
 

 
 

 

 
Cancers 2022, 14, 2363. https://doi.org/10.3390/cancers14102363 www.mdpi.com/journal/cancers 

Article 

Radiophysiomics: Brain Tumors Classification by Machine 

Learning and Physiological MRI Data 

Andreas Stadlbauer 1,2,*,†, Franz Marhold 3,†, Stefan Oberndorfer 4, Gertraud Heinz 1, Michael Buchfelder 2,  

Thomas M. Kinfe 2,5 and Anke Meyer-Bäse 6 

1 Institute of Medical Radiology, University Clinic St. Pölten, Karl Landsteiner University of Health Sciences, 

A-3100 St. Pölten, Austria; gertraud.heinz@stpoelten.lknoe.at 
2 Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg,  

D-91054 Erlangen, Germany; michael.buchfelder@uk-erlangen.de (M.B.);  

thomasmehari.kinfe@uk-erlangen.de (T.M.K.) 
3 Department of Neurosurgery, University Clinic of St. Pölten, Karl Landsteiner University of Health  

Sciences, A-3100 St. Pölten, Austria; franz.marhold@stpoelten.lknoe.at 
4 Department of Neurology, University Clinic of St. Pölten, Karl Landsteiner University of Health Sciences, 

A-3100 St. Pölten, Austria; stefan.oberndorfer@stpoelten.lknoe.at 
5 Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University (FAU)  

Erlangen-Nürnberg, D-91054 Erlangen, Germany 

6 Department of Scientific Computing, Florida State University, 400 Dirac Science Library,  

Tallahassee, FL 32306-4120, USA; ameyerbaese@fsu.edu 

* Correspondence: andi@nmr.at 

† These authors contributed equally to this work. 

Simple Summary: The pretreatment diagnosis of contrast-enhancing brain tumors is still challeng-

ing in clinical neuro-oncology due to their very similar appearance on conventional MRI. A precise 

initial characterization, however, is essential to initiate appropriate treatment management, which 

can substantially differ between brain tumor entities. To overcome the disadvantage of the low 

specificity of conventional MRI, several new neuroimaging methods have been developed and val-

idated over the past decades. This increasing amount of diagnostic information makes a timely eval-

uation without computational support impossible in a clinical setting. Artificial intelligence meth-

ods such as machine learning offer new options to support clinicians. In this study, we combined 

nine common machine learning algorithms with a physiological MRI technique (we named this 

approach “radiophysiomics”) to investigate the effectiveness of the multiclass classification of con-

trast-enhancing brain tumors in a clinical setting. We were able to demonstrate that radiophysi-

omics could be helpful in the routine diagnostics of contrast-enhancing brain tumors, but further 

automation using deep neural networks is required. 

Abstract: The precise initial characterization of contrast-enhancing brain tumors has significant con-

sequences for clinical outcomes. Various novel neuroimaging methods have been developed to in-

crease the specificity of conventional magnetic resonance imaging (cMRI) but also the increased 

complexity of data analysis. Artificial intelligence offers new options to manage this challenge in 

clinical settings. Here, we investigated whether multiclass machine learning (ML) algorithms ap-

plied to a high-dimensional panel of radiomic features from advanced MRI (advMRI) and physio-

logical MRI (phyMRI; thus, radiophysiomics) could reliably classify contrast-enhancing brain tu-

mors. The recently developed phyMRI technique enables the quantitative assessment of microvas-

cular architecture, neovascularization, oxygen metabolism, and tissue hypoxia. A training cohort of 

167 patients suffering from one of the five most common brain tumor entities (glioblastoma, ana-

plastic glioma, meningioma, primary CNS lymphoma, or brain metastasis), combined with nine 

common ML algorithms, was used to develop overall 135 classifiers. Multiclass classification per-

formance was investigated using tenfold cross-validation and an independent test cohort. Adaptive 

boosting and random forest in combination with advMRI and phyMRI data were superior to human 

reading in accuracy (0.875 vs. 0.850), precision (0.862 vs. 0.798), F-score (0.774 vs. 0.740), AUROC 
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(0.886 vs. 0.813), and classification error (5 vs. 6). The radiologists, however, showed a higher sensi-

tivity (0.767 vs. 0.750) and specificity (0.925 vs. 0.902). We demonstrated that ML-based radiophys-

iomics could be helpful in the clinical routine diagnosis of contrast-enhancing brain tumors; how-

ever, a high expenditure of time and work for data preprocessing requires the inclusion of deep 

neural networks. 

Keywords: brain tumors; pretreatment classification; artificial intelligence; machine learning;  

physiological MRI; neuro-oncology; multiclass classification 

 

1. Introduction 

Cancers of the central nervous system (CNS) represent a heterogeneous group of 

solid neoplasms inside the skull mainly originating from the brain tissue (primary brain 

tumors), lymphatic tissue (primary central nervous system lymphomas, PCNSLs), or 

membranes that envelop the brain, also known as the meninges (meningiomas). Alterna-

tively, the spread of cancers located in other parts of the body into the CNS leads to sec-

ondary brain tumors, also known as brain metastases. Glioblastoma (GBM WHO grade 4) 

is the most common and most lethal primary brain tumor in adults with a median overall 

survival of 14–17 months [1] and a 5-year survival rate of less than 5% [2]. Anaplastic 

glioma (AG or glioma WHO grade 3) is also an aggressive primary brain tumor that often 

affect young adults in the prime of life, causing significant disability as well as death [3]. 

PCNSLs account for 2–4% of all primary brain tumors [4], and the prognosis of these tu-

mors has significantly improved in recent decades, where median survival increased from 

2.5 to 26 months [5]. Meningiomas are among the most common intracranial tumors, with 

an estimated incidence of eight cases per 100,000 persons per year [6] with the common 

type (meningioma WHO grade I) as a slow-developing benign tumor [7]. Brain metastases 

are found in 10–30% of adult neuro-oncologic patients with cancer at another location in 

the body, and nearly half of these cases become clinically apparent as solitary metastases 

on clinical imaging [8]. All five brain tumor entities together represent by far the largest 

proportion of brain tumors encountered in clinical neuro-oncology. 

The pretreatment diagnosis of brain tumors using conventional magnetic resonance 

imaging (cMRI) is still challenging in clinical neuroradiology due to their very similar ap-

pearance as hyperintense brain lesions on contrast-enhanced T1-weighted MRI sur-

rounded by a hyperintense edema on T2-weighted MRI [9,10]. A precise and reliable ini-

tial characterization, however, is essential to initiate appropriate treatment management, 

which can substantially differ between the brain tumor entities [11,12]. The current stand-

ard of treatment for newly diagnosed GBMs and AGs consists of maximal possible resec-

tion of the tumor, followed by adjuvant radiotherapy and chemotherapy with te-

mozolomide [13]. Despite tumor biopsy, PCNSLs should not undergo a total, gross resec-

tion as these brain tumors are highly responsive to steroids and high-dose methotrexate-

based chemotherapy alone or in combination with whole-brain radiation therapy [14]. On 

the other hand, for meningiomas, surgical resection is essential in symptom-causing tu-

mors; however, observation with close follow-up MRIs is recommended if the meningi-

oma is small and asymptomatic [15]. Finally, stereotactic radiosurgery is considered an 

effective strategy in the treatment of brain metastases with the advantage of excellent local 

control rates with minimal invasiveness [16]. Consequently, the accurate preoperative dif-

ferentiation of contrast-enhancing brain tumors is critical for individualized therapeutic 

decision making. 

In order to overcome the disadvantage of a low specificity of cMRI in contrast-en-

hancing brain tumor diagnosis, a large number of new imaging methods were developed 

and tested over the past decades. These include, to name just a few without claiming a 

complete list, methods for perfusion imaging, such as arterial spin labeling (ASL) or dy-

namic contrast-enhanced perfusion MRI, as well as methods for metabolic or molecular 
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imaging, such as chemical exchange saturation transfer (CEST) MRI, MR spectroscopy, 

and positron emission tomography (PET) using radiolabeled amino acids, which includes 
11C-methyl-methionine (MET) or 18F-fluoroethyl-tyrosine (FET). 

