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Simple Summary: A sequence of images can be taken after the application of acetic acid during a
colposcopic examination of the uterine cervix to capture the dynamic visual variations due to the
aceto-whitening reaction on the cervical epithelium. Automated analyis of these changes require
spatial alignment of the apparent change in the cervix location in the image sequence due to patient
movement or imaging device repositioning. We developed a new self-supervised RGB-colored deep
learning-based image registration method to automatically align the images that does not require
a manually-provided reference standard. We also fine-tuned a transformer-based segmentation
network to evaluate the result of our registration method which achieved 12.62% higher in Dice/IoU
scores in cervix boundary detection compared to the unregistered images.

Abstract: During a colposcopic examination of the uterine cervix for cervical cancer prevention, one
or more digital images are typically acquired after the application of diluted acetic acid. An alternative
approach is to acquire a sequence of images at fixed intervals during an examination before and after
applying acetic acid. This approach is asserted to be more informative as it can capture dynamic pixel
intensity variations on the cervical epithelium during the aceto-whitening reaction. However, the
resulting time sequence images may not be spatially aligned due to the movement of the cervix with
respect to the imaging device. Disease prediction using automated visual evaluation (AVE) techniques
using multiple images could be adversely impacted without correction for this misalignment. The
challenge is that there is no registration ground truth to help train a supervised-learning-based image
registration algorithm. We present a novel unsupervised registration approach to align a sequence of
digital cervix color images. The proposed deep-learning-based registration network consists of three
branches and processes the red, green, and blue (RGB, respectively) channels of each input color
image separately using an unsupervised strategy. Each network branch consists of a convolutional
neural network (CNN) unit and a spatial transform unit. To evaluate the registration performance on
a dataset that has no ground truth, we propose an evaluation strategy that is based on comparing
automatic cervix segmentation masks in the registered sequence and the original sequence. The
compared segmentation masks are generated by a fine-tuned transformer-based object detection
model (DeTr). The segmentation model achieved Dice/IoU scores of 0.917/0.870 and 0.938/0.885,
which are comparable to the performance of our previous model in two datasets. By comparing
our segmentation on both original and registered time sequence images, we observed an average
improvement in Dice scores of 12.62% following registration. Further, our approach achieved higher
Dice and IoU scores and maintained full image integrity compared to a non-deep learning registration
method on the same dataset.

Keywords: unsupervised registration; deep learning; uterine cervix cancer; image registration; image
segmentation; automated visual evaluation; transformer
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1. Introduction

According to the World Health Organization (WHO), cervical cancer is the fourth-
most-common cancer in women, with an estimated 570,000 new deaths in 2018 [1]. Since
the disease is treatable, early detection/screening is critical for cervical cancer control.
Screening methods include the Pap test (cytology), Human Papillomavirus (HPV) detection,
colposcopy, visual inspection with Lugol’s Iodine (VILI), and visual inspection with acetic
acid (VIA). VIA, being simple and inexpensive, is commonly used in middle- or low-
resource regions instead of colposcopy. The VIA test is conducted by visually examining the
cervix appearance with naked eyes after applying dilute (3–5%) acetic acid to the speculum-
exposed cervix during a gynecological exam. The temporary whitening effect of the acetic-
acid-applied region is considered an indicator of possible HPV infection [2]. However, VIA
has been noted for inadequate performance due to highly subjective human impression
decision-making [3] and the subtle differences between different stages of abnormalities.

Previously, we have proposed several deep-learning-based methods using multiple
datasets for cervical precancer detection [4–7]. We grouped them under the moniker
automated visual evaluation (AVE) to describe the set of techniques that have shown their
potential to collectively serve as an adjunct to the VIA screening approach. One of the steps
in these AVE methods is to use an object detection network either as a base network or as
a cervix region bounding box generator to localize our regions of interest (ROIs). While
bounding boxes are convenient for AVE, they are coarse annotations that may contain a
significant amount of irrelevant information, such as clinical instruments (the speculum and
swab) and other non-cervical tissues (vaginal walls). To alleviate this issue, we investigated
deep learning methods of Mask R-CNN and Maskx R-CNN to automatically segment the
cervix region [8] and the os [9] region. These segmentation models were trained using
multiple datasets and achieved satisfactory performance across datasets.

