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Simple Summary: Early prediction of aggressive cancer using biomarkers is thought to be important
for future improvements in the personalized treatment of renal cell carcinoma (RCC). Epigenetic al-
terations, such as DNA methylation, are promising candidates because they are frequently associated
with distant metastasis of tumors and combinations of them offer greater informativity. Here, we
describe the indication of the metastatic disease state of renal cell tumors by the methylation of three
new candidate genes, INA, NHLH2, and THBS4. The inclusion of the methylation status of these
genes could improve the early detection of metastatic tendency in renal tumors and help identify
patients who will benefit from adjuvant treatments.

Abstract: The detection of DNA methylation in primary tumor tissues could be relevant for early
stratification of aggressive renal cell carcinomas (RCCs) as a basis for future personalized adjuvant
therapy. Methylated TCGA KIRC based candidate CpG loci in INA, NHLH2, and THBS4 that are
possibly associated with RCC metastasis were evaluated by pyrosequencing in 154 paired normal
adjacent and primary tumor tissues, as well as in 202 metastatic tissues. Statistical analysis was
carried out by bivariate logistic regression for group comparisons, log rank survival analysis, and
unsupervised and supervised analysis for the classification of tumors. Increased methylation of INA,
NHLH2, and THBS4 loci were significantly associated with distant metastasis in primary tumors
(p < 0.05), tissue-specific hypermethylation in metastatic (p = 7.88 × 10−8, 5.57 × 10−10, 2.06 × 10−7)
and tumor tissues (p = 3.72 × 10−24, 3.17 × 10−13, 1.58 × 10−19), and shortened progression free sur-
vival in patients (p = 0.03). Combined use of CpG site-specific methylation permits the discrimination
of tissues with metastatic disease and reveals a significant contribution of CpG sites in all genes to the
statistical classification model. Thus, metastasis in RCC is significantly associated with methylation
alterations in INA, NHLH2, and THBS4 loci, providing independent information for the potential
early detection of aggressive renal cancers as a rationale for stratifying patients to adjuvant therapies.

Keywords: renal cell carcinoma; metastasis; NHLH2; INA; THBS4; hypermethylation; signature; prognosis

1. Introduction

Renal cell carcinoma (RCC) is the most common kidney neoplasia and is observed
in 5% and 3% of all cancer diagnoses in men and women, respectively [1]. Although the
majority of RCCs are diagnosed incidentally in early stages of the tumor on abdominal
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imaging, up to 25% of patients present with metastases at the time of diagnosis [2]. Though
therapeutic approaches have evolved substantially in the last few decades, the 5-year
survival of patients with metastatic disease is still poor [3,4]. Clinical predictions and
risk stratification for localized and metastatic RCC currently rely on combined clinical,
histological, and laboratory parameters summarized in risk score models, such as the stage,
size, grade, and necrosis (SSIGN) score or the University of California Integrated Staging
System (UISS). In contrast, biomarker stratification for disease prognosis or prediction is
still at the beginning of development, and available clinical scores or biomarkers exhibit a
lack of validation for non-metastatic localized RCC [5–8]. Taking into account that even
patients with a clinicopathologically defined localized disease may develop aggressive
disease, the need for biomarkers able to guide subsequent clinical decisions based on
personalized adjuvant treatment strategies, appears to be evident [6,9]. This is further
underlined by recent therapeutic advances demonstrating that subsets of localized RCC
with a higher recurrence risk (tumor stage T ≥ 2, differentiation ≥ G3) likely benefit
from adjuvant therapy with pembrolizumab, a PD-1 checkpoint inhibitor [10]. Moreover,
considering that approximately one-third of these patients present with grade 3 and higher
adverse events, individualized biomarker-based prediction of response or non-response
could reduce non-beneficial treatments [10,11].