The known physiological connection between neovascularization and tissue hypoxia 

[17] drives our rationale for the development of a physiological MRI (phyMRI) approach for 

the combined quantitative characterization of microvascular architecture, neovasculariza-

tion activity, and oxygen metabolism, including tissue hypoxia in CNS [18,19] and breast 

tumors [20,21]. Vascular architectural mapping (VAM) is an important part of the phyMRI 

approach. The physical basis for this MRI-based assessment of microvasculature is the dif-

ferent sensitivity of gradient-echo and spin-echo MRI sequences to magnetic susceptibility 

[22]. As a result, gradient-echo MR signals, which are commonly used for perfusion meas-

urements in clinical routines, are dominated by larger vessel diameters starting from 20 mm, 

i.e., larger arterioles and venules [22], with reduced sensitivity to the smaller microvascular 

range. In contrast, spin-echo MR signals exhibit a peak sensitivity to the microvasculature 

at a vessel diameter of around 10 mm [22], including capillaries and both small arterioles 

and venules. Therefore, the combination of both gradient-echo and spin-echo MRI perfusion 

technology, as used in the phyMRI approach, allows for the examination of the entire phys-

iological range of neovascular vessel diameters and structures. Therefore, VAM provides 

deeper insights into tissue microvascularity and tumor neovascularization. Additionally, 

the multiparametric quantitative blood-oxygenation-level-dependent (qBOLD) technique 

was proposed to non-invasively investigate quantitative information about tissue oxygena-

tion metabolism and hypoxia [23]. This is also part of the phyMRI approach. Available tech-

niques for the examination of oxygen metabolism, however, are not well-suited for in vivo 

investigations in humans due to their invasiveness (e.g., oxygen electrodes) or their limited 

availability and high costs (e.g., 15O positron emission tomography). This has so far ham-

pered the implementation of such physiological measures in clinical studies on larger pa-

tient scales, as well as their use in clinical routine. 

The increasing number of additional imaging parameters derived from these inno-

vative methods generates a large amount of complex neuroimaging data. A timely evalu-

ation of this amount of diagnostic information, which could potentially be implemented 

in clinical routine, is costly and hardly feasible without considerable computational sup-

port. Methods of artificial intelligence (AI), such as deep learning and traditional machine 

learning (ML), offer new options to support clinicians [24,25]. In particular, as shown pre-

viously for histopathology, the AI-based analysis of imaging data allows for the combined 

evaluation of a multitude of imaging parameters via the generation of multiparametric 

models [26,27]. On one hand, this makes it possible to cope with the large amounts of data, 

and on the other hand, it may help to increase the comparability of the obtained results as 

it is independent from the experience level of the evaluating clinician. Moreover, AI offers 

the potential to extract yet undiscovered features from routinely acquired images. Specif-

ically, quantitative and semi-quantitative image features can be extracted from neuroim-

aging data, which are usually beyond human perception [28]. Hundreds of texture and 

histogram-based parameters can be extracted from a single data set, further increasing 

data volume and making it unmanageable for the clinician. The computation, identifica-

tion, and extraction of image features, as well as the generation of mathematical models 

for characterization or prognosis prediction, is summarized under the term radiomics 

[29,30]. However, multiparametric ML models were predominantly used for glioma grad-

ing or the binary classification of brain tumors (e.g., GBM versus brain metastasis), and 

phyMRI data of microvascular architecture, neovascularization activity, or oxygen metab-

olism have not yet been included. 

To best of our knowledge, our group was the first to use both the VAM and the 

qBOLD techniques in combination to simultaneously collect complementary information 

on tumor neovascularization and oxygen metabolism. We implemented the phyMRI ap-

proach as part of our clinical routine MRI protocol for several years. This enabled us, for 
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the first time, to collect the physiological MRI data of neovascularization and oxygen me-

tabolism from a sufficiently large number of brain tumor patients to justify the use of ML 

methods. Furthermore, the large amount of additional neuroimaging data derived from 

the phyMRI protocol for each patient makes the timely evaluation of this potentially val-

uable data impossible in clinical practice. This motivated us to evaluate the usefulness of 

AI technologies for this purpose. Our hypothesis was that the combining of AI technolo-

gies with high-dimensional radiomic features from phyMRI data (we named this ap-

proach “radiophysiomics") would improve the multiclass classification of contrast-en-

hancing brain tumors in a clinical setting. The purpose of this first study was to investigate 

the effectiveness of radiophysiomics using traditional ML algorithms in multiclass classi-

fication of contrast-enhancing brain tumors. We were able to demonstrate that ML-based 

radiophysiomics were superior to both human reading and the ML-based classification of 

cMRI data for several performance parameters, including accuracy and classification er-

ror. However, the high expenditure of time and work for data processing associated with 

this ML-based technology requires the use of deep neural networks in future studies, as 

well as for the possible implementation in clinical routine. 

2. Materials and Methods 

2.1. Ethics 

The study was approved and publicly registered by the Ethics Committee of the 

Lower Austrian Provincial Government (protocol code GS1-EK-4/339-2015, date of ap-

proval: 29 February 2016). The study was conducted in accordance with the guidelines of 

the Declaration of Helsinki. All included patients provided written informed consent 

prior to enrolment. 

2.2. Patients 

Patients with untreated contrast-enhancing brain tumors that were newly diagnosed 

between January 2016 and January 2022 were selected from a prospectively populated 

institutional brain MRI database. Inclusion criteria were: (i) age ≥ 18 years; (ii) histopatho-

logical confirmation of one of the following brain tumor entities: glioblastoma (GBM, 

WHO grade 4), anaplastic glioma (AG, WHO grade 3), primary central nervous system 

lymphoma (PCNSL), meningioma, or brain metastasis; (iii) no previous treatment of the 

brain tumor; (iv) MRI examinations with the study protocol; and (v) clinical routine MRI 

data evaluated by at least two board-certified radiologists in consensus. 

2.3. MRI Data Acquisition 

All MRI examinations were performed on a 3 Tesla whole-body scanner (Trio, Sie-

mens, Erlangen, Germany) that was equipped with the standard 12-channel head coil. The 

MRI study protocol consisted of three parts: 

(i.) The conventional anatomical MRI (cMRI) protocol for clinical routine diagnosis of 

brain tumors included, among others, an axial fluid-attenuated inversion recovery 

(FLAIR) sequence as well as a high-resolution contrast-enhanced T1-weighted (CE 

T1w) sequence. 

(ii.) The advanced MRI (advMRI) protocol for clinical routine diagnosis of brain tumors 

was extended by axial diffusion-weighted imaging (DWI; b values 0 and 1000 s/mm2) 

sequence and a gradient echo dynamic susceptibility contrast (GE-DSC) perfusion 

MRI sequence, which was performed using 60 dynamic measurements during ad-

ministration of 0.1 mmol/kg-bodyweight gadoterate-meglumine (Dotarem, Guerbet, 

Aulnay-Sous-Bois, France). 

(iii.) The physiological MRI (phyMRI) protocol included the innovative MRI techniques 

of vascular architecture mapping (VAM) [31] for the assessment of microvascular ar-

chitecture and neovascularization activity, as well as the quantitative blood-oxygen-

ation-level-dependent (qBOLD) imaging approach [19,32] for assessment of tissue 
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oxygen metabolism and tension. The VAM approach [33,34] additionally required a 

spin-echo DSC (SE-DSC) perfusion MRI sequence conducted with the same parame-

ters and contrast agent injection protocol as described for the routine GE-DSC perfu-

sion MRI. Details of our strategy to minimize adverse effects due to differences in 

time to first-pass peak and contrast-agent leakage, which could significantly affect 

the data evaluation, were previously described [33,34]. The qBOLD approach [19,32] 

additionally required a multi-echo GE sequence and a multi-echo SE sequence for the 

mapping of the transverse relaxation rates R2* (=1/T2*) and R2 (=1/T2), respectively. 

