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Simple Summary: Several statistical models exist to predict a person’s risk of breast cancer. Risk
assessment models can guide cancer screening approaches by identifying individuals who would
benefit from additional screening. In this study, we compared the performance of four models in
predicting the 5-year risk of breast cancer in a cohort of women aged 40–84 years who underwent
screening mammography at three large health systems. Models showed comparable discrimination
(ability to distinguish between cases and non-cases) and calibration (ability to accurately predict
risk) overall, with no difference by race. Model discrimination was poorer for some cancer subtypes,
and better for women with high BMI. The combined BRCAPRO+BCRAT model had improved
calibration and discrimination among women with a family history of breast cancer. Our results can
inform risk-based screening approaches by identifying women at a high risk of breast cancer.

Abstract: (1) Background: The purpose of this study is to compare the performance of four breast
cancer risk prediction models by race, molecular subtype, family history of breast cancer, age, and
BMI. (2) Methods: Using a cohort of women aged 40–84 without prior history of breast cancer who
underwent screening mammography from 2006 to 2015, we generated breast cancer risk estimates
using the Breast Cancer Risk Assessment tool (BCRAT), BRCAPRO, Breast Cancer Surveillance
Consortium (BCSC) and combined BRCAPRO+BCRAT models. Model calibration and discrimination
were compared using observed-to-expected ratios (O/E) and the area under the receiver operator
curve (AUC) among patients with at least five years of follow-up. (3) Results: We observed com-
parable discrimination and calibration across models. There was no significant difference in model
performance between Black and White women. Model discrimination was poorer for HER2+ and
triple-negative subtypes compared with ER/PR+HER2−. The BRCAPRO+BCRAT model displayed
improved calibration and discrimination compared to BRCAPRO among women with a family
history of breast cancer. Across models, discriminatory accuracy was greater among obese than
non-obese women. When defining high risk as a 5-year risk of 1.67% or greater, models demonstrated
discordance in 2.9% to 19.7% of patients. (4) Conclusions: Our results can inform the implementation
of risk assessment and risk-based screening among women undergoing screening mammography.
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1. Introduction

While breast cancer mortality has fallen over the past decade in the U.S., it remains
the second leading cause of cancer death among women, with 43,600 breast cancer deaths
projected in 2021 [1]. Identification of patients at high risk of developing breast cancer
could allow targeting of preventive and screening interventions to mitigate risk to fur-
ther reduce mortality. Specifically, risk-based screening approaches that tailor screening
initiation, interval, and supplemental screening to individual risk may increase bene-
fits and reduce harms of screening. Multiple validated risk assessment models have
been developed to quantify an individual woman’s risk of developing breast cancer [2].
The Breast Cancer Risk Assessment Tool (BCRAT, also known as the Gail model) utilizes age,
race/ethnicity, history of breast biopsy and atypical hyperplasia, first-degree family history
of breast cancer, age at menarche, and age at first birth to estimate risk [3–6]. The Breast
Cancer Surveillance Consortium (BCSC) model [7] utilizes age, race/ethnicity, first-degree
family history of breast cancer, breast biopsy and benign breast disease, and breast density,
as measured by the American College of Radiology Breast Imaging Reporting and Database
System [8]. The BRCAPRO model [9] was developed in the setting of women undergoing
genetic counseling and uses a detailed family history of breast and other cancers to estimate
risk both of a BRCA1/2 mutation and risk of breast cancer. Recently, the BRCAPRO model
was combined with the BCRAT model to create the BRCAPRO+BCRAT model [10] that
incorporates both factors in the BCRAT model and detailed family history.

Our prior work compared the BCRAT, BCSC, and BRCAPRO models in a cohort
of women undergoing mammography screening at a single institution [11]. We found
comparable moderate discrimination and good calibration of these three models; however,
we were unable to assess differences in model performance by race/ethnicity due to the
lack of diversity in the cohort. Few studies have evaluated the performance of breast cancer
risk models by race/ethnicity. Additionally, while we found poorer predictive accuracy of
the models for HER2+ and triple-negative breast cancers, the numbers of cancers of these
subtypes were small, limiting our ability to draw strong conclusions.

The purpose of the current study is to compare the performance of breast cancer risk
models for use in the setting of mammography screening, and specifically to evaluate model
performance among subgroups defined by race/ethnicity, by molecular subtypes, by family
history, and by obesity. Additionally, we performed validation of the recently developed
BRCAPRO+BCRAT model [10], utilizing three large mammography screening cohorts. We
evaluated the performance of BCRAT, BCSC, BRCAPRO, and BRCAPRO+BCRAT models
because these models utilize risk factors that are routinely collected during the course of
clinical care in these three health systems, and therefore the integration of one or more of
these risk models into clinical care for decision making is potentially feasible.

2. Materials and Methods
2.1. Study Population

We assembled three cohorts of women presenting for screening mammography at Mas-
sachusetts General Hospital (MGH), Newton-Wellesley Hospital (NWH), and the Univer-
sity of Pennsylvania Health System (UPenn) between 2006–2015, 2006–2015,
and 2011–2015, respectively. All mammograms included were digital or digital breast
tomosynthesis... The following patient-reported risk factors were collected via question-
naire at the time of the mammogram: age, race/ethnicity, age at menarche, age at first
birth, body mass index (BMI), history of breast biopsy, history of atypical hyperplasia or
benign breast findings, and family history of breast cancer. Breast density measurements
were pulled from radiology reports in electronic medical records (EMR) and were classified
based on the American College of Radiology’s Breast Imaging-Reporting and Data System
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(BI-RADS). EMR was also used to supplement missing survey information on the history
of breast biopsy, atypical hyperplasia, BMI, and history of prior breast cancer. At MGH,
the questionnaire asked whether women had ever had “benign tissue removed from the
breast” which was considered as evidence of atypical hyperplasia or benign breast findings.
Additionally, at MGH and NWH, we additionally included data from pathology reports on
diagnoses of atypical hyperplasia, lobular carcinoma in situ (LCIS), or lobular neoplasia.
At UPenn, women were asked whether they had previously been diagnosed with atyp-
ical hyperplasia. Additional detail about benign breast conditions was not available for
UPenn. Missing BMI specifically was supplemented with the closest measurement from
EMR within 1 year prior to or 6 months after the mammogram. The presence of BRCA1
and BRCA2 pathogenic genetic mutations was also collected from linkage with genetic
counseling records. We included the first mammogram visit over the time period for each
woman, using covariates collected at the time of the first mammogram visit in the cohort
for analysis (N = 91,094 at MGH; N = 54,032 at NWH; N = 48,035 at UPenn).