There has been growing interest in the use of image sequences during a colposcopic
examination for cervix diagnostic assessments [10,11]. In this process, images are acquired
at regular time intervals following the application of acetic acid on the cervix. Image
sequences are helpful for visualizing the aceto-whitening process, which could provide
additional diagnostic information. However, due to patient and camera movement, the
appearance of the primary regions of interest (ROIs), such as the cervix and the os, may vary
significantly from frame to frame in terms of focus, location, size, shape, and illumination.
In addition, maintaining the color information of these images is potentially helpful for
capturing the dynamic reactions of the aceto-whitening effect on the cervical epithelium.
This presents a significant need for aligning these ROIs in full color toward aiding the
quality and accuracy of the subsequent automated analyses.

In this study, we propose an unsupervised deep learning image registration approach
for three-color-channel cervix images. Our network is trained using image frames extracted
from 2 min colposcopy image sequences. Each time series is captured during a routine
colposcopy exam in a clinical setting using a colposcope manufactured by DYSIS Medical
(DYSIS Medical Inc., Natick, MA, USA). In our unsupervised strategy, we developed a
customized architecture consisting of three branches, one for each color channel—red (R),
green (G), and blue (B). Each branch uses a feature-extracting CNN, and a spatial transform
layer [12]. Due to the unavailability of registration ground truth, we use a segmentation
network built over a base network of DeTr (Object Detection with Transformer) [13] to
evaluate our registration performance. The DeTr-based segmentation model is trained
using three datasets [8,9] collected in different geographical regions using different imaging
devices. These three datasets have large intra- and inter-dataset variability regarding color,
illumination, position, size, and other related visual factors. In addition, there are wide
variations among images in these datasets with respect to image quality (focus, specular
reflection, artifacts, and camera zoom level), which pose significant challenges for the
segmentation task.

There is extensive work in the literature on medical image registration that includes
both learning-based and non-learning-based methods. The non-learning-based meth-
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ods include statistic-based metric mapping [14–17], distance metric mapping [18], and
differentiation-based deformation [19]. The learning-based methods [20–23] have demon-
strated desirable performance in the registration of brain and breast MRI. Non-learning-
based methods rely on the repetition of similarity in handcrafted features across all datasets,
thereby suffering in generalizability. In contrast, the performance of learning-based meth-
ods depends on the quantity and quality of the ground truth and the variety and size of
the training dataset. The literature also includes unsupervised deep-learning-based meth-
ods [24–26] developed for biomedical image registration tasks. In [24], a CNN regressor
was used with the loss of a similarity metric measurement and achieved promising results
on the MNIST dataset. Later, using a similar architecture in [26], satisfactory performance
was observed adding a spatial variation loss with fMRI. Although the methods’ perfor-
mances on full RGB color images registration were not presented, we were inspired by the
proposed architectures of using an encoder–decoder CNN. In this study, we used a more
efficient encoder–decoder architecture with fewer parameters and extended the network
input from a single grayscale channel to R, G, and B color channels, respectively.

There are a limited number of studies on cervix region segmentation in photographic
images of the uterine cervix. A compact deep learning architecture was applied [27] on
32- × 32-pixel patches as an intermediate stage for classification. However, quantitative
results were not reported. In [28], the authors reported an average Dice score of 0.67 using
a convolutional neural network (CNN) model that was implemented over a cervix dataset
collected by MobileODT (Kaggle Dataset, Tel Aviv, Israel). In [28,29], a Mask R-CNN
was applied to cervix segmentation tasks and obtained (Dice, IoU) scores of (0.865, 0.769),
respectively. In our previous study, we made efforts in cervical landmark segmentation and
achieved robust performance (highest Dice, IoU: 0.947, 0.901, respectively) across multiple
image datasets [8,9]. In this paper, we use the same datasets as in [8,9] to evaluate our new
segmentation method and compare the results with our previous best performance.

We report the development of an unsupervised deep learning approach for RGB cervix
image registration. To evaluate the registration output, we fine-tuned an object detection
DeTr model for a segmentation task to automatically generate region masks for the cervix
for each frame in the registered dynamic image sequence. Next, we computed the Dice
score of the masks for every frame in the sequence with the first frame—which serves as
a reference. A high Dice score would suggest that the registration was good. An upper
bound on the performance would be controlled by the error rate of the cervix segmentation
algorithm. We also compared our registration approach with another non-deep-learning,
conventional registration method on the same dataset and obtained higher measurements.