All phyMRI sequences for VAM and qBOLD were carried out with identical geomet-

ric parameters (voxel size, number of slices, etc.) and slice position as used for the 

routine GE-DSC perfusion sequence. The phyMRI protocol required seven minutes 

of extra scan time in total. 

2.4. MRI Data Processing and Calculation of MRI Biomarker Maps 

Processing of advMRI and phyMRI data, as well as calculation of MRI biomarkers, 

was performed with custom-made MatLab (MathWorks, Natick, MA) software. Pro-

cessing of the advMRI data included calculation of the apparent diffusion coefficient 

(ADC) maps from DWI data using the following equation: 

ADC = – ln[(S/S�)/b] (1)

where S0 is the MRI signal without diffusion-weighted sensitization (b = 0 s/mm2), and S 

represents the MRI signal measured for b = 1000 s/mm2. Furthermore, absolute cerebral 

blood volume (CBV) and flow (CBF) maps from the GE-DSC perfusion MRI data were 

determined via the automatic identification of arterial input functions (AIFs) [35,36]. 

Processing of phyMRI data for the VAM technique included a correction for remain-

ing contrast agent extravasation as previously described [37,38]: fitting of the first bolus 

curves for each voxel of the GE- and SE-DSC perfusion MRI data with a previously de-

scribed gamma-variate function [39], and the calculation of the ∆R2,GE versus (∆R2,SE)3/2 di-

agram [40], the so-called vascular hysteresis loop (VHL) [33,34]. For calculation of phyMRI 

biomarker maps of microvascular architecture [41] including microvessel density (MVD) 

and vessel size index (VSI, i.e., microvessel radius), the VHL curve data and the following 

equations were used: 

MVD = 
Qmax

β
× �

CBV2

4π2×ADC×R�
4
�

1 3⁄

 (2)

and: 

VSI = �
CBV×ADC×β3

2π×Qmax
3

�

1 2⁄

 (3)

with Qmax = max[∆R2,GE]/max[(∆R2,GE)3/2]. R� ≈ 3.0 μm is the mean vessel lumen radius, β 

is a numerical constant (β = 1.6781) [41], CBV is the cerebral blood volume, and ADC is 

the apparent diffusion coefficient. Neovascularization activity estimated by the mi-

crovessel type indicator (MTI) was previously [33] defined as the area of the VHL curve 

signed with the rotational direction of the VHL curve, i.e., a clockwise VHL direction was 

identified with a plus sign, and a counter-clockwise VHL direction was identified with a 

minus sign [33]. Based on previous studies [33,42], a positive MTI value (assigned to warm 

colors in the MTI maps) was associated with a vascular system dominated by arterioles, 

whereas a negative MTI value (cool colors in the MTI maps) was associated with venule- 

and capillary-like vessel components. Finally, the map for the microvascular cerebral 

blood volume (μCBV) was calculated from the SE-DSC perfusion MRI data via a separate 

automatic identification of AIFs [36]. 

Processing of phyMRI data for the qBOLD approach required corrections for back-

ground fields of the R2*-mapping data [43] and for stimulated echoes of the R2-mapping 
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data [44] followed by calculation of R2* and R2 maps from the multi-echo relaxometry data. 

For the calculation of phyMRI biomarker maps of tissue oxygen metabolism, including 

oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) [32] the 

following equations were used: 

OEF = 
R2

* -R2

4
3

×π×γ×Δχ×Hct×B0×CBV
 (4)

CMRO2 = 
Ca × CBF

4
3

×π×γ×Δχ×Hct×B0 × CBV
×�R2

*  – R2� (5)

where R2* and R2 are the transverse relaxation rates calculated as described above, γ 

(2.67502 × 108 rad/s/T) is the nuclear gyromagnetic ratio; Δχ = 0.264 × 10–6 is the difference 

between the magnetic susceptibilities of fully oxygenated and fully deoxygenated haemo-

globin; Hct = 0.42 × 0.85 is the microvascular hematocrit fraction, whereby the factor 0.85 

stands for a correction factor of systemic Hct for small vessels, and Ca = 8.68 mmol/mL is 

the arterial blood oxygen content [45]. Maps of tissue oxygen tension (PO2) [46,47] were 

calculated by: 

PO2 = P50 × ��
2

OEF
-1�

h

 – 
CMRO2

L
 (6)

where P50 is the hemoglobin half-saturation tension of oxygen (27 mmHg), h is the Hill 

coefficient of oxygen binding to hemoglobin (2.7), and L (4.4 mmol/Hg per minute) is the 

tissue oxygen conductivity as defined by Vafaee and Gjedde [48]. 

In summary, the data processing resulted in two advMRI biomarker maps for micro-

structural density (ADC) and macrovascular perfusion (CBV) as well as seven phyMRI 

biomarker maps representing microvascular perfusion (μCBV), microvascular architec-

ture (MVD and VSI), neovascularization activity (MTI), tissue oxygen metabolism (OEF 

and CMRO2), and tissue oxygen tension (PO2). 

2.5. Radiomic Feature Extraction 

The overall study pipeline is shown in Figure 1. The data for cMRI (CE T1w and 

FLAIR), advMRI (ADC and CBV), and phyMRI (μCBV, MVD, VSI, OEF, CMRO2, and PO2) 

of a patient were loaded into the open-source software platform 3D Slicer (v. 4.11; 

https://www.slicer.org/, accessed on: 30 April 2021) and geometrically aligned. Segmen-

tation of the tumor volume was performed on CE T1w MRI data defined as the contrast-

enhancing areas [49]. Segmentation of the peritumoral edema was performed on FLAIR 

data defined as hyperintense areas, excluding the contrast-enhancing or necrotic portions. 

Regions of interest (ROIs) were manually drawn on all axial slices, showing the features 

for 3D segmentation by a radiologist (G.H., with 30 years of experience in neuro-oncolog-

ical imaging) and confirmed by another neurosurgeon (F.M., with 15 years of experience). 

Disagreements were resolved by discussion until agreement. Both readers were blinded 

to the histopathological diagnosis of the tumor. 
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Figure 1. General diagram of the proposed radiomics and radiophysiomics approach, showing the 

major steps: MRI data acquisition; calculation of imaging biomarkers; extraction of radiomic fea-

tures, including tumor and edema segmentation, data filtering, and feature extraction; reduction in 

and selection of the most relevant features; development and validation of ML-based classification 

models; and testing the performance of the best-performing classifiers. 

Grey-level intensity values of the cMRI were normalized by subtracting the mean 

intensity and dividing by the standard deviation with an expected resulting range [–3, 3], 

a mean of 0 and standard deviation of 1 in the normalized image. This procedure is also 

known as z-score normalization [50,51]. The grey-level discretization was carried out [52] 

with a bin width value of 0.1, resulting in histograms with approximately 60 bins. Bi-

omarker maps for both advMRI and phyMRI represented quantitative imaging data with 

a range of physiological reasonable values. Individually adapted thresholds were applied 

to the biomarker maps in order to remove non-physiological values due to imaging arte-

facts (e.g., motion or susceptibility artefacts). Biomarker value discretization was per-

formed with adapted bin width values in order to obtain histograms with 60–67 bins. Ta-

ble 1 summarizes the value ranges and bin sizes used for the biomarker maps. Next, MRI 

data were resampled into a uniform voxel size of 1 × 1 × 1 mm3 across all patients [52]. 

Table 1. Value ranges, bin sizes, and bin numbers for discretization of biomarker maps. 

Value 
advMRI Maps phyMRI Maps 

ADC CBV µCBV MVD VSI MTI OEF CMRO2 PO2 

range [0, 3] [0, 100] [0.30] [0, 2000] [0, 500] [−1000, 1000] [0, 100] [0, 1000] [0, 200] 

unit mm2/s % % mm−2 μm s−2/5 % μmol/100 g × min mmHg 

bin size 0.05 1.5 0.5 30 8 30 1.5 15 3 

bins 60 67 60 67 63 67 67 67 67 

advMRI = biomarker maps for advanced conventional MRI; phyMRI = physiological MRI; ADC = apparent dif-

fusion coefficient; CBV = cerebral blood volume; μCBV = microvascular cerebral blood volume; MVD = mi-

crovessel density; VSI = vessel size index; MTI = microvessel type indicator; OEF = oxygen extraction fraction; 

CMRO2 = cerebral metabolic rate of oxygen; and PO2 = tissue oxygen tension. 