Patients with breast cancer prior to screening were excluded, as were patients di-
agnosed with cancer within 6 months of screening (Figure 1). For MGH and UPenn,
patients with breast implants were excluded; information on breast implants was not
available for NWH. Patients who did not fall between the ages of 40 and 84 were excluded,
as were those with known pathogenic BRCA1 or BRCA2 mutations since the BCRAT and
BCSC models are not appropriate for women with these mutations. Patients with less than
5 years of follow-up time and deceased patients with no date of death or no date of the
last contact were also excluded. Patients with missing BI-RADS breast density were ex-
cluded. These exclusions resulted in final analytic samples of 58,706 patients from MGH,
39,189 patients from NWH, and 24,661 patients from UPenn (Figure 1).

2.2. Outcomes

Breast cancer cases were determined through to 31 December 2017, using a combina-
tion of hospital cancer registries and state health department cancer registries. At MGH
and NWH, breast cancer diagnosis information was obtained from the Massachusetts
Cancer Registry, while at UPenn, breast cancer diagnosis information was obtained from
Pennsylvania, New Jersey, and Delaware state cancer registries. Invasive breast cancers
were categorized into molecular subtypes based on the expression of estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2).
Borderline ER and PR results were considered positive, while borderline HER2 results were
considered unknown [12]. Since this analysis predicted a 5-year absolute risk of breast
cancer, only patients with invasive breast cancer within 5 years were considered cases.
Patients with ductal carcinoma in situ (DCIS) were not considered as cases, since the risk
models considered the risk of invasive breast cancer.

2.3. Statistical Analysis

All patients were followed from the date of first screening mammogram visit until
breast cancer diagnosis, death, or administrative censoring on 31 December 2017. We es-
timated the 5-year absolute risk of breast cancer using the BCRAT, BCSC, BRCAPRO,
and BRCAPRO+BCRAT models and compared the results with observed breast can-
cer outcomes. Death was treated as a competing risk. We used the BCRA R pack-
age (v2.1) for BCRAT (https://dceg.cancer.gov/tools/risk-assessment/bcra, accessed
on 23 November 2021); the BayesMendel R package (v2.1-7) for BRCAPRO and BR-
CAPRO+BCRAT (https://projects.iq.harvard.edu/bayesmendel/bayesmendel-r-package,
accessed on 23 November 2021); and the BCSC SAS program (v2.0) for BCSC (https:
//tools.bcsc-scc.org/BC5yearRisk/sourcecode.htm, accessed on 23 November 2021).

https://dceg.cancer.gov/tools/risk-assessment/bcra
https://projects.iq.harvard.edu/bayesmendel/bayesmendel-r-package
https://tools.bcsc-scc.org/BC5yearRisk/sourcecode.htm
https://tools.bcsc-scc.org/BC5yearRisk/sourcecode.htm
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We assumed patients with missing data on atypical hyperplasia had no atypical
hyperplasia (N = 59,285, 48.37%) and that those with a missing number of biopsy exami-
nations had no such examinations (N = 18,549, 15.22%). Regarding missing menopause
status, any person over 55 or anyone who had stopped menstruating was categorized
as postmenopausal [13]. Anyone who did not meet this criterion was categorized as
premenopausal. For patients without, or with incorrect, or ambiguous family history
information (approximately 3% total), we assumed that they had no affected relatives.

We validated and compared the performance of BCRAT, BCSC, BRCAPRO,
and BRCAPRO+BCRAT with respect to the absolute risk of invasive breast cancer. We also
compared these models in subgroups defined by race/ethnicity, invasive molecular sub-
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types (ER/PR+HER2−, ER/PR+HER2+ or ER/PR−HER2+, or ER/PR/HER2−), a number
of affected first- or second-degree relatives, age <50 or ≥50 years, and BMI <30 kg/m2 or
≥30 kg/m2. We performed sensitivity analyses evaluating model performance by site and
comparing performance for Black and White women only at UPenn since the majority of
Black women were from that site.

Calibration of risk prediction models was evaluated by the observed to the expected
ratio (O/E), where the numerator is the observed count of invasive breast cancer cases
that arose within 5 years of the initial mammogram, and the denominator is the ex-
pected number of cases predicted by the model, obtained by the sum of the predicted
5-year absolute risk estimates. An O/E ratio of 1 indicates perfect calibration, an O/E
ratio >1 indicates that the model under-predicts the true number of cases, and an O/E ratio
<1 indicates that the model over-predicts the true number of cases. Calibration curves were
plotted as the observed proportion of breast cancer cases versus the predicted proportion of
breast cancer cases in each decile of predicted absolute risk. Discrimination was assessed by
area under the receiver operating characteristic curve (AUC). AUC measures the probability
that a prediction model provides higher absolute risk scores for cases than for non-cases.
An AUC of 0.5 indicates that the model performs no better than chance, while an AUC of
1 indicates perfect discrimination. The clinically recognized threshold for elevated 5-year
risk of breast cancer for chemoprevention is 1.67% [14,15]. This cutoff was used in calculat-
ing the true positive rate (TPR) (sensitivity) and the false positive rate (FPR (1—specificity)).
TPR was calculated as the proportion of cases who were categorized as high-risk by the
model and the FPR was calculated as the proportion of non-cases who were categorized as
high-risk by the model.

To obtain 95% confidence intervals (CI) for the performance metrics we generated
bootstrap samples and calculated metrics for each model in each bootstrapped sample [16].
To test the statistical significance of observed differences in AUCs across models and strata,
we calculated the difference in AUC between two models or two strata for each bootstrap
replicate, then calculated the test statistic as the observed difference in AUCs squared,
divided by the variance of the difference in AUC derived from the bootstrapped samples.
Using this statistic, we obtained p-values for the difference in AUC between pairwise
comparisons of models and strata using the Chi-square distribution with 1 degree of
freedom. All statistical tests were two-sided using an alpha of 0.05. In addition, we adjusted
for multiple comparisons (we performed a total of 34 model and strata comparisons)
by the Bonferroni method, with corrected p-values less than 0.00147 considered statistically
significant (p = 0.05/34 comparisons).

We also compared the proportion of patients categorized as high vs. low absolute risk,
comparing two models at a time and using the cutoff of 1.67% 5 years risk. All analyses were
performed using R statistical software (www.R-project.org, accessed on 23 November 2021).

3. Results

Table 1 displays the descriptive characteristics of the study population by site. Most
notably, the NWH population was younger than the MGH and UPenn populations,
the UPenn population included nearly 46% Black or African American women, and dis-
tributions of age at first birth, breast density, and the proportion of missing data differed
across sites. Among the 122,556 women in the study population, 1734 were diagnosed with
breast cancer within 5 years of their screening mammogram.