The rest of the paper is organized as follows: Section 2 describes the two proposed
deep learning architectures: the color image registration network and the fine-tuned
segmentation network; Section 3 presents the experiments, the results, and the discussion;
and Section 4 concludes the paper.

2. Materials and Methods
2.1. Datasets

Four datasets were used in this study, which are described below. All datasets were
deidentified at source and are permitted for research use. The first three datasets, viz. A, B,
and C, have been used in our previous study [8,9] for landmark segmentation. They are
used in this study to train the proposed segmentation models. The DYSIS dataset is used to
train and evaluate the registration models.

2.1.1. CVT Dataset

This dataset is referred to as set A (example images shown in Figure 1, row 1). The im-
ages were taken as part of the Costa Rica Vaccine Trial (CVT) conducted by the NCI [30,31].
After receiving the HPV16/18 vaccines, women participating in the study were referred for
colposcopy if the cervical lesion persisted or if they had high-grade cytology at any time
during the trial. The cervical images of women referred for colposcopy were acquired (with
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permission obtained during enrolment in the study) on photographic film and digitized.
The ground truth segmentation masks of all the images in this dataset were annotated by
an expert gynecologist.

Cancers 2022, 14, x  4 of 14 
 

 

2.1.1. CVT Dataset 

This dataset is referred to as set A (example images shown in Figure 1, row 1). The 

images were taken as part of the Costa Rica Vaccine Trial (CVT) conducted by the NCI 

[30,31]. After receiving the HPV16/18 vaccines, women participating in the study were 

referred for colposcopy if the cervical lesion persisted or if they had high-grade cytology 

at any time during the trial. The cervical images of women referred for colposcopy were 

acquired (with permission obtained during enrolment in the study) on photographic film 

and digitized. The ground truth segmentation masks of all the images in this dataset were 

annotated by an expert gynecologist. 

2.1.2. ALTS Dataset 

The images in this dataset, denoted as set B (example images shown in Figure 1, row 

2), were captured as part of the atypical squamous cells of undetermined significance/low-

grade squamous intraepithelial lesion (ASCUS/LSIL) Triage Study (ALTS) [32]. The study 

aimed to assess observer variability in visual interpretation of cervical abnormalities. In 

this dataset, we have multiple ground truth mask labels as the images were annotated by 

several medical experts in cervical oncology. So, we took their union to obtain the final 

ground truth for each image [8,9]. 

2.1.3. Kaggle Dataset 

This dataset, referred to as set C (example images shown in Figure 1, row 3), was 

made publicly available as part of the data hosted on Kaggle for the “Intel & MobileODT 

Cervical Cancer Screening Competition” [33]. The images were acquired using a 

smartphone-based digital cervical imaging device. The image annotations include cervix 

region contours, which were made available in [28]. A large quality variation was ob-

served in this dataset, including motion blur, presence of the speculum, reflection, poor 

lighting, and poor camera positioning, among other flaws (Figure 1). 

2.1.4. DYSIS Dataset 

The images in this dataset, called set D (example images shown in Figure 1, row 4), 

were captured during routine colposcopy examinations. During each visit, a series of 17 

images was acquired, from before to after the application of acetic acid, while visualizing 

the cervix using the DYSIS digital colposcope [10]. Variations are observed in the images 

in the dataset in cervix positioning and appearance, lighting intensity, image sharpness, 

and color. 

A 

     

B 

     

Cancers 2022, 14, x  5 of 14 
 

 

C 

 

D 

 

Figure 1. Example images from the above four datasets. The 1st row demonstrates the CVT (A) 
dataset; the 2nd row shows samples from the ATLS (B) dataset; Kaggle (C) images are presented in 
the 3rd row; and images from the DYSIS (D) dataset are provided in the 4th row; the frame indexes 
are 1st, 4th, 8th, 13th, and 17th in the time sequence, from left to right, correspondingly. 