Radiomic features were extracted with the built-in package SlicerRadiomics imple-

mented in the 3D Slicer platform based on the Python package PyRadiomics [53]. Proce-

dures and features were in accordance with the Imaging Biomarker Standardization Ini-

tiative (IBSI) [54]. The following features were calculated: 

 Fourteen shape features, which represent the three-dimensional size and shape of the 

segmented volume of interest (VOI, i.e., contrast-enhancing tumor and peritumoral 
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edema). These features included elongation, flatness, least and major axis length, 

maximum 2D diameter of column, maximum 2D diameter of row, maximum 2D di-

ameter of slice, maximum 3D diameter, mesh volume, minor axis length, sphericity, 

surface area, surface volume ratio, and voxel volume. 

 Eighteen first-order features, which represent the distribution of gray values within 

an image, were calculated from the histogram of voxel intensities. These features in-

cluded the 10th and 90th percentile, energy, entropy, interquartile range, kurtosis, 

maximum, mean absolute deviation, mean, median, minimum, range, robust mean 

absolute deviation, root mean squared, skewness, total energy, uniformity, and var-

iance. 

 Seventy-five texture features, which describe relationships between neighboring 

voxels with similar or dissimilar values. These features included the following 6 sub-

categories: (i) 24 gray-level co-occurrence matrix (GLCM) features characterizing 

how often pairs of voxels with specific intensity levels and spatial relationships oc-

curred in an image [55]; (ii) 14 gray-level dependence matrix (GLDM) features repre-

senting the dependency of connected voxels to a center voxel [56]; (iii) 16 gray-level 

run-length matrix (GLRLM) features evaluating the length of consecutive pixels with 

the same gray level [57]; (iv) 16 gray-level size zone matrix (GLSZM) features quan-

tifying the number of connected voxels that share the same intensity value [58]; and 

(v) 5 neighboring gray-tone difference matrix (NGTDM) features assessing differ-

ences between pixel values and neighbor average gray values [59]. Schematic repre-

sentation of the extraction of first-order features, GLDM features, and NGTDM fea-

tures is depicted in Figure S1 in the Supplementary Materials. 

This resulted in 107 features that were extracted for both VOIs, i.e., contrast-enhanc-

ing tumor and peritumoral edema, respectively. A detailed overview and description of 

these radiomic features can be found elsewhere [53,60]. Mathematical formulas are de-

scribed on the website of the package (https://pyradiomics.readthedocs.io, accessed on: 30 

April 2021). 

An edge-enhancement Laplacian of Gaussian (LoG) filter was also applied, which led 

to 93 additional features (18 first-order + 75 texture features) and resulted in 200 features 

per imaging data set and per VOI, i.e., 400 features per imaging data set in total. The num-

bers of features for the three MRI approaches were as follows: 800 features for cMRI data 

(CE T1w and FLAIR for CE tumor and edema); 1600 features for advMRI data (800 cMRI 

features + 400 ADC features + 400 CBV features); and 2800 features for phyMRI data (400 

features × 7 biomarker maps). 

2.6. Radiomic Feature Reduction and Selection 

For radiomic feature reduction, the feature stability against perturbations in tumor 

segmentation was assessed. For this purpose, another coauthor (A.S., medical physicist 

with 22 years of experience in brain cancer imaging) manually defined ROIs in 50 ran-

domly sampled patients. The features were extracted using the same methods as de-

scribed above, and intra-class correlation coefficient (ICC) was calculated for each radio-

mic feature using SPSS (version 21, IBM, Chicago, IL, USA). The cMRI features with “ex-

cellent” reproducibility (ICC ≥ 0.9) were included in the further analysis [61]. Radiomic 

features with ICC values below this threshold were discarded from further analysis, as 

shown previously [62]. 

Radiomic feature selection was performed with the open-source software package 

Weka (version 3.8.5, University of Waikato, Hamilton, New Zealand). Due to the rather 

large number of features, this was performed in two steps following the strategy of com-

bining the advantages of both ranking methods and learner-based methods as previously 

described [63]. In a first step, we applied six different attribute evaluation filters (Correla-

tion, GainRatio, InfoGain, OneR, RefiefF, and SymmetricalUncert) in combination with 
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the Ranker search method. Those 50 features that were top ranked in at least 3 filter rank-

ings were selected. In a second step, we applied the learner-based feature selection 

method Wrapper in combination with the BestFirst search method and the respective ML 

algorithm, which were used for model development (we refer to the next chapter for a 

detailed description) to the shorten feature list. This approach enabled us to specifically 

select the most suitable features for each ML algorithm, i.e., an individual feature list was 

generated for each ML classifier. As we expected unbalanced classes due to different prev-

alence and well-known differences in patient numbers at our institution for the brain tu-

mor entities, the synthetic minority oversampling technique (SMOTE) [64], which is part 

of the preprocessing module of WEKA, was employed in order to balance the classes. This 

was followed by the application of a randomize filter. 

2.7. Model Development and Validation 

Model development was also carried out with the software package WEKA. Nine 

commonly used ML algorithms from different families of classifiers were used for mul-

ticlass differentiation between five contrast-enhancing brain tumor entities: GBM, AG, 

PCNSL, meningioma, and brain metastasis, respectively, calculated using Naïve Bayes 

(NB), logistic regression (Log), support vector machine (SVM; with polynomial kernel) 

[65], k-nearest neighbors (kNN; k = 3) [66], decision tree (DT; “J48” in WEKA), multilayer 

perceptron (MLP; one hidden layer, number of neurons = number of features + number of 

classes), adaptive boosting (AdaBoost; using decision tree “J48” as classifier), random for-

est (RF), and bootstrap aggregating (bagging; using RandomTree as classifier). The data 

from the five possible combinations of MRI methods (cMRI, advMRI, phyMRI, cMRI + 

phyMRI, and advMRI + phyMRI) for three VOIs (CE tumor, peritumoral edema, and CE 

tumor + peritumoral edema) were used as training data sets, i.e., we generated and eval-

uated 135 different ML classification models. Short descriptions of the ML algorithms are 

provided in the Supplementary Materials. 

A tenfold cross-validation procedure was adopted for validation of the models. The 

main performance evaluation metric was the area under the receiver operating character-

istic curve (AUROC) [67]. In addition, confusion matrix-derived metrics including accu-

racy, sensitivity (aka recall or true positive rate), specificity (aka true negative rate), pre-

cision (aka positive predictive value), and the F-score were calculated. The performance 

metrics for each brain tumor entity were calculated by averaging the ten different valida-

tion performances followed by the calculation of the weighted average over the five brain 

tumor entities. 

2.8. Model Performance Testing and Human Reading 

The four best-performing classifiers were selected for performance testing using in-

dependent test data. For this purpose, the classifiers were trained with the data of the 

entire training cohort. The generated models were saved and evaluated with the unseen 

data of an independent test cohort using metrics derived from the AUROC and confusion 

matrix, as described above. 

At least two board-certified radiologists reviewed the advMRI data (i.e., FLAIR, CE 

T1w, ADC, and CBV) and other anatomical MRI data, which were part of the routine pro-

tocol, but were not included in ML procedures during clinical routine diagnosis of con-

trast-enhancing brain tumors. The readers had access to the clinical information of each 

patient. The readers recorded a final agreed diagnosis for each patient, and the most likely 

diagnosis was used for assessing the diagnostic performance of the human readers, which 

was compared with the performance of the ML models. 