Recently, The Cancer Genome Atlas (TCGA) project substantially contributed to a de-
tailed molecular characterization of RCC, providing substantial information about genetic
and epigenetic alterations in different histological subtypes of RCC, such as the most com-
mon entity described in the Kidney RCC (KIRC) database, clear cell RCC (ccRCC) [12,13].
The KIRC project reported highly individual mutation profiles, indicating that the use of
prospective clinical detection of mutations in risk stratification models and personalized
therapeutic approaches is basically limited [12]. In contrast, DNA methylation has not only
been demonstrated to occur frequently in RCC, but has also been shown to be associated
with a number of clinically relevant adverse parameters [14,15]. Therefore, a substan-
tial number of studies, including our work, have revealed specific associations between
DNA methylation and unfavorable histopathological characteristics [16–20], metastatic
disease [16–19,21], shorter recurrence-free or cancer-specific survival [15–17,19,22–25] and
the predicted response to anti-angiogenic therapy [26,27].

Although a significant number of epigenetic alterations have shown strong asso-
ciations with clinicopathological parameters, no biomarker or marker panel has been
translated into clinical routine. The reasons for this appear to be complex and include
circumstances, such as the broad application of retrospective study designs, the limited
informativity of single marker studies, and the limited size of patient cohorts, leading to
sampling and selection bias and other restrictions [28,29].

To improve the informativity of DNA methylation-based detection and/or prediction
of metachronous metastatic disease, we biometrically analyzed the KIRC database and
identified internexin neuronal intermediate filament protein alpha (INA), nescient helix–
loop–helix 2 (NHLH2), and thrombospondin 4 (THBS4) as candidate genes showing an
association between methylation and distant metastasis.

INA is a neuronal cytoskeletal intermediate filament expressed during neuronal de-
velopment and forms homo- and hetero-polymeric filaments with other neuronal filaments.
The physiological function of INA is still unclear [30,31]. In malignant disease, expression of
INA at the protein level is associated with better progression free survival (PFS) and longer
overall survival (OS) from gliomas and glioblastomas [32,33]. Accordingly, loss of INA
expression correlates with adverse histopathological characteristics and worse prognosis
in gastroenteropancreatic neuroendocrine neoplasms [34,35]. Moreover, an association of
INA hypermethylation with worse histopathological characteristics has been described [34].
Interestingly, in gastrointestinal neuroendocrine neoplasms and colorectal cancer, INA
hypermethylation is associated with a loss of expression, suggesting epigenetic silencing
via hypermethylation [34,36].
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NHLH2 is a neuronal basic helix–loop–helix (bHLH) transcription factor characterized
by a basic DNA binding motif and HLH binding site forming heterodimers or homodimers
with other transcription factors [37,38]. NHLH2 has been linked to the regulation of
hypothalamic gene expression, body weight control, and hypogonadism in mice [39,40].
In primary neuroblastoma, overexpression of NHLH2 protein is associated with poor
patient survival [41].

THBS4 is an extracellular calcium-binding glycoprotein that interacts with cell sur-
faces or components of the extracellular matrix (ECM) [42]. This protein mediates tissue
remodeling and is involved in wound healing and angiogenesis [42,43]. Overexpression
of both THBS4 protein and mRNA has been demonstrated in different urological and
gastrointestinal solid tumors with increased potency of cellular invasion in vitro [44–46].
An association of higher levels of THBS4 protein and worse clinicopathological character-
istics has been found in gastric and hepatocellular carcinoma [45,47]. In contrast, other
studies have reported lower levels of THBS4 protein and hypermethylation of THBS4 in
colorectal cancer, cutaneous T-cell lymphoma, and bladder cancer with an indication of
epigenetic silencing in these tumors [48–50].

In the present study, we analyzed DNA methylation of INA, NHLH2, and THBS4 in
normal, tumor, and metastatic renal tissue samples and found tissue-specific hypermethy-
lation associated with the metastatic disease state, adverse clinical parameters, and shorter
PFS. We also demonstrate that combined information on the methylation signature allows
the identification of metastatic disease in unknown tissue samples with good accuracy.

2. Materials and Methods
2.1. In Silico Analysis to Identify Candidate Loci

Level 3 data from the TCGA KIRC HM450k methylation dataset and statistical soft-
ware R version 3.6.1 were used to identify metastasis-associated candidate loci in a uni-
variate logistic regression analysis comparing independent tissue sample data between
non-metastasized (M0) and metastasized primary tumors (M+) [12,51]. Results were ad-
justed using the Benjamini–Hochberg correction for multiple statistical testing and ranked
by calculating the product of fold-change in group means and the logarithm of reciprocal
p-values.

