

Mass_shape_US.1 oval-shape

Mass_shape_US.2 round-shape

Mass_shape_US.3 irregular-shape



Cancers 2022, 14, 2437 13 of 22

Table A1. Cont.

Features Description

Mass_Orientation_US.0 not available

Mass_Orientation_US.1 parallel

Mass_Orientation_US.2 not parallel

Mass_Margin_US.0 not available

Mass_Margin_US.1 circumscribed

Mass_Margin_US.2 indistinct

Mass_Margin_US.3 angular

Mass_Margin_US.4 microlobulated

Mass_Margin_US.5 spiculated

Mass_Echopattern_US.0 not available

Mass_Echopattern_US.1 anechoic

Mass_Echopattern_US.2 hyperechoic

Mass_Echopattern_US.3 complex cystic and solid

Mass_Echopattern_US.4 hyperechoic

Mass_Echopattern_US.5 isoechoic

Mass_Echopattern_US.6 heterogenous

Mass_Posterior_features.0 not available

Mass_Posterior_features.1 no posterior features

Mass_Posterior_features.2 enhancement

Mass_Posterior_features.3 shadowing

Mass_Posterior_features.4 combined pattern

Mass_Vascularity.0 not available

Mass_Vascularity.1 absent

Mass_Vascularity.2 internal vascularity

Mass_Vascularity.3 vessels in rim

Mass_Elasticity_assessment.0 not available

Mass_Elasticity_assessment.1 soft

Mass_Elasticity_assessment.2 intermediate

Mass_Elasticity_assessment.3 hard

Calcifications_US.1 calcifications in a mass

Calcifications_US.2 calcifications outside of a mass

Calcifications_US.3 intraductal calcifications

Calcifications_US.4 no calcifications

Architectural_distortion_US.1 have architectural distortion

Architectural_distortion_US.2 do not have architectural distortion

Duct_changes.1 not available

Duct_changes.2 ectasia

Duct_changes.3 dilation

Duct_changes.4 calcification

Lymph_nodes_US.0 do not have lymph nodes
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Table A1. Cont.

Features Description

Lymph_nodes_US.1 have lymph nodes

Interval_change_US.0 do not have interval change on ultrasound

Interval_change_US.1 have interval change on ultrasound

Interval_change_US.2 no previous ultrasound

BIRAD_US.0 not available

BIRAD_US.1 BIRADS ultrasound 0

BIRAD_US.2 BIRADS ultrasound 1

BIRAD_US.3 BIRADS ultrasound 2

BIRAD_US.4 BIRADS ultrasound 3

BIRAD_US.5 BIRADS ultrasound 4

BIRAD_US.6 BIRADS ultrasound 5

Breast_composition_MMG.1 breast composition category A on mammography

Breast_composition_MMG.2 breast composition category B on mammography

Breast_composition_MMG.3 breast composition category C on mammography

Breast_composition_MMG.4 breast composition category D on mammography

Mass_MMG.0 do not have mass in mammography

Mass_MMG.1 have mass in mammography

Mass_shape.0 not available

Mass_shape.1 oval-shape on mammography

Mass_shape.2 round-shape on mammography

Mass_shape.3 irregular-shape on mammography

Mass_margin.0 not available

Mass_margin.1 circumscribed mass on mammography

Mass_margin.2 obscured mass on mammography

Mass_margin.3 microlobulated mass on mammography

Mass_margin.4 indistinct mass on mammography

Mass_margin.5 spiculated mass on mammography

Mass_density.0 not available

Mass_density.1 high density

Mass_density.2 equal density

Mass_density.3 low density

Mass_density.4 fat-containing

Calcification_MMG_1 have suspicious morphology calcification on
mammography

Calcification_MMG_0 do not have suspicious morphology calcification on
mammography

Sus_Amorphous.1 amorphous calcifications on mammography

Sus_Amorphous.0 do not have amorphous calcifications on mammography

Sus_Coarseheterogeneous.1 coarse heterogeneous calcifications on mammography

Sus_Coarseheterogeneous.0 do not have coarse heterogenous calcifications
on mammography



Cancers 2022, 14, 2437 15 of 22

Table A1. Cont.