2.2. Dataset Split 
Datasets A, C, and D were split into training, validation, and test partitions with an 

approximate ratio of 7:1:2 to train the segmentation network. Dataset B was only used for 
training the network since the unique deidentified patient ID associated with each image 
is not available. Thus, splitting the dataset could result in data leakage. In Table 1, we 
summarize the quantitative details of the datasets. 

Table 1. Quantitative details of Datasets A, B, C, and D. 

Dataset Label Image Size 
Number of Images 

Training Validation  Test 
A 1200 × 800 2447 350 601 
B 1200 × 800 939 0 0 
C 900 × 1200 1268 180 502 
D 1024 × 768 210 × 17 30 × 17 60 × 17 

 

2.3. Registration Network 
Our unsupervised registration network, shown in Figure 2, consists of three 

branches. Each branch has a CNN architecture for feature extraction, a spatial transform 
unit, and a loss computation module. We treat each RGB color image as a split of R chan-
nel, G channel, and B channel image, respectively. Each of the R, G, and B channels is 
trained using one branch of the registration network, and their loss is aggregated and 
backpropagated. The network takes a batch of two images as input, called f and m to 
represent “fixed” and “moving.” These are the single-channel R, G, or B channel images 
randomly selected from a single sequence of 17 images. After passing through the convo-
lutional feature extraction module g, image m is warped to m  using a spatial transfor-
mation layer, thereby enabling the model to evaluate the similarity of f and m and up-
date the network weights gθ. The input of each branch is of size 1024 × 768 × 2, and we 
use Leaky ReLU activations with a convolutional kernel size of 3 × 3. The gθ consists of 
an encoder and a decoder of [16, 32, 32, 32, 32, 32, 32, 16] channels. 

Losses: We use the similarity loss and the local spatial variation loss, discussed in 
[26], to penalize the difference in appearance and retain the local spatial smoothness of 
the warped image. 

Figure 1. Example images from the above four datasets. The 1st row demonstrates the CVT
(A) dataset; the 2nd row shows samples from the ATLS (B) dataset; Kaggle (C) images are pre-
sented in the 3rd row; and images from the DYSIS (D) dataset are provided in the 4th row; the frame
indexes are 1st, 4th, 8th, 13th, and 17th in the time sequence, from left to right, correspondingly.

2.1.2. ALTS Dataset

The images in this dataset, denoted as set B (example images shown in Figure 1, row 2),
were captured as part of the atypical squamous cells of undetermined significance/low-
grade squamous intraepithelial lesion (ASCUS/LSIL) Triage Study (ALTS) [32]. The study
aimed to assess observer variability in visual interpretation of cervical abnormalities. In
this dataset, we have multiple ground truth mask labels as the images were annotated by
several medical experts in cervical oncology. So, we took their union to obtain the final
ground truth for each image [8,9].

2.1.3. Kaggle Dataset

This dataset, referred to as set C (example images shown in Figure 1, row 3), was made
publicly available as part of the data hosted on Kaggle for the “Intel & MobileODT Cervical
Cancer Screening Competition” [33]. The images were acquired using a smartphone-based
digital cervical imaging device. The image annotations include cervix region contours,
which were made available in [28]. A large quality variation was observed in this dataset,
including motion blur, presence of the speculum, reflection, poor lighting, and poor camera
positioning, among other flaws (Figure 1).
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2.1.4. DYSIS Dataset

The images in this dataset, called set D (example images shown in Figure 1, row 4),
were captured during routine colposcopy examinations. During each visit, a series of 17
images was acquired, from before to after the application of acetic acid, while visualizing
the cervix using the DYSIS digital colposcope [10]. Variations are observed in the images
in the dataset in cervix positioning and appearance, lighting intensity, image sharpness,
and color.

2.2. Dataset Split

Datasets A, C, and D were split into training, validation, and test partitions with an
approximate ratio of 7:1:2 to train the segmentation network. Dataset B was only used for
training the network since the unique deidentified patient ID associated with each image
is not available. Thus, splitting the dataset could result in data leakage. In Table 1, we
summarize the quantitative details of the datasets.

Table 1. Quantitative details of Datasets A, B, C, and D.