  



Cancers 2022, 14, 2363 10 of 23 
 

 

3. Results 

3.1. Patient Characteristics 

The institutional brain MRI database that was searched for this study contained a 

total of more than 1700 MR examinations using the study protocol in 560 brain tumor 

patients. From January 2016 to August 2021, a total of 167 patients (81 females; 86 males; 

mean age 62.0 ± 13.0 years; 21–91 years) with newly diagnosed, untreated contrast-en-

hancing brain tumors satisfied the inclusion criteria. These patients were selected as the 

training and validation cohort for the ML classifiers. The patient characteristics for this 

cohort were as follows: 

 Seventy-seven patients (46%; 32 females; 45 males; mean age 63.2 ± 12.3 years; 31–84 

years) had the diagnosis of a glioblastoma WHO grade 4; 

 Seventeen patients (10%; 7 females; 10 males; mean age 49.9 ± 16.1 years; 21–73 years) 

had an anaplastic glioma WHO grade 3; 

 Twenty-eight patients (17%; 18 females; 10 males; mean age 60.3 ± 13.2 years; 27–82 

years) had a meningioma (15 patients WHO grade I, 12 patients WHO grade II; one 

patient WHO grade III); 

 Sixteen patients (10%; 8 females; 8 males; mean age 69.8 ± 9.7 years; 55–92 years) had 

a PCNSL; 

 Twenty-nine patients (17%; 16 females; 13 males; mean age 63.4 ± 9.3 years; 46–79 

years) suffered from a brain metastasis that originated in twelve patients from lung 

cancer, in five patients from breast cancer, in four patients from a melanoma, in two 

patients each from esophageal or renal cancer, and in one patient each from fibrosar-

coma, bladder cancer, pancreatic cancer, and colon cancer, respectively. 

From September 2021 to January 2022, a total of 20 patients (11 females; 9 males; mean 

age 58.5 ± 15.9 years; 24–79 years) with newly diagnosed, untreated contrast-enhancing 

brain tumors satisfied the inclusion criteria. These patients were selected as the independ-

ent test cohort for the selected ML models. The patient characteristics were: 

 Nine patients (45%; 4 females; 5 males; mean age 60.9 ± 18.5 years; 26–79 years) had 

a glioblastoma WHO grade 4; 

 Three patients (15%; 2 females; 1 male; mean age 45.8 ± 19.8 years; 24–63 years) had 

an anaplastic glioma WHO grade 3; 

 Three patients (15%; 1 female; 2 males; mean age 55.6 ± 16.2 years; 37–68 years) had 

a meningioma (1 patient WHO grade I and 2 patients WHO grade II); 

 Five patients (25%; 4 females; 1 male; mean age 63.4 ± 4.3 years; 59–70 years) suffered 

from a brain metastasis that originated in two patients from lung cancer, and in one 

patient each from gastrointestinal cancer, bladder cancer, and breast cancer, respec-

tively. 

There were no patients with newly diagnosed PCNSL during this period. 

3.2. The Selected Radiomic Features 

From the 200 features that were extracted for each MRI data set and VOI, respec-

tively, 80 features with excellent reproducibility (ICC ≥ 0.9) were selected: no shape fea-

tures, 11 first-order features, 34 texture features (10 GLCM, 8 GLDM, 6 GLRLM, 9 GLSZM, 

1 NGTDM), 11 LoG-filtered first-order features, and 24 LoG-filtered texture features (11 

GLCM, 5 GLDM, 3 GLRLM, 4 GLSZM, 1 NGTDM). The wrapper-based classifier-specific 

feature selection of the top-ranked 50 features yielded 8 features (bagging) to 16 features 

(AdaBoost) for cMRI data, 8 features (bagging) to 19 features (random forest) for advMRI 

data, 12 features (decision tree) to 20 features (SVM) for phyMRI data, 14 features (Naïve 

Bayes) to 33 features (multilayer perceptron) for cMRI + phyMRI data, and 12 features 

(kNN and decision tree) to 36 features (multilayer perceptron) for advMRI + phyMRI data, 

respectively. A detailed overview of the numbers of the selected features per imaging data 

set is provided in Table 2. 
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Table 2. Number of the selected radiomic features for the ML algorithms and the MRI data sets. 

Caption  NB Log MP SVM kNN Ada DT RF Bag 

cMRI CE T1w 9 21 16 23 10 15 11 14 8 

 FLAIR 1 1 0 1 1 1 0 1 0 

 total 10 22 16 24 11 16 11 15 8 

advMRI CE T1w 10 6 6 10 4 4 4 7 5 

 FLAIR 0 0 0 0 0 0 0 0 0 

 ADC 2 1 2 2 1 1 1 1 1 

 CBV 5 5 7 4 9 4 3 11 2 

 total 17 12 15 16 14 9 8 19 8 

phyMRI CMRO2 3 2 3 4 1 3 2 2 1 

 OEF 2 2 2 1 0 2 0 2 3 

 PO2 1 1 0 1 0 2 0 1 1 

 MIT 2 2 2 3 6 2 2 4 3 

 μCBV 1 2 2 3 0 0 0 3 0 

 MVD 5 3 1 4 3 4 5 2 2 

 VSI 5 3 3 4 3 2 3 3 3 

 total 19 15 13 20 13 15 12 17 13 

cMRI + phyMRI CE T1w 5 11 20 16 11 10 9 9 6 

 FLAIR 0 0 0 0 0 0 0 0 0 

 CMRO2 2 2 2 3 3 1 1 1 1 

 OEF 2 1 0 1 1 1 1 2 1 

 PO2 0 0 0 0 0 0 0 0 0 

 MIT 1 2 5 5 3 1 1 3 3 

 μCBV 1 2 1 1 1 0 0 0 2 

 MVD 0 1 1 2 2 3 3 2 0 

 VSI 3 2 4 3 4 3 3 5 3 

 total 14 21 33 31 25 19 18 22 16 

advMRI + phyMRI CE T1w 8 8 12 13 5 4 6 6 9 

 FLAIR 0 0 0 0 0 0 0 0 0 

 ADC 0 0 0 0 0 0 0 0 0 

 CBV 8 4 13 8 3 6 3 7 8 

 CMRO2 1 0 1 1 0 0 1 1 1 

 OEF 1 0 0 1 0 1 0 0 0 

 PO2 0 0 1 0 0 0 0 0 0 

 MIT 1 2 3 4 2 1 1 1 1 

 μCBV 1 1 1 0 1 0 0 0 1 

 MVD 1 0 1 1 0 0 0 0 0 

 VSI 3 3 4 4 1 1 1 2 2 

 total 24 18 36 32 12 13 12 17 22 

advMRI = biomarker maps for advanced conventional MRI; phyMRI = physiological MRI; ADC = apparent dif-

fusion coefficient; CBV = cerebral blood volume; μCBV = microvascular cerebral blood volume; MVD = mi-

crovessel density; VSI = vessel size index; MTI = microvessel type indicator; OEF = oxygen extraction fraction; 

CMRO2 = cerebral metabolic rate of oxygen; and PO2 = tissue oxygen tension; NB = naïve Bayes; Log = logistic 

regression; MP = multilayer perceptron; SVM = support vector machine; kNN = k-nearest neighbors; Ada = adap-

tive boosting; DT = decision tree; RF = random forest, Bag = bagging. 

3.3. The Top ML Classifiers in the Learning/Validation Cohort 

The values for AUROC, precision, and F-score for the 135 different ML classification 

models are presented as heat maps in Figure 2. This figure demonstrates that the performance 

for the multiclass classification of the models was superior for the MRI data of CE tumor when 

compared to the MRI data of edema, as well as the combined data for CE tumor plus edema. 

Therefore, we limited our further evaluation to the ML models of CE tumors. In this subset of 

models, random forest and AdaBoost had the highest AUROC for all MRI data sets. However, 

kNN showed a higher precision and F-score compared to both AdaBoost and random forest. 

On the other hand, a multilayer perceptron showed a high classification performance, espe-

cially for the combined MRI datasets cMRI + phyMRI and advMRI + phyMRI, respectively. 

Therefore, we selected these four ML classifiers for further evaluation and testing. The perfor-
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mance parameters of the four classifiers were summarized and compared to those for the hu-

man reading of the learning cohort in Table 3. All selected classification models showed a 

higher performance for the learning data when compared to the human readers. 