2.2. Study Design

Gene-wise averaged CpG site-relative methylation values were used to analyze poten-
tial associations between gene-related methylation and clinical features in a cross-sectional
study. A subset of patients with corresponding data was subjected to analysis of PFS.
Moreover, paired tumor-adjacent histopathological normal (adN) and tumor tissues (TU)
were compared to detect tumor-specific hypermethylation, and tumor samples with absent
distant metastasis status (M0) were compared to an independent tissue cohort of metastatic
tissue samples (Mtx) to detect metastasis-specific hypermethylation. Case–control compar-
isons of primary RCC tissue samples with localized disease and samples with metastatic
disease or metastatic tissue samples were used for statistical classification and to determine
diagnostic parameters after a random split into equally sized training and test cohorts.

2.3. Study Cohort

A total of 189 RCC tumor tissues, 154 paired adN tissues, and 202 metastases from
100 patients with metastatic RCC disease were subjected to methylation analysis. Patient
characteristics are summarized in Table 1. The characteristics of the metastatic tissue cohort
and the tissue sampling, TNM classification, grading, and tissue treatment were described
previously [21,52]. Ethical approval was obtained from the ethical boards of Eberhard
Karls University Tübingen and Hanover Medical School (no. 128/2003V and 1213-2011;
approved on 14 October 2011). Written informed consent was obtained from all patients.
The study was performed in accordance with the Helsinki Declaration.
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Table 1. Patient’s clinical and histopathologic characteristics.

Clinical and Pathological
Characteristics

Total Number of
Patients (allRCC),

n (%)

Subset of Patients
with ccRCC,

n (%)

Subset of Patients
with FU for allRCC,

n (%)

Subset of Patients
with FU for ccRCC,

n (%)

Total cases 189 (100.0) 151 (100.0) 77 (100.0) 57 (100.0)

Histology ccRCC 151 (79.9) 151(100.0) 57 (74.0) 57(100.0)
pap. RCC 25 (13.2) 0 (0.0) 17 (22.1) 0 (0.0)

chrom. RCC 3 (1.6) 0 (0.0) 2 (2.6) 0 (0.0)
Mixed histology * 10 (5.3) 0 (0.0) 1 (1.3) 0 (0.0)

Sex Female 70 (37.0) 59 (39.1) 27 (35.1) 22 (38.6)
Male 119 (63.0) 92 (60.9) 50 (64.9) 35 (61.4)

Age (years) Median 65 65 65 64
(min-max) (35–91) (35–90) (37–91) (37–90)

Metastasis M0 156 (82.5) 123 (81.5) 59 (76.6) 41 (71.9)
M+ 30 (15.9) 25 (16.6) 18 (23.4) 16 (28.1)
na 3 (1.6) 3 (2.0) 0 (0.0) 0 (0.0)

Lymph node
status

N0 168 (88.9) 136 (90.1) 70 (90.9) 52 (91.2)
N+ 16 (8.5) 10 (6.6) 7 (9.1) 5 (8.8)
na 5 (2.6) 5 (3.3) 0 (0.0) 0 (0.0)

Tumor stage pT1 11 (5.8) 8 (5.3) 8 (10.4) 5 (8.8)
pT1a 62 (32.8) 48 (31.8) 24 (31.2) 15 (26.3)
pT1b 46 (24.3) 38 (25.2) 13 (16.9) 9 (15.8)
pT2 9 (4.8) 7 (4.6) 6 (7.8) 5 (8.8)
pT3 5 (2.6) 2 (1.3) 2 (2.6) 1 (1.8)

pT3a 17 (9.0) 14 (9.3) 4 (5.2) 4 (7.0)
pT3b 32 (16.9) 30 (19.9) 18 (23.4) 17 (29.8)
pT3c 4 (2.1) 3 (2.0) 2 (2.6) 1 (1.8)
pT4 1 (0.5) 0 (0.0) 0 (0.0) 0 (0.0)
na 2 (1.1) 1 (0.7) 0 (0.0) 0 (0.0)

Differentiation G1 36 (19.0) 32 (21.2) 14 (18.2) 12 (21.1)
G1–2 20 (10.6) 13 (8.6) 10 (13.0) 4 (7.0)

G2 104 (55.0) 82 (54.3) 42 (54.5) 30 (52.6)
G2–3 10 (5.3) 6 (4.0) 5 (6.5) 5 (8.8)

G3 18 (9.5) 17 (11.3) 6 (7.8) 6 (10.5)
na 1 (0.5) 1 (0.7) 0 (0.0) 0 (0.0)

Abbreviations: ccRCC clear cell renal cell carcinoma (RCC); pap. RCC papillary RCC; chrom. RCC chromophobe
RCC; FU follow-up; na not available; * mixed histology defined as fractions of different histologic subtypes of
RCC (ccRCC + pap. RCC, ccRCC + chrom. RCC).