Dataset Label Image Size
Number of Images

Training Validation Test

A 1200 × 800 2447 350 601
B 1200 × 800 939 0 0
C 900 × 1200 1268 180 502
D 1024 × 768 210 × 17 30 × 17 60 × 17

2.3. Registration Network

Our unsupervised registration network, shown in Figure 2, consists of three branches.
Each branch has a CNN architecture for feature extraction, a spatial transform unit, and a
loss computation module. We treat each RGB color image as a split of R channel, G channel,
and B channel image, respectively. Each of the R, G, and B channels is trained using one
branch of the registration network, and their loss is aggregated and backpropagated. The
network takes a batch of two images as input, called f and m to represent “fixed” and
“moving”. These are the single-channel R, G, or B channel images randomly selected from
a single sequence of 17 images. After passing through the convolutional feature extraction
module g, image m is warped to m′ using a spatial transformation layer, thereby enabling
the model to evaluate the similarity of f and m and update the network weights gθ. The
input of each branch is of size 1024 × 768 × 2, and we use Leaky ReLU activations with
a convolutional kernel size of 3 × 3. The gθ consists of an encoder and a decoder of
[16, 32, 32, 32, 32, 32, 32, 16] channels.

Losses: We use the similarity loss and the local spatial variation loss, discussed in [26],
to penalize the difference in appearance and retain the local spatial smoothness of the
warped image.

Data augmentation: To train our deep learning network model, we use data augmen-
tation techniques to upsample each image sequence for each training period. The list of
image augmentation techniques applied to input images is color shift, contrast changing,
image sharpening, and Gaussian noise. We do not apply any augmentation technique
that is related to spatial transformation, such as the affine transform, for training the
registration algorithm.

Training scheme: We train the network per image sequence since ROI misalignment
occurs within the group of images. In each training period, images in the same image
sequence are shuffled and iteratively trained in one epoch. We use a batch size of one
containing two randomly selected images, labeled as the “fixed” image and the “moving”
image, for input. The next training period starts when all the frames/their augmentations
are trained from the current time sequence.
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Figure 2. Network structure. To register an RGB color image, we use three branches, each of which
takes one of the R, G, and B channels, of an image frame as the input, respectively. The input of each
branch consists of two channels, a moving image and a fixed image, that are randomly sampled from
the same time sequence. The architectural designs of each branch are the same, and the losses from
each branch are aggregated and backpropagated.

2.4. Segmentation Network

The vision transformer (ViT) [34] is an architecture inherited from Natural Language
Processing [35] research and applied to image classification. It uses raw image patches as in-
put instead of strings of textual characters. Deep learning architectures using transformers,
such as the DeTr [13], have exhibited comparable results to non-transformer techniques for
object detection. It is the first fully end-to-end object detector that uses a simple architecture
consisting of convolutional neural networks (CNNs) and transformer encoders–decoders.
The architecture consists of a backbone network for extracting features and a transformer
encoder–decoder module followed by prediction heads (Figure 3). The encoder–decoder
module is constructed with 3 encoder layers, 3 decoder layers, and 4 attention heads. The
feedforward network (FFN) consists of 256 layers, with an embedding size of 128. We
employ 20 object query slots, considering the object number in each image of our dataset.
The matching loss, the bounding box loss, and the GIoU [36] loss are weighted equally. We
apply the stage-wise training strategy presented in [8]: train a DeTr based object detection
network in the first stage; then in this pre-trained model, replace the bounding box predic-
tion heads with a mask prediction head and train the network with mask ground truth. We
use this segmentation network to extract cervix region boundaries in both original images
and registered images to evaluate the performance of our registration network.



Cancers 2022, 14, 2401 7 of 13

Cancers 2022, 14, x  7 of 14 
 

 

2.4. Segmentation Network 

The vision transformer (ViT) [34] is an architecture inherited from Natural Language 