 

Figure 2. Heatmaps depicting (A) the area under the receiver operating characteristic (AUROC) curve, 

(B) precision, and (C) F-score for the five MRI data set combinations (conventional MRI (cMRI), advanced 

MRI (advMRI), physiological MRI (phyMRI), cMRI combined with phyMRI data, and advMRI combined 

with phyMRI data) and the nine ML algorithms in contrast-enhancing (CE) brain tumor (left), peritu-

moral edema (middle), and the combined area of CE tumor and edema (right), respectively. The color 

codes are listed on the far right. NB = naïve Bayes, Log = logistic regression, MLP = multilayer perceptron, 

SVM = support vector machine, kNN = k-nearest neighbors, Ada = adaptive boosting (AdaBoost), DT = 

decision tree, RF = random forest, and Bag = bootstrap aggregating (bagging). 

Table 3. Diagnostic performance of the four selected ML classifiers and the human readers in the 

learning/validation cohort. 

Caption  Accuracy Sensitivity Specificity Precision F-Score AUROC 

RF cMRI 0.944 0.867 0.965 0.859 0.860 0.964 

 advMRI 0.953 0.889 0.970 0.882 0.883 0.97 

 phyMRI 0.951 0.887 0.970 0.879 0.879 0.971 

 cMRI + phyMRI 0.956 0.897 0.973 0.891 0.890 0.978 

 advMRI + phyMRI 0.948 0.878 0.968 0.872 0.872 0.975 

Ada cMRI 0.924 0.817 0.952 0.813 0.812 0.951 

 advMRI 0.931 0.837 0.957 0.835 0.831 0.955 

 phyMRI 0.929 0.831 0.955 0.826 0.826 0.962 

 cMRI + phyMRI 0.936 0.847 0.960 0.843 0.842 0.97 

 advMRI + phyMRI 0.934 0.842 0.959 0.835 0.834 0.969 

kNN cMRI 0.934 0.842 0.959 0.835 0.835 0.901 

 advMRI 0.944 0.867 0.965 0.862 0.861 0.908 

 phyMRI 0.956 0.898 0.973 0.894 0.889 0.925 

 cMRI + phyMRI 0.956 0.897 0.973 0.893 0.891 0.932 

 advMRI + phyMRI 0.949 0.881 0.969 0.876 0.873 0.919 

MP cMRI 0.897 0.748 0.935 0.743 0.742 0.909 

 advMRI 0.923 0.814 0.952 0.809 0.809 0.931 

 phyMRI 0.931 0.834 0.957 0.832 0.828 0.942 

 cMRI + phyMRI 0.943 0.864 0.965 0.862 0.858 0.947 

 advMRI + phyMRI 0.945 0.869 0.965 0.864 0.864 0.961 

Human Reading 0.846 0.739 0.927 0.767 0.708 0.808 

cMRI = conventional MRI; advMRI = biomarker maps for advanced MRI; phyMRI = physiological MRI; RF = 

random forest; Ada = adaptive boosting; kNN = k-nearest neighbors; MP = multilayer perceptron; AUROC = 

area under the receiver operator curve. 
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3.4. The Performance of the Selected Models in the Test Cohort 

The values for AUROC, precision, F-score, and classification errors for the four se-

lected classifiers and the five MRI data sets (cMRI; advMRI; phyMRI; cMRI + phyMRI; 

and advMRI + phyMRI) when applied to the test cohort are presented as heat maps in 

Figure 3. ML classification models using random forest as a classifier showed the highest 

values for AUROC. Models using AdaBoost, however, had the highest precision. The 

highest values for F-score and the fewest errors (5 misclassifications) showed a multilayer 

perceptron combined with cMRI + phyMRI data, AdaBoost combined with cMRI + 

phyMRI data and advMRI data, and random forest combined with phyMRI data, respec-

tively. In general, the models using kNN showed the worst classification performance. 

Therefore, we selected AdaBoost and random forest for a detailed comparative analysis 

of the classification performance in the test cohort. 

 

Figure 3. Heatmaps depicting (from left to right) the area under the receiver operating characteristic 

(AUROC) curve, precision, F-score, and classification error for the five MRI data set combinations 

in CE brain tumors and the four ML algorithms showing the best performance in training/valida-

tion, applied to independent training cohort. MLP = multilayer perceptron, kNN = k-nearest neigh-

bors, Ada = adaptive boosting (AdaBoost), and RF = random forest; cMRI = conventional MRI, 

advMRI = advanced MRI, phyMRI = physiological MRI, cMRI + phyMRI = combination of cMRI and 

phyMRI data, and advMRI + phyMRI = combination of advMRI and phyMRI data, respectively. The 

color codes are below the parts of the figure. 

The performance parameters for the two best-performing classifiers of the five MRI 

data sets and those for human reading in the test cohort are summarized in Table 4. Clas-

sification models using AdaBoost in combination with both advMRI data and cMRI + 

phyMRI data were superior in accuracy, precision, F-score, AUROC, and classification 

error compared to human reading. Random forest in combination with phyMRI data also 

showed higher values for F-score, AUROC, and classification error compared to the per-

formance of the radiologists, although the radiologists’ performances were better in sen-

sitivity and specificity. 

Table 4. Performance parameters for the top ML classifiers of the five MRI data sets and human 

reading of the test cohort. 

Caption  Accuracy Sensitivity Specificity Precision F-Score AUROC Errors 

Ada cMRI 0.815 0.650 0.852 0.732 0.677 0.813 7 

Ada advMRI 0.853 0.750 0.836 0.862 0.722 0.691 5 

RF phyMRI 0.830 0.750 0.844 0.765 0.752 0.886 5 

Ada cMRI + phyMRI 0.875 0.750 0.902 0.827 0.774 0.862 5 

RF advMRI + phyMRI 0.843 0.700 0.860 0.802 0.718 0.863 6 

Human Reading 0.850 0.767 0.925 0.798 0.740 0.813 6 

cMRI = conventional MRI; advMRI = advanced MRI; phyMRI = physiological MRI; RF = random forest; Ada = 

adaptive boosting; AUROC = weighted averaged area under the receiver operator curve. 

The classification results of the best-performing ML models and human reading for 

the 20 patients of the test cohort are summarized in Table 5. AdaBoost, in combination 

with advMRI data, had major problems in the classification of brain metastases: four out 
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of five metastases were misclassified. Random forest in combination with phyMRI had 

problems in the differentiation between GBMs and brain metastases: in four cases, a GBM 

was misclassified as metastasis or vice versa. AdaBoost, in combination with cMRI + 

phyMRI data, also had problems in the classification of GBMs and metastasis, respec-

tively: three metastases and one GBM were misclassified. Interestingly, all three classifier 

models misclassified patient number 20 (Table 5) who suffered from a meningioma but 

was classified as GBM by the ML models. However, the radiologists correctly classified 

this tumor. All MRI data of this patient are depicted in Figure 4. 

Table 5. Classification results of the best-performing ML models and human reading for the test cohort. 

ID Histology 
AdaBoost  

AdvMRI 

RF  

PhyMRI 

AdaBoost  

cMRI + PhyMRI 
Human Reading 

1 Meta Meta Meta Meta Meta 

2 MNG MNG MNG MNG MNG 

3 GBM GBM Meta (error) GBM GBM 

4 GBM GBM GBM GBM GBM 

5 GBM GBM GBM GBM PCNSL (error) 

6 MNG MNG MNG MNG MNG 

7 Meta GBM (error) GBM (error) Meta AG (error) 

8 Meta GBM (error) GBM (error) GBM (error) Meta 

9 GBM GBM GBM GBM GBM 

10 GBM GBM GBM GBM GBM 

11 GBM GBM GBM GBM AG (error) 

12 GBM GBM Meta (error) Meta (error) Meta (error) 

13 AG AG AG AG AG 

14 GBM GBM GBM GBM GBM 

15 AG AG AG AG PCNSL (error) 

16 AG AG AG AG AG 

17 Meta GBM (error) Meta PCNSL (error) GBM (error) 

18 Meta PCNSL (error) Meta PCNSL (error) Meta 

19 GBM GBM GBM GBM GBM 

20 MNG GBM (error) GBM (error) GBM (error) MNG 

cMRI = conventional MRI; advMRI = biomarker maps for advanced MRI; phyMRI = physiological 

MRI; RF = random forest; Ada = adaptive boosting; GBM = glioblastoma; AG = anaplastic glioma 

WHO grade 3; MNG = meningioma; PCNSL = primary central nervous system lymphoma; Meta = 

metastasis. 