In the full study population (Table 2), the AUCs for the models ranged from 0.590
for BRCAPRO to 0.617 for the BCSC model. We observed significant differences in the
AUCs comparing BCRAT and BCSC (p = 0.010), BCRAT and BRCAPRO (p = 0.007), BCRAT
and BRCAPRO+BCRAT (p = 0.040), BCSC and BRCAPRO (p < 0.001), and BRCAPRO and
BRCAPRO+BCRAT (p < 0.001). The differences in AUC remained statistically significant
after Bonferroni correction for the comparisons of BRCAPRO and BCSC (p < 1 × 10−8)
and BRCAPRO and BRCAPRO+BCRAT. O/E ratios ranged from 1.036 for BCRAT to
1.185 for the BCSC model, and the O/E for the BCSC model was further away from 1.

www.R-project.org
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The true positive rate ranged from 30.7% for the BCSC model to 37.8% for the BCRAT
model, whereas the false positive rate ranged from 18.4% for BCSC to 24.3% for BRCAPRO.
The proportion of patients identified as having high 5-year risk differed across models,
with 18.6% of patients identified as high risk based on the BCSC model compared with
24.5% based on the BRCAPRO model. Comparable model performance was observed
across the three institutions (Appendix A Table A1).

Table 1. Risk factors by study site.

Risk Factors

MGH NWH UPenn

N = 58,706 N = 39,189 N = 24,661

N (%)

Age, mean +/− SD 52.57 +/− 9.55 51.37 +/− 8.82 55.6 +/− 9.29

Age
40–44 years 15,723 (26.78) 10,796 (27.55) 3966 (16.08)
45–49 years 9811 (16.71) 8380 (21.38) 3851 (15.62)
50–54 years 9246 (15.75) 6976 (17.80) 4154 (16.84)
55–59 years 8862 (15.10) 5245 (13.38) 4226 (17.14)
60–64 years 7047 (12.00) 3845 (9.81) 3787 (15.36)
65–69 years 4724 (8.05) 2400 (6.12) 2857 (11.59)
70–74 years 3293 (5.61) 1547 (3.95) 1820 (7.38)

Race/Ethnicity
White 48,072 (81.89) 35,394 (90.32) 11,312 (45.87)

Black or African American 3266 (5.56) 630 (1.61) 11,279 (45.74)
Hispanic 3177 (5.41) 392 (1.00) 560 (2.27)

Asian 3027 (5.16) 1545 (3.94) 920 (3.73)
Other/Unknown 1164 (1.98) 1228 (3.13) 590 (2.39)

Age at menarche
7 to 11 years 10,216 (17.40) 5895 (15.04) 4653 (18.87)
12 to 13 years 29,764 (50.70) 22,502 (57.42) 13,190 (53.49)
≤14 years 15,529 (26.45) 10,643 (27.16) 4445 (18.02)
Missing 3197 (5.45) 149 (0.38) 2373 (9.62)

Age at first birth
Nulliparous 15,673 (26.70) 7297 (18.62) 5794 (23.49)

<20 years 5721 (9.75) 1671 (4.26) 4731 (19.18)
20–24 years 11,652 (19.85) 5979 (15.26) 5001 (20.28)
25–29 years 11,349 (19.33) 9923 (25.32) 4671 (18.94)

≤30 12,217 (20.81) 14,124 (36.04) 3895 (15.79)
Missing 2094 (3.57) 195 (0.50) 569 (2.31)

Breast density
Almost entirely fat 4342 (7.40) 755 (1.93) 2359 (9.57)

Scattered fibroglandular tissue 23,145 (39.43) 9608 (24.52) 12,216 (49.54)
Heterogeneously dense 27,112 (46.18) 22,898 (58.43) 9162 (37.15)

Extremely dense 4107 (7.0) 5928 (15.13) 924 (3.75)

Menopausal
Pre-or peri-menopausal 24,645 (41.98) 19,235 (49.08) 11,971 (48.54)

Post-menopausal 34061 (58.02) 19,954 (50.92) 12,690 (51.46)
BMI, mean (SD) 27.21 (6.39) 26.2 (5.80) 29.46 (7.40)

Prior Breast Biopsy
None 57,807 (98.47) 32,788 (83.67) 19,764 (80.14)
One 541 (0.92) 4656 (11.88) 4259 (17.27)

Two or more 358 (0.61) 1745 (4.45) 638 (2.59)

Prior atypical
hyperplasia/benign breast

findings 1
849 (1.45) 204 (0.52) 91 (0.37)
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Table 1. Cont.

Risk Factors

MGH NWH UPenn

N = 58,706 N = 39,189 N = 24,661

N (%)

Age, mean +/− SD 52.57 +/− 9.55 51.37 +/− 8.82 55.6 +/− 9.29

No. of first-degree relatives with
breast cancer (%)

None 51,037 (86.94) 32,666 (83.36) 20,756 (84.17)
One 7093 (12.08) 5865 (14.97) 3500 (14.19)

Two or more 576 (0.98) 658 (1.68) 405 (1.64)

Age
No. of second-degree relatives

with breast cancer (%)
None 51,285 (87.36) 28,052 (71.58) 21,893 (88.78)
One 5818 (9.91) 7764 (19.81) 2169 (8.80)

Two or more 1603 (2.73) 3373 (8.61) 599 (2.43)

No. of first or second degree
relatives with ovarian cancer (%)

None 58,646 (99.90) 39,152 (99.91) 23,644 (95.88)
One 58 (0.10) 7 (0.02) 919 (3.73)

Two or more 2 (0.00) 30 (0.08) 98 (0.40)

5-year invasive cancer subtype,
N (%)

ER/PR+HER2− 619 (57.31) 379 (56.48) 318 (55.99)
ER/PR+HER2+ 77 (7.13) 55 (8.20%) 30 (5.28)
ERPR−HER2+ 29 (2.69) 15 (2.24) 18 (3.17)
ERPR−HER2− 58 (5.37) 36 (5.37) 38 (6.69)

Invasive cancer, missing subtype 21 (1.94) 27 (4.02) 14 (2.46)
1 At MGH, patients reported if they’d ever had benign tissue removed from the breast. At both MGH and NWH,
we also included pathology report data on atypical hyperplasia, LCIS, or lobular neoplasia. At UPenn, patients
self-reported prior atypical hyperplasia.

Table 2. Overall performance of risk models 1.

Performance
Metric

All Sites (N = 1734 Cases & 120,822 Non-Cases)
BCRAT BCSC BRCAPRO BRCAPRO+BCRAT

Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

O/E 1.036 0.989, 1.084 1.185 1.130, 1.239 1.076 1.027, 1.125 1.063 1.014, 1.112
AUC 1 0.604 0.590, 0.618 0.617 0.603, 0.630 0.590 0.578, 0.603 0.608 0.594, 0.621

TPR 0.378 0.354, 0.402 0.307 0.284, 0.328 0.358 0.338, 0.378 0.347 0.324, 0.368
FPR 0.238 0.235, 0.240 0.184 0.181, 0.186 0.243 0.241, 0.245 0.217 0.215, 0.219

Patients with
high

5-year risk, N
(%)

29,396
(23.99) - 22,751

(18.56) - 30,016
(24.49) - 26,830

(21.89) -

1 p-values for difference in AUC: BCRAT vs. BCSC p = 0.010, BCRAT vs. BRCAPRO p = 0.007, BCRAT
vs. BRCAPRO+BCRAT p = 0.040, BCSC vs. BRCAPRO p < 0.001, BCSC vs. BRCAPRO+BCRAT p = 0.071,
BRCAPRO vs. BRCAPRO+BCRAT p < 0.001. Bonferroni corrected p-values remain significant for BCSC
vs. BRCAPRO and BRCAPRO vs. BRCAPRO+BCRAT.