Features Description

Sus_Finepleomorphic.1 fine pleomorphic calcifications on mammography

Sus_Finepleomorphic.0 do not have fine pleomorphic calcifications
on mammography

Sus_Finelinear_branching.1 fine linear or fine linear branching calcifications
on mammography

Sus_Finelinear_branching.0 do not have fine linear or fine linear branching
calcifications on mammography

Sus_Diffuse.1 distribution diffuse suspicious calcification
on mammography

Sus_Diffuse.0 do not have distribution diffuse suspicious calcification
on mammography

Sus_Regional.1 distribution regional suspicious calcification
on mammography

Sus_Regional.0 do not have distribution regional suspicious calcification
on mammography

Sus_Grouped.1 distribution grouped suspicious calcification
on mammography

Sus_Grouped.0 do not have distribution grouped suspicious calcification
on mammography

Sus_Linear.1 distribution linear suspicious calcification
on mammography

Sus_Linear.0 do not have distribution linear suspicious calcification
on mammography

Sus_Segmental.1 distribution segmental suspicious calcification
on mammography

Sus_Segmental.0 do not have distribution segmental suspicious calcification
on mammography

Asymetries.0 asymmetry

Asymetries.1 global asymmetry

Asymetries.3 focal asymmetry

Asymetries.4 developing asymmetry

Asfeatures_Nippleretraction.0 do not have associated features: nipple retraction

Asfeatures_Nippleretraction.1 associated features: nipple retraction

Asfeatures_Skinthickening.0 do not have associated features: skin thickening

Asfeatures_Skinthickening.1 associated features: skin thickening

Asfeatures_Axillaryadenopathy.0 do not have associated features: axillary adenopathy

Asfeatures_Axillaryadenopathy.1 associated features: axillary adenopathy

Asfeatures_tissue_retraction.0 do not have associated features: tissue retraction

Asfeatures_tissue_retraction.1 associated features: tissue retraction

Interval_change_MMG.0 do not have interval change on mammography

Interval_change_MMG.1 have interval change on mammography

Interval_change_MMG.2 no previous mammography

BIRADS_MMG.0 not available

BIRADS_MMG.1 BIRADS MMG 0

BIRADS_MMG.2 BIRADS MMG 1



Cancers 2022, 14, 2437 16 of 22

Table A1. Cont.

Features Description

BIRADS_MMG.3 BIRADS MMG 2

BIRADS_MMG.4 BIRADS MMG 3

BIRADS_MMG.5 BIRADS MMG 4A

BIRADS_MMG.6 BIRADS MMG 4B

BIRADS_MMG.7 BIRADS MMG 4C

BIRADS_MMG.8 BIRADS MMG 5

ER.0 ER negative

ER.1 ER positive

PR.0 PR negative

PR.1 PR positive

Her2.0 HER2 negative

Her2.1 HER2 positive

Cribriform.0 do not have architectural pattern: cribriform

Cribriform.1 have architectural patterns: cribriform

Papillary.0 do not have architectural pattern: papillary

Papillary.1 have architectural pattern: papillary

Solid.0 do not have architectural pattern: solid

Solid.1 have architectural pattern: solid

Comedo.0 do not have architectural pattern: comedo

Comedo.1 have architectural pattern: comedo

Micropapillary.0 do not have architectural pattern: micropapillary

Micropapillary.1 have architectural pattern: micropapillary

Paget.0 do not have architectural pattern: paget

Paget.1 have architectural pattern: paget

Flat.0 do not have architectural pattern: flat (clinging)

Flat.1 have architectural pattern: flat (clinging)

Miccrocal_in_DCIS.0 do not have microcalcification on pathology pattern

Miccrocal_in_DCIS.1 have microcalcification on pathology pattern

Miccrocal_in_nonneoplastic.0 do not have microcalcification in non- neoplastic tissue

Miccrocal_in_nonneoplastic.1 have microcalcification in non- neoplastic tissue

Miccrocal_in_invasive_carcinoma.0 do not have microcalcification in invasive carcinoma

Miccrocal_in_invasive_carcinoma.1 have microcalcification in invasive carcinoma

Necrosis.0 necrosis not available

Necrosis.1 necrosis in focal (small foci or single cell necrosis)

Necrosis.2 necrosis in central (expansive comedo necrosis)

Nuclear_grade.1 nuclear grade i

Nuclear_grade.2 nuclear grade ii

Nuclear_grade.3 nuclear grade iii

Palpable_lump.0 do not have palpable lump

Palpable_lump.1 have palpable lump
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Appendix B

Table A2. Hyperparameter tuning of XGBoost.