 

Figure 4. Representative case of a patient (number 20 in Table 5) suffering from a meningioma that 

was misclassified as GBM by all three best-performing ML classifiers but correctly classified by the 

radiologists. Contrast-enhanced (CE) T1w and FLAIR MRI data were conventional MRI (cMRI) 
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data; cMRI data combined with the quantitative maps of apparent diffusion coefficient (ADC) and 

cerebral blood volume (CBV) were advanced MRI (advMRI) data; physiological MRI (phyMRI) data 

included the quantitative maps of microvascular cerebral blood volume (μCBV), microvessel den-

sity (MVD) microvessel radius (VSI), microvessel type indicator (MTI), oxygen extraction fraction 

(OEF), cerebral metabolic rate of oxygen (CMRO2), and tissue oxygen tension (PO2), respectively. 

The radiologists had major problems in the classification of both GBM (three cases) and 

metastasis (two cases). One anaplastic glioma WHO grade 3 was misclassified as PCNSL. In-

terestingly, three of the six cases that were misclassified by the radiologists were correctly clas-

sified by all three ML models. The MRI data of a representative patient (number 15 in Table 5) 

is presented in Figure 5. On the other hand, the other three cases that were misclassified by 

the radiologists were also misclassified by two of the three ML models. The MRI data of a 

representative case (patient number 7 in Table 5) is depicted in Figure 6. 

 

Figure 5. Representative case of a patient (number 15 in Table 5) suffering from an anaplastic glioma 

(AG, WHO grade 3) who was misclassified as primary CNC lymphoma (PCNSL) by the radiologists 

but correctly classified by all three best-performing ML classifiers. Contrast-enhanced (CE) T1w and 

FLAIR MRI data were conventional MRI (cMRI) data; cMRI data combined with the quantitative 

maps of apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) were advanced MRI 

(advMRI) data; physiological MRI (phyMRI) data included the quantitative maps of microvascular 

cerebral blood volume (μCBV), microvessel density (MVD) microvessel radius (VSI), microvessel 

type indicator (MTI), oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO2), 

and tissue oxygen tension (PO2), respectively. 

 

Figure 6. Representative case of a patient (number 7 in Table 5) suffering from a brain metastasis 

that was misclassified by the radiologists and by two of the three ML models. Contrast-enhanced 
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(CE) T1w and FLAIR MRI data were conventional MRI (cMRI) data; cMRI data combined with the 

quantitative maps of apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) were 

advanced MRI (advMRI) data. Physiological MRI (phyMRI) data included the quantitative maps of 

microvascular cerebral blood volume (μCBV), microvessel density (MVD) microvessel radius (VSI), 

microvessel type indicator (MTI), oxygen extraction fraction (OEF), cerebral metabolic rate of oxy-

gen (CMRO2), and tissue oxygen tension (PO2), respectively. 

4. Discussion 

A precise and reliable characterization of contrast-enhancing brain tumors is essen-

tial for individualized therapy decisions but represents a major challenge in clinical neuro-

oncology. New metabolic, molecular, or physiologic neuroimaging methods that have 

been developed in recent decades have proven useful in improving diagnostic perfor-

mance. However, the associated increase in the amount of complex neuroimaging data to 

be evaluated requires the inclusion of AI methods in order to support clinicians and im-

plement applications in clinical routine. In this study, we demonstrated that the combina-

tion of ML technologies and high-dimensional radiomic features from phyMRI data were 

supportive of a reliably multiclass classification of contrast-enhancing brain tumors in a 

clinical setting. Multiclass classification models using adaptive boosting and random for-

est in combination with both advMRI and phyMRI data were superior to human reading 

in accuracy, precision, F-score, AUROC, and— the most clinically relevant aspect—clas-

sification error in an independent test cohort of 20 consecutive patients. The radiologists, 

however, showed a higher sensitivity and specificity. 

The vast majority of previous studies have used ML methods for the binary classifi-

cation of brain tumors, particularly to differentiate between two subgroups of gliomas, 

e.g., low-grade vs. high-grade [68–70] or isocitrate dehydrogenase (IDH) wild-type vs. 

mutated [71–74], or to differentiate between GBMs and brain metastases [75–79]. Tian et 

al. [80] assessed the discriminative ability of texture analysis using ML to distinguish GBM 

from anaplastic astrocytoma WHO grade 3. They used texture features from CE T1w MRI 

data of 123 high-grade glioma patients (76 GBM and 47 AGs) and achieved an averaged 

accuracy, sensitivity, specificity, and AUROC of 0.968, 0.927, 0.989, and 0.974, respec-

tively, using linear discriminant analysis and fivefold cross-validation. However, the au-

thors performed no evaluation of their model with an independent test cohort. Two recent 

studies also used only CE T1w MRI data for the ML-based binary classification of GBMs 

and brain metastases [77,79]. Both studies obtained the best performance with a model 

using a support vector machine. Ortiz-Ramon et al. [79] only used a fivefold cross-valida-

tion scheme and achieved an averaged sensitivity, specificity and AUROC of 0.82, 0.80, 

and 0.896, respectively. Qian et al. [77], however, performed a performance analysis with 

an independent test cohort and achieved an accuracy, sensitivity, specificity, and AUROC 

of 0.83, 0.80, 0.87, and 0.90, respectively, with their SVM-based model. Bae et al. [78] used 

CE T1w and T2w MRI data corresponding to our cMRI data and found that adaptive 

boosting was the best-performing traditional machine learning model (accuracy, 0.829; 

sensitivity, 0.800; specificity, 0.875; and AUROC, 0.890) for the differentiation of GBMs 

and brain metastases in an independent test cohort. 

Only a few studies used anatomical MRI data in combination with CBV and/or ADC 

data for the ML-based binary classification of brain tumors. Qin et al. [81] investigated the 

diagnostic performance of a histogram analysis of CBV maps combined with ML methods 

in the binary differentiation between GBMs and brain metastases. They found that their 

kNN-based model had the highest accuracy (0.95) and AUROC (0.94), and that data from 

the peritumoral edema were not useful for separating these two entities. The latter is in 

good agreement with our experience in the present study. Prof. Yamashita’s research 

group used cMRI data in combination with ADC maps, as well as with ADC and CBV 

maps, for an ML-based binary differentiation between GBMs and brain metastases [75] 

and GBMs and PCNSL [82], respectively. They found that ML models provided signifi-

cantly higher AUROC values for the differentiation between GBMs and brain metastases 
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(AUROC, 0.92; SVM-based model) [75], as well as for the differentiation between GBMs 

and PCNSL (AUROC, 0.98; extreme gradient boosting-based model) compared to radiol-

ogists (AUROC, 0.72–0.86) [82]. 

Just as few studies have used experimental neuroimaging techniques in combination 

with ML methods to classify brain tumors. Sartoretti et al. [76] evaluated the utility of 

CEST imaging in differentiating glial brain tumors (high- and low-grade gliomas) from 

brain metastases. They used a tenfold cross-validation in 48 patients, and a multilayer 

perceptron classifier yielded the best performance in distinguishing primary glial brain 

tumors from brain metastases: sensitivity, 0.813; specificity, 0.811; F-measure, 0.81; and 

AUROC, 0.836. Tatekawa et al. [73] used advMRI data (CE T1w, FLAIR, ADC, and CBV 

maps) and 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA) PET images of 62 pa-

tients in combination with ML in order to classify the IDH-gene status of gliomas. The 

parameters for classification performance of an SVM-based ML model using a leave-one-

out cross-validation strategy were as follows: accuracy, 0.76; sensitivity, 0.75; specificity, 

0.82; precision, 0.78; F1-score, 0.76; and AUC, 0.81, respectively. Wiestler et al. [68] as-

sessed the performance of ML models and advMRI, including qBOLD-based OEF, to dif-

ferentiate between GBM and glioma WHO grade 2/3. A random forest ML classifier 

yielded a fivefold cross-validated AUROC of 0.944, with 34 of 37 patients correctly classi-

fied (accuracy 91.8%). The patient numbers in these studies that used experimental neu-

roimaging techniques in combination with ML methods was expectedly low (37–62 pa-

tients). We were able to include 167 patients for training/validation and 20 consecutive 

patients for independent testing because we performed our phyMRI protocol in clinical 

routine diagnosis over several years. 