We compared calibration curves for the four models by plotting observed vs. predicted
probabilities of breast cancer by deciles (Figure 2). We observed good calibration across
deciles for each model. The BCSC model slightly under-predicted the number of cases
across all deciles, whereas the BCRAT model under-predicted the number of cases for those
in the highest decile.
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Model performance stratified by race/ethnicity is displayed in Table 3. There were
209 breast cancers diagnosed among Black or African American women. Among Black or
African American women, the AUCs ranged from 0.610 for BRCAPRO to 0.644 for BCSC,
though the differences in AUC by race did not reach statistical significance.
In addition, there was no significant difference in AUCs for any model between Black
or African American and White women. O/E ratios ranged from 1.054 for BRCAPRO
to 1.316 for BCSC. The numbers of cancers among Hispanic (N = 32) and Asian women
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(N = 54) in the study population were small, so results should be interpreted with caution.
In the sensitivity analysis limited to women at UPenn, there was no significant differ-
ence in the AUC between Black and White women for the BCRAT or BCRAT+BRCAPRO,
but BCSC (p = 0.006) and BRCAPRO (p = 0.049) had significantly higher AUC among
Black compared with White women, though the O/E ratio for both Black (O/E = 1.40)
and White (O/E = 1.41) women at UPenn indicated under-prediction of cancer cases for
BCSC (Appendix C Table A2).

Table 3. Performance of risk models by race/ethnicity 1.

Performance Metric by
Race/Ethnicity BCRAT BCSC BRCAPRO BRCAPRO+BCRAT

White (N = 1411 cases) Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI
O/E 1.031 0.98, 1.082 1.183 1.124, 1.242 1.100 1.045, 1.154 1.063 1.012, 1.116
AUC 0.601 0.588, 0.613 0.607 0.595, 0.621 0.581 0.567, 0.596 0.604 0.59, 0.616
TPR 0.410 0.387, 0.432 0.337 0.311, 0.361 0.378 0.352, 0.404 0.377 0.351, 0.402
FPR 0.270 0.267, 0.273 0.215 0.212, 0.217 0.269 0.266, 0.272 0.244 0.241, 0.246

Patients with high
5-year risk, N (%)

25,777
(27.2) - 20,503

(21.63) - 25,628
(27.04) - 23,275

(24.56) -

Black or African American
(N = 209 cases)

O/E 1.100 0.964, 1.24 1.316 1.155, 1.483 1.054 0.924, 1.186 1.141 1.000, 1.287
AUC 0.614 0.581, 0.647 0.644 0.606, 0.675 0.610 0.577, 0.646 0.617 0.585, 0.653
TPR 0.321 0.267, 0.382 0.225 0.171, 0.282 0.378 0.319, 0.445 0.287 0.234, 0.350
FPR 0.175 0.169, 0.181 0.103 0.098, 0.107 0.244 0.237, 0.251 0.169 0.164, 0.175

Patients with high 5-year risk,
N (%)

2689
(17.72) - 1584

(10.44) - 3738
(24.63) - 2588

(17.05) -

Hispanic (N = 32 cases)
O/E 0.748 0.492, 0.983 1.028 0.68, 1.354 0.840 0.552, 1.106 0.934 0.614, 1.223
AUC 0.583 0.489, 0.699 0.582 0.491, 0.671 0.570 0.495, 0.645 0.567 0.467, 0.668
TPR 0.063 0.000, 0.172 0.000 0.000, 0.000 0.000 0.000, 0.000 0.000 0.000, 0.000
FPR 0.051 0.044, 0.057 0.020 0.016, 0.024 0.006 0.004, 0.008 0.024 0.02, 0.029

Patients with high 5-year risk,
N (%) 209 (5.06) - 81 (1.96) - 24 (0.58) - 100

(2.42) -

Asian (N = 54 cases)
O/E 1.588 1.172, 1.999 1.157 0.860, 1.458 0.962 0.714, 1.212 1.054 0.781, 1.327
AUC 0.557 0.476, 0.641 0.621 0.555, 0.705 0.617 0.542, 0.703 0.588 0.506, 0.656
TPR 0.000 0.000, 0.000 0.037 0.000, 0.093 0.000 0.000, 0.000 0.037 0.000, 0.093
FPR 0.021 0.018, 0.025 0.017 0.014, 0.021 0.004 0.003, 0.006 0.068 0.062, 0.075

Patients with high 5-year risk,
N (%) 116 (2.11) - 96 (1.75) - 23 (0.42) - 373

(6.79) -

1 p-values for comparisons of AUCs for risk models by race/ethnicity are not statistically significant.

Table 4 displays the performance of the risk models by molecular subtype. Given
that the models are not trained to predict subtype-specific risk, we did not assess model
calibration. AUCs were lower for triple-negative (N = 132, AUC range 0.564–0.585)
and HER2+ cancers (N = 224, AUC range 0.513–0.567) compared with ER/PR+HER2− can-
cers (N = 1316, AUC range 0.605–0.629). The differences in AUCs between ER/PR+HER2−
disease and HER2+ disease were statistically significant (all p-values < 0.009), but differ-
ences did not reach statistical significance for ER/PR+HER2− compared with ER/PR/
HER2− (triple-negative breast cancer, TNBC). After Bonferroni correction, the difference in
AUC for BRCAPRO between ER/PR+HER2− and HER2+ disease remained statistically
significant (p < 1 × 10−5).

Table 5 displays model performance stratified by family history of breast cancer, age,
and BMI. For women with a family history, breast cancers were under-predicted for all mod-
els (O/E range 1.263–1.509). AUC estimates were significantly higher for patients with fam-
ily history than without family history for the BCRAT (p = 0.019)
and BRCAPRO+BCRAT (p = 0.016) models. These differences were no longer statisti-
cally significant after the Bonferroni correction. O/E ratios for all models among patients
with a family history were further from 1 than those without a family history, and confi-
dence intervals did not overlap, suggesting cases were underpredicted for patients with
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a family history (Appendix B Figure A1). For women under 50, O/E ratios indicated
under-prediction of cancers. AUCs did not differ significantly by age. For BMI, all four
models had significantly higher AUCs among obese compared with non-obese women
(BCRAT p = 0.004, BCSC p < 0.001, BRCAPRO p = 0.001, BRCAPRO+BCRAT p = 0.012). Both
the BCSC model and the BRCAPRO model had significantly higher AUC among obese
women compared with non-obese women after adjusting for multiple comparisons (BCSC
p = 0.000025, BRCAPRO p = 0.0012). However, the under-prediction was more severe for
BCSC and BRCAPRO among women with high BMI compared with lower BMI.