Parameters Index

learning_rate 0.03

gamma 0

max_depth 6

colsample_bylevel 0.06

colsample_bytree 0.61

colsample_bynode 1

subsample 0.7

n_estimators 200

Table A3. Feature contribution by XGBoost.

Feature XGBoost_Importance _Score

Calcification_MMG_1 0.860544218

Mass_Echopattern_US.4 0.795918367

Mass_Orientation_US.2 0.765306122

Mass_Posterior_features.4 0.765306122

Lymph_nodes_US.1 0.741496599

Calcification_MMG_0 0.741496599

BMI 0.707482993

PR.1 0.704081633

Miccrocal_in_invasive_carcinoma.0 0.704081633

Mass_Posterior_features.2 0.697278912

Mass_Posterior_features.0 0.693877551

ER.1 0.676870748

ER.0 0.676870748

Age 0.659863946

Mass_Vascularity.0 0.656462585

Mass_Vascularity.2 0.653061224

Sus_Grouped.1 0.649659864

Sus_Grouped.0 0.649659864

Mass_Measure_US 0.629251701

Mass_US.0 0.62585034

Mass_Echopattern_US.0 0.62585034

Mass_US.1 0.62585034

Sus_Coarseheterogeneous.1 0.62585034

Sus_Coarseheterogeneous.0 0.62585034

Papillary.0 0.62244898

Mass_Measure_MMG 0.62244898

Sus_Amorphous.0 0.62244898
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Table A3. Cont.

Feature XGBoost_Importance _Score

Sus_Amorphous.1 0.62244898

Papillary.1 0.62244898

Sus_Finepleomorphic.1 0.619047619

Sus_Finepleomorphic.0 0.619047619

Mass_Posterior_features.1 0.615646259

Mass_Vascularity.1 0.612244898

Solid.0 0.612244898

Solid.1 0.612244898

Sus_Linear.0 0.605442177

Sus_Linear.1 0.605442177

Mass_MMG.1 0.605442177

Mass_MMG.0 0.605442177

Breast_composition_MMG.3 0.605442177

BIRAD_US.0 0.602040816

Sus_Regional.1 0.595238095

Sus_Regional.0 0.595238095

Mass_shape_US.0 0.591836735

Sus_Segmental.0 0.588435374

Sus_Segmental.1 0.588435374

Mass_shape_US.1 0.588435374

Sus_Finelinear_branching.1 0.588435374

Mass_Margin_US.0 0.588435374

Sus_Finelinear_branching.0 0.588435374

Mass_Posterior_features.3 0.585034014

Mass_margin.0 0.585034014

Nuclear_grade.1 0.581632653

Cribriform.0 0.581632653

Cribriform.1 0.581632653

Breast_composition_MMG.1 0.581632653

Nuclear_grade.2 0.581632653

Mass_density.1 0.578231293

Mass_shape_US.3 0.578231293

Mass_density.0 0.578231293

BMI_n.3 0.578231293

Family_history.1 0.574829932

Family_history.0 0.574829932

Micropapillary.0 0.571428571

Duct_changes.4 0.571428571

Micropapillary.1 0.571428571

BIRADS_MMG.1 0.568027211

Duct_changes.1 0.568027211
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Table A3. Cont.