Processing [35] research and applied to image classification. It uses raw image patches as 

input instead of strings of textual characters. Deep learning architectures using transform-

ers, such as the DeTr [13], have exhibited comparable results to non-transformer tech-

niques for object detection. It is the first fully end-to-end object detector that uses a simple 

architecture consisting of convolutional neural networks (CNNs) and transformer encod-

ers–decoders. The architecture consists of a backbone network for extracting features and 

a transformer encoder–decoder module followed by prediction heads (Figure 3). The en-

coder–decoder module is constructed with 3 encoder layers, 3 decoder layers, and 4 at-

tention heads. The feedforward network (FFN) consists of 256 layers, with an embedding 

size of 128. We employ 20 object query slots, considering the object number in each image 

of our dataset. The matching loss, the bounding box loss, and the GIoU [36] loss are 

weighted equally. We apply the stage-wise training strategy presented in [8]: train a DeTr 

based object detection network in the first stage; then in this pre-trained model, replace 

the bounding box prediction heads with a mask prediction head and train the network 

with mask ground truth. We use this segmentation network to extract cervix region 

boundaries in both original images and registered images to evaluate the performance of 

our registration network. 

 

Figure 3. The DeTr-based model we constructed for segmentation. The box in black color represents 

the used mask head that is a multi-perceptron-layer (MPL) consisting of an 8-channel 1 × 1 fully 

convolutional module. In all, 3 encoder layers, 3 decoder layers, and 4 attention heads are used in 

the transformer units, and due to our target quantity limitation, we reduce the number of object 

query slots to 20 compared to that used in [13]. 

3. Results 

3.1. Implementation Details 

To train the registration network, we resize each image to 1024 pixels on the longer 

edge and maintain the aspect ratio. The training is carried out on high-performance com-

puters powered with four Nvidia Tesla V100 graphical processing units (GPU) with a 

batch of 1. The algorithm is trained using Keras (Tensorflow as the backend) for 420 

epochs, with 1000 steps in each epoch. The average training period per epoch is around 

548 s. 

To train the segmentation network used for evaluating the registration results, we 

resize the images such that their longer edge is 600 pixels with the aspect ratio maintained. 

The training is carried out using the same GPUs as the registration training. ResNet50 is 

used as the backbone for feature extraction. The algorithm is trained using Pytorch for 50 

epochs, with 1000 steps in each epoch, initializing the learning rate at 0.001 and decaying 

by 10 times at epoch 20. We use a batch size of 8, and the weight decay factor and momen-

tum are set to be 0.0001 and 0.9, respectively. The average training period per epoch is 

around 298 s. 

  

Figure 3. The DeTr-based model we constructed for segmentation. The box in black color represents
the used mask head that is a multi-perceptron-layer (MPL) consisting of an 8-channel 1 × 1 fully
convolutional module. In all, 3 encoder layers, 3 decoder layers, and 4 attention heads are used in the
transformer units, and due to our target quantity limitation, we reduce the number of object query
slots to 20 compared to that used in [13].

3. Results
3.1. Implementation Details

To train the registration network, we resize each image to 1024 pixels on the longer
edge and maintain the aspect ratio. The training is carried out on high-performance
computers powered with four Nvidia Tesla V100 graphical processing units (GPU) with a
batch of 1. The algorithm is trained using Keras (Tensorflow as the backend) for 420 epochs,
with 1000 steps in each epoch. The average training period per epoch is around 548 s.

To train the segmentation network used for evaluating the registration results, we
resize the images such that their longer edge is 600 pixels with the aspect ratio maintained.
The training is carried out using the same GPUs as the registration training. ResNet50
is used as the backbone for feature extraction. The algorithm is trained using Pytorch
for 50 epochs, with 1000 steps in each epoch, initializing the learning rate at 0.001 and
decaying by 10 times at epoch 20. We use a batch size of 8, and the weight decay factor and
momentum are set to be 0.0001 and 0.9, respectively. The average training period per epoch
is around 298 s.

3.2. Experiment Results

Our evaluation of the registration performance is performed in two steps: (1) employ
the trained segmentation network to generate cervix regions in both the original and the
registered images; and (2) compare the mask predictions on the registered images and
original images. This approach is used to overcome the deficit of a ground truth evaluation
dataset. The segmentation performance is evaluated in advance to ensure that our algorithm
delivers robust performance in the time sequence images. In addition, we conduct a
qualitative visual inspection of all the registered images and present our observations.