Table 4. Performance of risk models by molecular subtypes.

Performance Metric by Subtype BCRAT 1 BCSC 2 BRCAPRO 3 BRCAPRO+BCRAT 4

ER/PR+HER2−
(N = 1316 cases) Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

AUC 0.616 0.603, 0.631 0.629 0.615, 0.645 0.605 0.590, 0.621 0.621 0.606, 0.636
TPR 0.390 0.363, 0.417 0.313 0.290, 0.337 0.384 0.360, 0.410 0.358 0.331, 0.384
FPR 0.238 0.236, 0.240 0.184 0.182, 0.186 0.243 0.241, 0.245 0.217 0.215, 0.219

Patients with high 5-year risk, N (%) 29,253
(23.95) - 22,630

(18.53) - 29,902
(24.48) - 26,699

(21.86) -

All HER2+
(N = 224 cases)

AUC 0.560 0.525, 0.600 0.567 0.535, 0.610 0.513 0.479, 0.553 0.561 0.526, 0.599
TPR 0.330 0.270, 0.390 0.281 0.236, 0.338 0.246 0.200, 0.307 0.299 0.248, 0.353
FPR 0.238 0.235, 0.240 0.184 0.182, 0.186 0.243 0.241, 0.246 0.217 0.215, 0.219

Patients with high 5-year risk, N (%) 28,794
(23.80) - 22,266

(18.40) - 29,438
(24.33) - 26,278

(21.72) -

ER/PR/HER2−
(N = 132 cases)

AUC 0.570 0.516, 0.617 0.585 0.546, 0.630 0.564 0.522, 0.604 0.569 0.513, 0.621
TPR 0.348 0.252, 0.430 0.295 0.215, 0.375 0.295 0.216, 0.369 0.303 0.220, 0.380
FPR 0.238 0.236, 0.240 0.184 0.182, 0.186 0.243 0.241, 0.246 0.217 0.215, 0.219

Patients with high 5-year risk, N (%) 28,786
(23.80) - 22,257

(18.40) - 29,435
(24.34) - 26,268

(21.72) -

1 p-values for differences in AUCs for BCRAT: ER/PR+HER2− vs. HER2+ p = 0.008, ER/PR+HER2− vs. TNBC
p = 0.084. 2 p-values for differences in AUCS for BCSC: ER/PR+HER2− vs. HER2+ p = 0.002, ER/PR+HER2−
vs. TNBC p = 0.081. 3 p-values for differences in AUCS for BRCAPRO: ER/PR+HER2− vs. HER2+ p < 0.001,
ER/PR+HER2− vs. TNBC p = 0.100. 4 p-values for differences in AUCS for BRCAPRO+BCRAT: ER/PR+HER2−
vs. HER2+ p = 0.003, ER/PR+HER2− vs. TNBC p = 0.063.

Table 6 displays a cross-tabulation of high (≥1.67% 5 years risk) versus low absolute
risk classification for all possible pairs of models. Overall, the proportion of discordant
classifications ranged from 2.9% for the comparison of BCRAT with BRCAPRO+BCRAT
(0.5% + 2.4%) to 19.7% for the comparison of BCSC with BRCAPRO (13.6% + 6.1%). BCSC
classified more patients as low risk than other models. Nearly 10% of patients were
classified as high risk with the BCRAT model but low risk with BCSC, whereas only
5.7% of patients were classified as low risk on BCRAT and high risk on BCSC. Almost
14% of patients classified as high risk by BRCAPRO were classified as low risk by BCSC,
while only 6.1% of patients considered a low risk on BRCAPRO were considered high
risk with BCSC. Comparing BCRAT and BRCAPRO, 7.8% of women who were high risk
on BCRAT were classified as low risk by BRCAPRO, while 11.1% of women who were
high risk on BRCAPRO were classified as low risk by BCRAT. The proportions of patients
classified differently by the BRCAPRO+BCRAT model compared with the BCRAT model
were smaller.
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Table 5. Performance of risk models by family history of breast cancer, age, and BMI.

Family History 1 No Family History of Breast Cancer (N = 1340 Cases)

BCRAT BCSC BRCAPRO BRCAPRO+BCRAT

Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

O/E 0.982 0.934, 1.045 1.115 1.061, 1.186 1.007 0.959, 1.07 1.016 0.966, 1.081
AUC 0.594 0.582, 0.61 0.612 0.601, 0.625 0.588 0.575, 0.601 0.597 0.584, 0.613
TPR 0.352 0.328, 0.377 0.284 0.262, 0.311 0.361 0.339, 0.385 0.316 0.293, 0.342
FPR 0.231 0.229, 0.235 0.179 0.177, 0.181 0.248 0.245, 0.251 0.208 0.205, 0.211

High 5-year risk,
N (%)

23,590
(23.3) - 18,253

(18.03) - 25,270
(24.96) - 21,173

(20.92) -

Family History of Breast Cancer (N = 394 cases)

O/E 1.273 1.161, 1.42 1.509 1.38, 1.686 1.402 1.283, 1.569 1.263 1.153, 1.408
AUC 0.633 0.607, 0.659 0.631 0.603, 0.657 0.597 0.571, 0.625 0.636 0.611, 0.666
TPR 0.467 0.42, 0.519 0.386 0.337, 0.428 0.345 0.295, 0.392 0.454 0.405, 0.501
FPR 0.269 0.262, 0.275 0.208 0.202, 0.213 0.220 0.213, 0.227 0.262 0.256, 0.268

High 5-year risk,
N (%)

5806
(27.22) - 4498

(21.09) - 4746
(22.25) - 5657

(26.53) -

Age 2 <50 (N = 567 cases)

O/E 1.150 1.067, 1.251 1.386 1.287, 1.508 1.219 1.134, 1.325 1.144 1.062, 1.244
AUC 0.590 0.568, 0.616 0.617 0.593, 0.642 0.566 0.544, 0.594 0.592 0.569, 0.62
TPR 0.136 0.11, 0.161 0.067 0.048, 0.088 0.019 0.009, 0.03 0.129 0.102, 0.153
FPR 0.055 0.053, 0.057 0.023 0.021, 0.024 0.009 0.008, 0.01 0.052 0.051, 0.054

High 5-year risk,
N (%) 2947 (5.61) - 1216 (2.31) - 463 (0.88) - 2788 (5.31) -

≥50 (N = 1167 cases)