Feature XGBoost_Importance _Score

Duct_changes.3 0.56462585

Mass_shape.3 0.56462585

Chief_complaint.0 0.56462585

Menarche.1 0.56122449

Asymmetry_measure 0.56122449

Miccrocal_in_nonneoplastic.0 0.557823129

Miccrocal_in_DCIS.1 0.557823129

PR.0 0.557823129

Miccrocal_in_nonneoplastic.1 0.557823129

Miccrocal_in_invasive_carcinoma.0 0.557823129

Miccrocal_in_invasive_carcinoma.1 0.557823129

Palpable_lump.0 0.557823129

Her2.1 0.557823129

Asymetries.4 0.557823129

Her2.0 0.557823129

Asymetries.0 0.557823129

BIRADS_MMG.5 0.557823129

Paget.0 0.557823129

Comedo.1 0.557823129

Paget.1 0.557823129

BIRADS_MMG.4 0.557823129

BIRADS_MMG.3 0.557823129

BIRADS_MMG.0 0.557823129

Interval_change_MMG.1 0.557823129

Interval_change_MMG.0 0.557823129

Asfeatures_tissue_retraction.1 0.557823129

Asfeatures_tissue_retraction.0 0.557823129

Asfeatures_.Axillaryadenopathy.1 0.557823129

Asfeatures_.Axillaryadenopathy.0 0.557823129

Asfeatures_.Skinthickening.1 0.557823129

Flat.1 0.557823129

Asfeatures_.Skinthickening.0 0.557823129

Asfeatures_Nippleretraction.1 0.557823129

Comedo.0 0.557823129

Asfeatures_Nippleretraction.0 0.557823129

Asymetries.3 0.557823129

Asymetries.1 0.557823129

Flat.0 0.557823129

Breast_composition_MMG.4 0.557823129

Sus_Diffuse.1 0.557823129

Sus_Diffuse.0 0.557823129



Cancers 2022, 14, 2437 20 of 22

Table A3. Cont.

Feature XGBoost_Importance _Score

Mass_margin.3 0.557823129

Mass_margin.1 0.557823129

Lymph_nodes_US.1 0.557823129

Mass_Orientation_US.1 0.557823129

Mass_shape.1 0.557823129

Breast_composition_US.3 0.557823129

Breast_composition_US.2 0.557823129

Breast_composition_US.1 0.557823129

Chief_complaint.1 0.557823129

Chief_complaint.0 0.557823129

HRT.1 0.557823129

HRT.0 0.557823129

BMI_n.4 0.557823129

BMI_n.1 0.557823129

BMI_n.2 0.557823129

X1st_live_birth.4 0.557823129

X1st_live_birth.3 0.557823129

X1st_live_birth.1 0.557823129

X1st_live_birth.0 0.557823129

Menarche.3 0.557823129

Menarche.0 0.557823129

Menopause.1 0.557823129

Menopause.0 0.557823129

Age_N.2 0.557823129

Age_N.1 0.557823129

Mass_margin.4 0.557823129

Mass_margin.5 0.557823129

Mass_Echopattern_US.1 0.557823129

Interval_change_US.0 0.557823129

Mass_margin.1 0.557823129

Mass_margin.3 0.557823129

Mass_margin.2 0.557823129

Mass_density.4 0.557823129

Mass_shape.1 0.557823129

Breast_composition_MMG.1 0.557823129

BIRAD_US.5 0.557823129

BIRAD_US.4 0.557823129

BIRAD_US.3 0.557823129
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Table A4. Feature contribution by SHAP.

Feature SHAP_Importance_Score

Calcification_MMG_1 1.530532241

Mass_Orientation_US.2 0.843982518

Miccrocal_in_invasive_carcinoma.0 0.394437432

Mass_Posterior_features.3 0.278461546

BMI_n.2 0.272588193

Age 0.240817562

Papillary.0 0.188818902

X1st_live_birth.2 0.182896554

Mass_measure_US 0.159969047

Solid.0 0.120786794

Nuclear_grade.2 0.097087704

Breast_composition_US.3 0.088376589

Mass_Elasticity_assessment.0 0.085524194

Family_history.0 0.080155298

Mass_shape_US.3 0.07565444

Calcifications_US.2 0.066437013

Her2.0 0.062137935

Mass_Vascularity.2 0.062031701

BIRADS_MMG.5 0.058612607

BMI_n.4 0.058029428
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