3.2.1. Visual Impression—Segmentation

We train the object detection network using the bounding box ground truth from
datasets A, B, and C. The best model is selected considering the validation performance.
Next, we train the segmentation network with the replaced mask head using the mask
ground truth from the same dataset. We perform the test on the test splits of datasets A,
B, C, and D. As shown in Figure 4 (bottom row), the predicted boundaries on dataset D
images are mostly enclosing the cervix region, our ROIs. The borderlines are predicted
with the same morphological patterns as compared with the ones in datasets A, B, and C
images. We present the quantitative results for datasets A and C in Table 2. Note that our
dataset B is only used as a training set and dataset D lacks ground truth. Therefore, the
quantitative evaluation for these two datasets is not presented.
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Figure 4. The segmentation predictions on test images of dataset D. Green lines mark the predicted
boundaries. The 5 images in the top row are sample results randomly selected across the test
dataset. Images in the bottom row are segmentation predictions from a single same-time sequence
(one patient). The frame indexes are 1st, 4th, 8th, 13th, and 17th in the time sequence, from left to
right, correspondingly.

Table 2. Results of testing our segmentation results on datasets A and C. Note that the previous
method [8] referenced here is a Maskx R-CNN model with a base net of ResNet50 architecture in the
feature pyramid and the region proposal network. The measurements use Dice/IoU scores.

Tested
Dataset

Testing Measurements (Dice/IoU)

This Study Prior Work [8]

A 0.938/0.885 0.945/0.897
C 0.917/0.870 0.916/0.863

3.2.2. Quantitative Measurements—Segmentation

As shown in Table 2, the proposed DeTr-based segmentation network achieves the best
(Dice, IoU) score on dataset A, of (0.938, 0.885), and the best score on dataset C, of (0.917,
0.870). This performance is comparable with the corresponding scores of (0.945, 0.897) and
(0.916, 0.863) that we obtained in [8]. Our segmentation approach in this study achieves
performance that is comparable with that of the previous method in dataset C. In addition,
our approach achieves a higher average Dice/IoU score in dataset A than in dataset C. We
hypothesize that the images in dataset C are inherently more complex or there might be an
insufficient number of images for representing the variety in cervix appearance.

3.2.3. Visual Impression—Registration

To test the registration network, we used the first image of each time sequence as the
reference image and registered each of the succeeding images (moving images) in the time
sequence to that image. Then, we obtained a “registered” time sequence consisting of the
reference image plus the network output of every moving image in time order. We visually
examined our registered images for a qualitative assessment of performance. As shown
in Figure 5, we found that our approach retained both the color and the morphological
information of the cervix. In addition, the alignment is relatively stable under major or
subtle color or texture variations generated due to the aceto-whitening effect.

3.2.4. Quantitative Measurements—Registration

Apart from visual examination, we conducted a quantitative evaluation by comparing
the segmentation mask prediction between the reference image and the registered images.
We measured and compare: (1) the Dice score of the prediction masks of the original
unregistered images and (2) the Dice score of the prediction masks of the registered images.
The results are presented in Table 3. We observed an average Dice score of 0.792 in the
unregistered images of all the tested original time sequences, and our registration approach
achieved an average Dice score of 0.892 in the registered time sequences. We obtained an
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average improvement of 12.6% in the Dice score of segmentation of the registered over the
unregistered sequence images. We also conducted experiments using single-color images,
and in each experiment, the registration network consisted of only one “register branch”
(Section 2.2). The network was trained using red-channel/green-channel/blue-channel or
grayscale images, and we compared their single-channel registration output with those
of RGB images (presented in Table 3 and Figure 6). We obtained average Dice scores of
0.869/0.858/0.850/0.866 using red/green/blue/grayscale images, respectively. We also
noticed that the Dice scores in both unregistered and registered time sequence images drop
over time. This indicated that more feature variation regarding cervix color and textures
might be involved during the development of aceto-whitening effects, and the variation
brings more challenges for both the segmentation and registration tasks.
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Figure 5. Registered time sequence image samples. Images in the top and bottom rows demonstrate
consecutive images in a time sequence. The 1st image on the left of each row is the fixed one, which
is the 1st image in the sequence, and each image toward the right side in each row demonstrates the
6th, 12th, and 17th registered sample in that time sequence.

Table 3. Average Dice scores of each pair of fixed and succeeding images in the unregistered time
sequence (left section) and the registered time sequence (right section). The numbers 2nd, 3rd, 4th,
. . . , 17th denote the Dice scores calculated between the prediction mask on the nth image and the 1st
image in that time sequence; see the line plot in Figure 6.

