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Prognostic models allow clinicians to predict survival outcomes, facilitate patient–
physician discussions, and identify subgroups with potentially distinct prognoses. Al-
though such prognostic stratification cannot directly predict treatment benefit, it can help
to inform clinical decision making. This editorial will discuss potential avenues for these
topics in the context of colorectal cancer liver metastases (CRLM).

Several prognostic variables for CRLM have been described in the literature. The most
recent development is the inclusion of KRAS mutational status in prognostic models. The
use of two other potent biomarkers, TP53 and SMAD4, may further refine prognostication,
although tumors are not routinely tested for these somatic mutations [1,2]. In comparison,
primary tumor laterality is a surrogate of tumor biology that is readily available but has
yet to be included in prognostic scores that include biomarkers. It has the potential to
improve prognostication as it has a strong prognostic value that is partially independent
from RAS/RAF mutations [3]. An alternative approach is to create separate prognostic
models for subsets of patients with distinct tumor biologies (e.g., separate models for
those with KRASmut vs. wild-type tumors). In fact, the literature has demonstrated
that the prognostic value of clinicopathologic factors varies according to different tumor
biologies [4,5]. Specifically, prognostic factors gain or lose significance due to the absence
or presence of other variables. Relevant examples include the interplay of KRAS status
with tumor side and margin width [6,7]. Thus, a model trained in “all comers” may
perform sub-optimally because it cannot capture the aforementioned heterogeneity. The
development of separate prognostic models for patients with distinct tumor biologies can
also provide insight into the possible interactions of biomarkers with clinicopathologic
factors. A novel methodological approach is to apply machine learning (ML) methods to
develop a clinical prediction model. Unfortunately, only a few ML-based prognostic models
have been developed for patients with CRLM, and most of them use outdated techniques
such as CART. As interpretability is equally important to predictive power, causal forests
(an extension of Random Forests), which are causal inference learning methods and modern
classification trees, may be more appropriate than “black box” approaches such as gradient
boosting [8]. Of note, many of the current prognostic models lack external validation,
which can inform whether a model can be generalized outside the cohort that was used
to train it. Furthermore, the plethora of new prognostic models that incorporate genetic
information mandates studies that will compare model performance [9–12].

Prognostic models that use biomarkers can also help guide treatment decisions in areas
where prospective data are not conclusive, such as optimal patient selection for single stage
hepatectomy. For example, although we know that patients with a high GAME or m-CRS
score fare relatively poorly, we lack studies that compare the long-term outcomes of these
patients to those who received the best medical treatment [10,11]. This question cannot
ethically be answered using randomized trials, which is why these scores that harness
tumor biology can be useful. Another clinically relevant question is whether optimal
margin width can be tailored according to tumor biology. A few studies have reported on
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the outcomes of patients with R0 vs. R1 resections after stratifying by KRAS mutational
status, but more studies are needed before we can reach a consensus [13,14]. Furthermore,
only a few of these studies have attempted to find the optimal margin cut-off for patients
with KRASmut vs. wild-type tumors. Of note, no meta-analysis to date has collectively
analyzed these studies, although several have analyzed the outcomes of patients with
different margin widths without considering tumor biology [15]. Another grey area of
current CRLM management includes whether patients with upfront resectable CRLM
should get neoadjuvant chemotherapy and whether patients with resected CRLM should
receive adjuvant chemotherapy. The use of prognostic models that include biomarkers may
aid in decision making as randomized trials are inconclusive. For example, the value of
GAME score in guiding the decision of whether to offer perioperative chemotherapy has
been tested in the past; future studies can evaluate the use of other prognostic scores that
include biomarkers (e.g., e-CRS and m-CRS) for this purpose [16]. This may be particularly
important in light of a recent prospective study from Japan on the lack of benefit from
adjuvant chemotherapy in patients with “low risk” disease [17]. Optimizing follow-up
strategies for patients with distinct biologies is another unanswered question. Lastly,
although repeat hepatectomy is an established approach for patients with a recurrent
disease that is amenable to surgery, there is a paucity of prognostic scores that include
biomarkers for these patients. This is surprising as previous studies have suggested that
the association of KRAS with poor outcomes is pronounced in this setting [18]. Thus, the
development of prognostic models exclusively in patients with recurrent CRLM could help
guide patient selection for second surgeries.

There is also a scarcity of studies assessing the outcomes of patients with KRASmut
tumors who undergo two-stage hepatectomies (TSH) as well as the potential role of KRAS
and other biomarkers in predicting the risk of TSH dropout. Existing models assume that
variables interact in a linear and additive fashion and are constructed by assigning points
to each variable based on the odds ratio calculated in a logistic regression analysis. Those
points are added, and the sum corresponds to a certain risk of dropout. The mathematical
realities, however, suggest that the interactions among these factors may be far from
linear, and that variables gain or lose significance due to the absence or presence of other
variables. In turn, these linear predictive models do not capture these interactions between
predictors. The prognostic role of primary tumor laterality in conventional TSH is also
largely unknown. However, it has recently been suggested that KRASmut metastases that
originate from a right-sided primary portend extremely poor prognosis in patients who
undergo a novel form of TSH (ALPPS) [19]. Of note, KRAS status has not been shown to
be prognostic in patients who undergo liver transplantation (LT). In turn, it may be worth
investigating whether the “enhanced” RAS mutation (the triple RAS, SMAD4, and TP53
co-mutation) or the G12V KRAS point mutation that is associated with particularly poor
outcomes can be used to identify patients who may not benefit from LT [20]. Finally, the
nature of LT makes it ideal for tumors that recur within the liver but less ideal for tumors
that recur outside the liver. Thus, future studies may investigate whether codon specific
KRAS mutations, which are reportedly associated with an increased risk of extrahepatic
recurrences after CRLM resection, predict extrahepatic recurrences following LT [21].

Collectively, this Special Issue welcomes studies that explore the use of biomarkers
to refine prognosis and aid in the management of patients who undergo single stage
hepatectomy, two stage hepatectomies, and LT for CRLM.

Conflicts of Interest: The authors declare no conflict of interest.
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