O/E 0.989 0.929, 1.034 1.107 1.041, 1.16 1.018 0.958, 1.064 1.028 0.966, 1.075
AUC 0.582 0.564, 0.598 0.595 0.579, 0.608 0.571 0.555, 0.586 0.588 0.57, 0.603
TPR 0.496 0.467, 0.524 0.424 0.396, 0.449 0.522 0.496, 0.549 0.453 0.424, 0.479
FPR 0.376 0.372, 0.379 0.306 0.302, 0.309 0.420 0.417, 0.424 0.341 0.338, 0.345

High 5-year risk,
N (%)

26,449
(37.77) - 21,535

(30.75) - 29,553
(42.20) - 24,042

(34.33) -

Body Mass Index 3 BMI < 30 kg/m2 (N = 999 cases)

O/E 1.080 1.019, 1.15 1.188 1.122, 1.265 1.128 1.066, 1.2 1.102 1.040, 1.173
AUC 0.588 0.569, 0.604 0.597 0.58, 0.612 0.568 0.552, 0.586 0.594 0.576, 0.613
TPR 0.353 0.328, 0.382 0.305 0.277, 0.334 0.309 0.289, 0.339 0.327 0.300, 0.358
FPR 0.236 0.233, 0.239 0.205 0.202, 0.209 0.233 0.23, 0.237 0.217 0.213, 0.220

High 5-year risk,
N (%)

16,254
(23.76) - 14,157

(20.7) - 16,048
(23.46) - 14,934

(21.83) -

BMI ≥ 30 kg/m2 (N = 428 cases)

O/E 1.164 1.054, 1.264 1.525 1.384, 1.661 1.179 1.071, 1.285 1.206 1.091, 1.309
AUC 0.634 0.612, 0.657 0.661 0.639, 0.683 0.617 0.592, 0.639 0.634 0.609, 0.659
TPR 0.428 0.388, 0.468 0.250 0.215, 0.283 0.432 0.389, 0.477 0.390 0.348, 0.435
FPR 0.231 0.226, 0.236 0.111 0.107, 0.114 0.267 0.26, 0.273 0.212 0.208, 0.218

High 5-year risk,
N (%)

6268
(23.42) - 3032

(11.33) - 7212
(26.94) - 5755 (21.5) -

1 p-value for difference in AUCs for women with and without family history BCRAT p = 0.019, BRCAPRO+BCRAT
p = 0.016. No significant associations after Bonferroni correction. 2 No statistically significant differences in AUCs
for risk models by age. 3 p-value for difference in AUCs between women with BMI < 30 kg/m2 and women with
BMI ≥ 30 kg/m2: BCRAT p = 0.004, BCSC p < 0.001, BRCAPRO p = 0.001, BRCAPRO+BCRAT = 0.012. Differences
for BCSC and BRCAPRO remained statistically significant after Bonferroni correction.



Cancers 2022, 14, 45 12 of 21

Table 6. Concordance between 5-year high-risk estimates across models.

Risk Model Risk Level

BCSC BRCAPRO BRCAPRO+BCRAT

N (% of Total) N (% of Total) N (% of Total)

High Low High Low High Low

BCRAT
High 15,995 (13.05) 13,401 (10.93) 17,880 (14.59) 11,516 (9.4) 25,826 (21.07) 3570 (2.91)
Low 6756 (5.51) 86,404 (70.5) 12,136 (9.9) 81,024 (66.11) 1004 (0.82) 92,156 (75.2)

BCSC
High - - 14,297 (11.67) 8454 (6.9) 15,013 (12.25) 7738 (6.31)
Low - - 15,719 (12.83) 84,086 (68.61) 11,817 (9.64) 87,988 (71.79)

BRCAPRO
High - - - - 17,537 (14.31) 12,479 (10.18)
Low - - - - 9293 (7.58) 83,247 (67.93)

4. Discussion

Our study is one of the largest to examine the validity of multiple breast cancer risk
prediction models simultaneously in a large and diverse sample of women undergoing
mammography screening, allowing comparisons of model performance by race/ethnicity,
tumor molecular subtypes, family history, and obesity. We found that model performance
was comparable across the four models examined, with moderate discriminatory accuracy,
and generally good calibration, consistent with previous estimates [7,17–30]. The BCSC
model had the highest AUC but under-predicted the number of cancer cases to a greater
degree than the other models. We found no evidence of poorer model performance for
Black or African American women compared with White women. AUC estimates were
consistently higher for Black or African American women compared to White women,
though not statistically significantly different, except among women at UPenn, where
the AUC was better for BCSC and BRCAPRO models for Black compared with White
women. With the exception of the BRCAPRO model, the O/E ratio was further from 1
for Black or African American women compared to White women, indicating that models
under-predicted the number of cases among Black or African American women. Model
discriminatory accuracy was poorer for HER2+ than ER/PR+HER2− disease across all
models, and also lower for TNBC than ER/PR+HER2− disease, however, the difference
was not statistically significant for TNBC. This is the first study to validate the combined
BRCAPRO+BCRAT model, which has significantly better discriminatory accuracy than
BRCAPRO in this screening population. BCRAT and BRCAPRO+BCRAT had better AUC
among women with family history than women without a family history, though O/E ratios
were further from 1 for women with family history compared to those without. Across all
models, AUCs were higher for obese women than non-obese women, but the calibration
was poorer, with under-prediction of cases among obese women. While overall there
was good concordance in the patients identified as high and low absolute risk, we found
anywhere from 2.4% to 19.7% discordance in pairwise comparisons of the proportions of
patients identified as high versus low risk across the models. These findings add to the
literature and provide useful performance metrics to consider when selecting breast cancer
risk assessment models, and also highlight the complications when applying risk models
clinically and the need for improved risk assessment tools.

The measures of calibration and discrimination of the models observed in our study
are generally consistent with existing literature [7,17–30]. This suggests that there is no
clear winner in terms of which risk model to use for the purpose of directing screening.
However, while we found that the models largely agreed on which patients were high risk,
there was variation across models. Interestingly, the BCSC model was more likely to classify
women as having low risk when compared with the BCRAT model and the BRCAPRO
model. While the choice of model may have only marginal differences at the population
level, our results highlight that the choice of model may lead to a different assessment of
high-risk status for individual women. In the case of supplemental screening, different
recommendations would be made if only one model is used compared to if multiple models
are used, and an individual is considered high-risk based on any of the applied models.
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If the goal is to increase the number of women identified as high risk, we might take the
latter approach. If the goal is to minimize the use of resources and unnecessary procedures,
we may use only one model or set a higher threshold for high-risk status. Answering such
questions is key to implementing a risk-based approach to screening.