Unregistered Registered
(RGB/Red/Green/Blue/Grayscale)

2nd 0.908 10th 0.782 2nd 0.924/0.907/0.893/0.890/0.918 10th 0.889/0.868/0.852/0.844/0.854
3rd 0.878 11th 0.773 3rd 0.913/0.891/0.881/0.875/0.909 11th 0.878/0.862/0.851/0.850/0.858
4th 0.852 12th 0.770 4th 0.923/0.873/0.878/0.867/0.884 12th 0.870/0.860/0.847/0.838/0.856
5th 0.840 13th 0.748 5th 0.911/0.889/0.877/0.860/0.880 13th 0.883/0.860/0.845/0.840/0.851
6th 0.802 14th 0.733 6th 0.910/0.882/0.872/0.857/0.872 14th 0.866/0.855/0.840/0.833/0.850
7th 0.803 15th 0.740 7th 0.901/0.877/0.870/0.859/0.868 15th 0.869/0.851/0.838/0.830/0.847
8th 0.801 16th 0.739 8th 0.899/0.872/0.861/0.855/0.862 16th 0.854/0.850/0.833/0.834/0.847
9th 0.767 17th 0.741 9th 0.893/0.870/0.855/0.851/0.857 17th 0.878/0.850/0.835/0.831/0.849

Further, we compared our registrations with the DYSIS time sequence registration [11]
that uses a non-deep learning approach. We applied our segmentation approach to the
registered time sequences and computed the average Dice scores for each indexed registered
frame. From the results (Figure 6), we observed that our registration methods achieve a
marginally higher average Dice score (0.89 vs. 0.87). We also compared our registration
with the conventional methods developed by DYSIS [10] via visual examination of each
time sequence. It can be observed that the conventional method involved much image
distortion and image defects (blank space filled with black pixels), which could have been
caused by affine transformation, pixel interpolation, etc. In the same time sequence, our
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method maintains image integrity, as shown in the example images in Figure 7. It remains
to be seen whether, and to what extent, such differences would impact the outcomes of an
AVE algorithm.
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Figure 7. Registered time sequence image sample comparison between two methods. Images in the
top row are from a time sequence registered by our approach; and the images in the bottom row
are the same time sequence as registered by DYSIS [10]. The 1st image on the left of each row is
the fixed image, and each image toward the right side in each row demonstrates the 6th, 12th, and
17th registered sample in that time sequence. Image distortion and defects can be observed in the
bottom-row images, on edges and corners.

3.2.5. Limitations

Although our registration approach provides better cervix alignment and retains color
features of the ROIs, we observed that in some cases, there is subtle blurriness on cervix
edges and over air bubbles in the aceto-whitened area. Most of these examples are of low
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sharpness, which might be caused by factors such as human motion, changes in lighting
condition, and reflection, which could lower the image quality.

4. Conclusions

In this work, we have presented an unsupervised deep learning method for registering
cervical images in time sequences and a robust segmentation network based on DeTr, a
transformer-based object detection method for evaluating the registration. Using multiple
datasets, we trained the cervix region segmentation network in a stage-wise scheme where
we fine-tune an object detection model into a segmentation model by replacing the bound-
ing box head with a mask prediction head. We further evaluated the segmentation network
on multiple datasets that were also used in our previous study and achieved comparable
performance. From the segmentation results, we can see that our current segmentation
model overperforms the previous segmentation model on a challenging dataset. Further,
we trained an unsupervised, channel-independent registration network that consists of a
CNN module followed by a spatial transform module. With the robust performance of our
segmentation network on the time sequence dataset, we evaluated the registration perfor-
mance using the predicted segmentation masks. We achieved a higher average Dice score
on the registered time sequences than that on the original unregistered time sequences.

Accurate alignment of cervix regions in a time sequence can help in landmark track-
ing and may assist in automated longitudinal analysis for AVE. It can also help retrieve
clinically significant information, such as lesion presence, squamous columnar junction
(SCJ) location, and aceto-whitening area, for visual analysis in a dynamic routine. In a
future study, we plan to continue optimizing the algorithm for achieving more robust
registration performance.
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