The performance parameters of the above-mentioned studies that used cMRI or 

advMRI data, respectively, are comparable to or higher than those obtained in our study. 

One reason for this is certainly that the studies performed only a binary classification. This 

requires patient selection prior to classification and with only two possible classes, and 

the probability and possibility of error is lower compared to the classification of the five 

classes. The multiclass approach, on the other hand, is closer to clinical reality. We selected 

the five most common brain tumor entities showing contrast enhancement for our study. 

However, this also represents a limitation of our study because non-tumorous processes 

with contrast-enhancement, such as brain abscesses, or less common brain tumors, such 

as ependymomas, were excluded. For these pathologies, the patient numbers (<5) were 

too low for machine learning. 

There are few studies on the multiclass classification of brain tumors using ML. Zach-

araki et al. [66] developed an ML-based classification method combining cMRI and CBV 

data and used it for the differential diagnosis of brain tumors (24 brain metastases, 4 men-

ingiomas, 22 gliomas WHO grade 2, 18 gliomas WHO grade 3, 34 GBMs). The highest 

average multiclass classification accuracy assessed by leave-one-out cross-validation was 

achieved using voting feature intervals (VFI; 76.3%) followed by kNN (75.3%) and naïve 

bayes (74.2%). Regarding brain tumor entity, metastasis (91.7%) and glioma WHO grade 

2 (90.9%) showed the highest classification accuracy, whereas the classification accuracy 

for GBM was reduced (29.4% were classified as glioma WHO grade 3 and 29.4% as me-

tastasis). The lowest classification rate in the multiclass problem was found for the glioma 

WHO grade 3; 44.4% were classified as glioma WHO grade 2 and 11.1% as GBM or me-

tastasis. Swinburne et al. [83] finally investigated whether the ML evaluation of advMRI 

data of 26 patients can reliably differentiate between GBMs (n = 9), brain metastases (n = 

9), and PCNSL (n = 8). A multilayer perceptron model discriminated between the three 

pathologic classes with a maximum accuracy of 69.2% using leave-one-out cross-valida-

tion. However, comparability to our results is limited, because they included fewer tumor 

entities and smaller patient numbers. Furthermore, no evaluation with an independent 

test cohort was carried out in these studies. 

Here, we performed an ML-based multiclass classification of the five most common 

contrast-enhancing brain tumor entities using advMRI and phyMRI training data from 
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167 patients. Applications in an independent test cohort revealed that AdaBoost showed 

the highest values for accuracy (0.875), precision (0.862), and F-score (0.774), and random 

forest showed the highest values for AUROC (0.886). Both ML algorithms were superior 

in these performance parameters and showed fewer classification errors compared to hu-

man readings. However, the performance of the radiologists was better in sensitivity and 

specificity. Our findings are in good agreement with Payabvash et al. [65], who found that, 

for the multiclass differentiation of the five most common posterior fossa tumors, random 

forest combined with advMRI data yielded an averaged AUROC of 0.873 in an independ-

ent test cohort, which was superior compared to human readings (AUROC of 0.799–

0.834). 

One of the most important advantages of ML-based classification over human read-

ing was the extraction and evaluation of quantitative and semi-quantitative image fea-

tures from routinely acquired neuroimaging data, which are usually beyond human per-

ception. In this context, it is interesting that all shape features that are most comparable to 

the qualitative assessment made by radiologists were excluded during feature selection. 

Shape features omit tumor heterogeneity and provide only morphologic parameters; 

therefore they are limited in their discriminative power. Texture analysis represents an 

efficient technique to quantify and characterize voxel-intensity distribution/heterogeneity 

on variable images. The derived high-ranked texture parameters determine an important 

textural characteristics of tumor heterogeneity and are more discriminative than the shape 

features of a differential diagnosis. The results confirm the fact that there is a very low 

probability of extracting insufficient textural information that is known for other cancers, 

such as breast and prostate. The LoG filter computes the average gradient direction in the 

vicinity of a point and provides neighborhood information by considering partial deriva-

tives, which also prove to be beneficial. 

We would like to address some limitations of our present study. This study included 

a relatively small number of patients for both the training/validation cohort (167 patients) 

and the test cohort (20 patients). Furthermore, all data were acquired at a single site with 

a single MRI scanner, which did not account for possible variations in examination proto-

cols as well as different magnetic field strengths and MR scanner setups. However, phys-

iological MR imaging, including oxygen metabolism, microvascular architecture, and ne-

ovascularization is still very rarely used in clinical routines, but this could change in the 

future with an increasing availability of the necessary data post-processing software. We 

also decided to perform traditional ML. The individual steps of the AI-based evaluation, 

i.e., data pre-processing, feature extraction and classification, are more transparent and 

easier to understand compared to deep learning approaches. Traditional ML models show 

a high stability and reproducibility due to their low complexity. However, all steps for 

data pre-processing and feature extraction as well as the application and tuning of ML 

classification algorithms have to be manually carried out. This is very time-consuming 

and labor-intensive, reducing compatibility with clinical routines as well as the number 

of patients that can be enrolled. Therefore, the implementation of deep neural networks 

for the classification of brain tumors as well as for therapy monitoring and recurrence 

detection in combination with physiological MRI data is the next logical step. Deep learn-

ing architectures with modern modules work very effectively and quickly, but place high 

demands on computer hardware, especially the graphics processing unit (GPU). This par-

ticularly applies to the processing of multi-parametric MRI data, such as 11 different MRI 

data sets for each patient in our study. At the time that this study was initiated, we did 

not have access to the appropriate hardware, which has since changed. Therefore, our 

future work will focus on the implementation of convolutional neural networks for brain 

tumor classification as well as for combined architectures of convolutional and recurrent 

neural networks in order to implement therapy monitoring and recurrence detection in 

combination with phyMRI data. The goal is to develop a clinical decision support system, 

as has already been described for other clinical issues [84–86]. 
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5. Conclusions 

In this paper, we introduced a novel concept, radiophysiomics, integrated with ML 

methods for an effective classification of contrast-enhancing brain tumors in a clinical set-

ting. In contrast to prior studies, we used a wealth of quantitative parameters extracted 

from phyMRI data, including microvascular architecture, neovascularization activity, tis-

sue oxygen metabolism and hypoxia. We determined based on a feature ranking as the 

most relevant discriminators a total number of up to 36 features per lesion, and employed 

nine robust ML algorithms. The best-performing ML models, adaptive boosting and ran-

dom forest, outperformed radiologists in the multiclass classification of contrast-enhanc-

ing brain tumors when combined with quantitative physiological MRI data in the accu-

racy (0.875 vs. 0.850), precision (0.862 vs. 0.798), F-score (0.774 vs. 0.740), AUROC (0.886 

vs. 0.813), and classification error (5 vs. 6). The radiologists, however, showed a higher 

sensitivity (0.767 vs. 0.750) and specificity (0.925 vs. 0.902). The radiophysiomics method 

provides insights into the tumor phenotype based on the radiomics signature with im-

portant diagnostic implications that have not yet been investigated. We demonstrated that 

ML-based radiophysiomics could be helpful in clinical routine diagnosis; however, a high 

expenditure of time and work requires the inclusion of deep neural networks. Further-

more, it is important to note that the clinical appliance has to be chosen by medical pro-

fessionals since the existing differences between the real image and the image generated 

by the proposed system could be substantial in the medical field. 

Supplementary Materials: The following supporting information can be downloaded at: 
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and neighboring gray-tone difference matrix (NGTDM) features (bottom). 
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