Our study found no significant difference in model performance between Black or
African American and White women. To our knowledge, ours is the first study to compare
the performance of multiple breast cancer risk prediction models simultaneously for White
and Black women. AUCs tended to be higher for Black or African American than White
women, and calibration tended to be poorer for Black or African American than White
women, though p-values for differences in AUCs were not significant, and confidence
intervals for O/E ratios for Black or African American and White women were overlapping.
Despite our large population, there were only 209 breast cancers diagnosed among Black or
African American women, which may limit our power to detect differences. The original
BCRAT model was found to underestimate risk among Black or African American women
and was therefore updated to better predict breast cancer risk for Black or African American
women based on the results of the Women’s Contraceptive and Reproductive Experiences
(CARE) study [5]. However, even after this update, the BCRAT model was still shown to
significantly underestimate risk in a study that included 725 cases and 725 controls from
the Black Women’s Health Study [31]. Validation of the BCSC model among women under-
going mammography screening showed that risk was under-predicted for non-Hispanic
Black women, though the confidence interval of the observed to expected ratio overlapped
with that for White women [28]. The AUC of the BCSC model among Black women was
not reported in this study. While discrimination and calibration were comparable across
models for Black or African American and White women in our study, all risk models
identified a smaller proportion of Black or African American than White women as high
risk. For example, over 21% of White women were identified as having high 5 years risk
based on the BCRAT model, compared with 10% of Black or African American women.
This illustrates the fact that using existing risk models to direct supplemental screening
will result in fewer Black or African American women than White women qualifying
for additional imaging. While historically Black or African American women in the U.S.
have had lower breast cancer mortality than White women, breast cancer incidence has
increased for Black or African American women over the past 20 years, with incidence
rates now very close to those of White women (127.3 vs. 131.6 per 100,000 women) [1].
Future research should closely evaluate the potential effects of using risk models to guide
prevention measures on racial disparities in breast cancer.

Our results further suggest that risk models do not identify the risk of triple-negative
or HER2+ tumors as well as hormone receptor-positive HER2− tumors. Our results are
consistent with an analysis of the Women’s Health Initiative, which showed that the BCRAT
model predicted ER+ breast cancers, but not ER− breast cancers [21] and with our prior
analysis with a smaller sample [11]. Given that HER2+ and TNBCs are more aggressive, fu-
ture studies should attempt to build subtype-specific risk prediction models. Identification
of risk of poor prognosis cancers would allow targeting of prevention strategies such as
intensive screening to women at greatest risk for breast cancer death. Thus far, the lower
prevalence of both HER2+ and triple-negative tumors have limited the ability to generate
subtype-specific models.

BRCAPRO and BRCAPRO+BCRAT use more extensive family history data than the
BCSC and BCRAT models. In this screening cohort, approximately 20% of patients had
any family history of breast cancer, including first or second-degree relatives. We found
that BRCAPRO+BCRAT had significantly better AUC than BRCAPRO and calibration was
very similar for both models overall, and among the subset of women with family history.
This highlights the need to balance between a potentially small increased accuracy of risk
assessment including extended family history, and the additional time and computational
burden of collecting and analyzing extensive family history data. It is important to note
that detailed family history assessment has the added benefit of identifying patients who
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may be at high risk for high and moderate penetrance mutations such as BRCA1/2 who
may benefit from genetic testing.

We found significantly higher AUC across models among obese women compared
with non-obese women, though calibration was poorer for obese women, particularly for
the BCSC model. While none of the existing models include BMI as a predictor, the BCSC
model does incorporate breast density, which is highly correlated with BMI, with women
with higher BMI having lower breast density on average. Therefore, the BCSC model
likely downgrades risk for many obese women given their lower breast density, leading
to under-prediction of risk. Breast density as coded by the radiologist has been shown
to have poor reproducibility [32]. Novel measures of breast density, such as quantitative
measures of volumetric breast density from digital breast tomosynthesis may prove a better
risk marker than radiologist-coded breast density, particularly for obese women. A recent
study found that the effect of volumetric breast density on breast cancer risk was strongest
in overweight and obese women [33], suggesting that risk models may need to incorporate
these novel measures and include interaction terms between density and BMI in order to
improve risk assessment for obese women. Given that the prevalence of obesity is large and
increasing, and that obese women are more likely to be diagnosed with more aggressive
diseases [34,35], the inclusion of BMI in risk models should be explored, with a closer
evaluation of how to best predict risk among women with high BMI.

To our knowledge, this is one of the largest studies to compare multiple breast cancer
risk models among women undergoing mammography screening in the U.S. The large and
diverse cohort enabled comparisons of model performance by race/ethnicity, molecular
subtypes, family history, age, and BMI. Additionally, we were able to evaluate a novel
combination of the BRCAPRO and BCRAT model, BRCAPRO+BCRAT, that may be useful
for patients with an extensive family history of breast and ovarian cancers. Our findings
provide directions for future research by identifying subsets of the population for which
existing models may have suboptimal performance.

Several limitations should be noted when interpreting the findings. We were unable
to include the IBIS/Tyrer-Cuzick model because we lacked sufficient data on the use
of menopausal hormone therapy for input to this model. Due to the small number of
Hispanic and Asian/Pacific Islander patients, there were too few cancer outcomes to make
meaningful inferences on the performance of the risk models in these racial/ethnic groups.
There were 209 breast cancers among Black or African American women, which is also a
relatively small sample. Most of the Black or African American patients were screened at
one of the three sites, and therefore results for Black or African American patients may
be confounded by site-specific measurement biases. In addition, the data on prior biopsy
from MGH was incomplete. However, we believe the data on atypical hyperplasia to be
reasonably accurate since it incorporated both self-reported data and information extracted
from biopsy reports. However, we lacked data on other benign breast conditions, such as
non-proliferative benign breast diseases and proliferative benign breast diseases without
atypia. While the BCRAT uses atypical hyperplasia, the BCSC model uses benign breast
disease, and therefore we may be underestimating risk among patients since we do not
have full data on benign breast diseases. This highlights the broader concern, that there
is variation in data quality across risk factors and across sites. However, this is the reality
when data collected for clinical purposes is utilized for risk assessment. The inclusion of
three cohorts with slightly different risk collection instruments may help in reducing the
effect of misclassification of risk factors at any one site on the results. We treated patients
diagnosed with DCIS as non-cases since the risk models considered focus on the risk of
invasive breast cancer. However, since risk factors for DCIS and invasive cancer share
common risk factors, this may have led to the poorer observed performance of our models.
Additionally, the purpose of this study was to evaluate risk models that would be feasible
to integrate into clinical care in mammography to support decision-making in the general
population. We excluded known BRCA1/2 carriers because the BCRAT and BCSC risk
models are specifically designed to predict risk in non-carriers. There were fewer BRCA1/2
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carriers at NWH than MGH and UPenn, which is partly expected, as NWH is a community
hospital, whereas MGH and UPenn have large cancer genetics clinics. It is also possible that
BRCA1/2 mutation status was less well annotated in health records at NWH, and we may
have included some BRCA1/2 mutation carriers in the analysis, which may bias results in
unknown ways. However, given the small prevalence of BRCA1/2 mutations in the general
population, we expect the magnitude of this bias to be small. Finally, we lacked genetic data
to incorporate polygenic risk scores into risk models, which has been shown to improve
predictive accuracy. A recent study showed that adding the 313 SNP polygenic risk score
to classical breast cancer risk factors improved the AUC from 56% to 64% among women
younger than 50 and from 57% to 64% among women aged 50 and older [36]. Polygenic
risk scores are not yet integrated into clinical practice to direct supplemental screening,
and further studies are needed to direct the implementation of such approaches. Finally, we
performed a large number of comparisons, and therefore some of the statistically significant
associations may have been the result of chance rather than true underlying differences
in performance. We provide Bonferroni corrected p-values and found several associations
that remained statistically significant after Bonferroni correction.

5. Conclusions

In summary, our research provides important data on the performance of breast
cancer risk assessment models among women undergoing mammography screening in
the U.S. and provides important data on how models perform in different subsets of the
population, including Black or African American women and women with a family history
of breast cancer, and how well the models predict breast cancer subtypes. We validate
the BRCAPRO+BCRAT model which may be beneficial for use among women with a
family history of breast and ovarian cancer. These findings are useful to develop risk
assessment strategies but ultimately point to the need to further improve risk prediction by
incorporating additional risk factors, such as quantitative measures of breast density and
genetic markers.
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Appendix A

Table A1. Performance of risk models by site.

Performance
Metric by Site BCRAT BCSC BRCAPRO BRCAPRO+BCRAT

MGH (N = 804
cases) Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

O/E 1.060 0.993, 1.131 1.196 1.119, 1.275 1.057 0.988, 1.126 1.095 1.025, 1.166
AUC 0.595 a 0.576, 0.615 0.620 c 0.604, 0.639 0.587 d 0.567, 0.610 0.603 b 0.585, 0.625
TPR 0.331 0.302, 0.362 0.270 0.244, 0.307 0.340 0.311, 0.375 0.294 0.263, 0.325
FPR 0.204 0.201, 0.207 0.162 0.159, 0.166 0.238 0.235, 0.241 0.186 0.183, 0.188

Patients with high
5-year risk, N (%)

12,089
(20.59) - 9600

(16.35) - 14,049
(23.93) - 10,983

(18.71) -

NWH (N = 512
cases)

O/E 0.930 0.850, 1.003 1.039 0.950, 1.123 1.026 0.938, 1.107 0.947 0.866, 1.022
AUC 0.618 0.592, 0.640 0.624 c 0.602, 0.646 0.599 d 0.574, 0.622 0.622 0.598, 0.644
TPR 0.408 0.368, 0.452 0.369 0.329, 0.406 0.324 0.281, 0.365 0.387 0.345, 0.433
FPR 0.252 0.248, 0.256 0.218 0.213, 0.222 0.205 0.201, 0.209 0.228 0.224, 0.232

Patients with high
5-year risk, N (%)

9960
(25.42) - 8603

(21.95) - 8078
(20.61) - 9015

(23.00) -

UPenn (N = 418
cases)

O/E 1.146 1.044, 1.261 1.402 1.275, 1.544 1.186 1.080, 1.306 1.174 1.070, 1.294
AUC 0.598 e 0.567, 0.625 0.603 c 0.578, 0.631 0.576 d 0.549, 0.603 0.597 0.568, 0.624
TPR 0.433 0.380, 0.477 0.304 0.265, 0.344 0.433 0.389, 0.475 0.402 0.356, 0.447
FPR 0.296 0.291, 0.301 0.182 0.177, 0.187 0.318 0.313, 0.323 0.275 0.270, 0.280

Patients with high
5-year risk, N (%)

7347
(29.79) - 4548

(18.44) - 7889
(31.99) - 6832

(27.70) -

a p < 0.05 for Gail AUC vs. BCSC within same site. b p < 0.05 for Gail AUC vs. BRCAGAIL AUC within same site.
c p < 0.05 for BCSC AUC vs. BRCAPRO AUC within same site. d p < 0.05 for BRCAPRO AUC vs. BRCAGAIL
AUC within same site. e p < 0.05 for Gail AUC vs. BRCAPRO AUC within same site.
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observed probability of breast cancer (Y-axis) for each decile of probability of breast cancer predicted by the model (X-
axis). The diagonal line indicates perfect agreement between predicted and observed probability of breast cancer. 

  

Figure A1. (a) Calibration curves for four models for individuals with no family history of breast
cancer. (b) Calibration curves for four models for individuals with a family history of breast cancer.
Each point on the figure represents the observed probability of breast cancer (Y-axis) for each decile
of probability of breast cancer predicted by the model (X-axis). The diagonal line indicates perfect
agreement between predicted and observed probability of breast cancer.
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Appendix C

Table A2. Performance of risk models by race/ethnicity at UPenn.

Performance
Metric by Race BCRAT BCSC BRCAPRO BRCAPRO+BCRAT

White
(N = 220 Cases) Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

O/E 1.129 0.999, 1.281 1.400 1.241, 1.588 1.259 1.117, 1.434 1.161 1.027, 1.317
AUC 0.580 0.544, 0.619 0.565 a 0.525, 0.601 0.549 b,c 0.513, 0.583 0.583 0.548, 0.623
TPR 0.532 0.47, 0.595 0.373 0.309, 0.431 0.473 0.402, 0.533 0.500 0.436, 0.561
FPR 0.421 0.412, 0.429 0.273 0.264, 0.281 0.401 0.394, 0.41 0.383 0.373, 0.391

Patients with high
5-year risk, N (%)

4783
(42.28) - 3112

(27.51) - 4557
(40.28) - 4354

(38.49) -

Black or African
American

(N = 170 cases) d

O/E 1.152 0.984, 1.377 1.413 1.218, 1.691 1.112 0.957, 1.33 1.190 1.016, 1.423
AUC 0.610 0.571, 0.653 0.644 0.594, 0.684 0.608 0.565, 0.648 0.615 0.572, 0.659
TPR 0.353 0.276, 0.424 0.241 0.178, 0.305 0.429 0.353, 0.5 0.324 0.263, 0.393
FPR 0.199 0.192, 0.206 0.110 0.105, 0.116 0.273 0.265, 0.282 0.193 0.186, 0.2

Patients with high
5-year risk,

N (%)

2266
(20.09) - 1267

(11.23) - 3108
(27.56) - 2201

(19.51) -

a p < 0.05 between White vs. Black women for BCSC model. b p < 0.05 between White vs. Black women for
BRCAPRO model. c p < 0.05 between BRCAPRO vs. BRCAPRO+BRAT models for White women. d p < 0.05
between BRCAT vs. BCSC, BCSC vs. BCRAPRO, & BCSC vs. BRCAPRO+BRCAT for Black women.
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