2.4. Nucleic Acid Extraction and DNA Bisulfite Conversion

Histological tumor cell content was estimated in control sections, DNA isolated from
frozen sections and punches of formalin-fixed paraffin-embedded tissue samples, and
bisulfite conversion of DNA carried out as reported previously [16,23].

2.5. DNA Methylation Analysis

Pyrosequencing, PCR reactions, and the preparation of pyrosequencing templates were
carried out as described previously [16,22]. Pyrosequencing assays were designed by using
PyroMark Assay Design 2.0 software (Qiagen, Hilden, Germany) and the hg19 genome
assembly as provided by the UCSC table browser. Primer sequences, sequences to analyze,
and genomic positions are presented in Table S1. The genomic context of target genes,
annotated HM450K CpG sites, candidate loci, and sites covered by the pyrosequencing
assay are presented in Figure 1. CpG sites amenable by pyrosequencing analysis and used
for subsequent statistical evaluation are summarized in Table 2.
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Figure 1. Localization of exons (higher part of orange rectangles) and the genomic regions corre-
sponding to the 5’UTR (INA (c), THBS4 (a), or 3′UTR (NHLH2 (b)) (lower part of orange rectangles)
are shown. CpG sites are annotated for the region (CpG sites), as well as the localization of CpG
islands (CGI), positions of CpG sites considered in the KIRC study (KIRC), and the localization of
pyrosequencing assays used (Assay). The asterisk (*) tags candidate CpG sites identified in the in
silico analysis of the KIRC data.

Table 2. Genomic position of CpG sites amenable by pyrosequencing.

Gene Chromosome Genomic Position Start Genomic Position End

INA 10 105037691, ~700, ~703, ~706,
~713, ~715, ~719, ~728

105037692, ~701, ~704, ~707,
~714, ~716,~720, ~729

NHLH2 1 116381644, ~46, ~48, ~52, ~64,
~67, ~79

116381645, ~47, ~49, ~53, ~65,
~68, ~80

THBS4 5 79330930, ~44, ~56, ~58, ~60,
~63, ~69

79330931, ~45, ~57, ~59, ~61,
~64, ~70

2.6. Statistical Analysis

All statistical analyses were performed in R version 3.6.1 software and program li-
braries as specified below [51]. Statistical tissue group comparisons were carried out using
gene-wise aggregated methylation values obtained by calculating the corresponding means
for CpG site-specific methylation values. Subgroup evaluations of the association with
clinical or pathological parameters were performed in bivariate logistic regression models
with age as the covariate and, if necessary, following dichotomization as specified. The
time to progression of disease was analyzed by univariate log rank analysis. The optimized
cut-off for dichotomization of methylation was approximated using the R package maxstat;
relative methylation values for dichotomization were 24% for INA, 11% for NHLH2, and
25% for THBS4 [53]. Metastatic tissue samples were compared to independent primary
cancer tissues following patient-specific aggregation of measurements obtained for mul-
tiple metastases by calculating the mean metastatic tissue methylation value and logistic
regression analysis. We applied the two-sided paired t-test to evaluate methylation in
tumor and paired adN tissues.

Unsupervised and supervised statistical classification analyses of tissues were carried
out by making use of CpG site-specific methylation data including 18 sites annotated to the
three candidate gene regions of interest: INA, 7 sites; NHLH2, 4 sites; and THBS4, 7 sites.
Missing data for unsupervised clustering analysis were imputed using the mice package for
R [54]. Comparisons of the efficiency of various clustering methods, including hierarchical
agglomerative, divisive top-down clustering, and partitioning methods were carried out
using the ClusterTool library and estimated Jaccard indices applied as a measure of the
cluster stability [55]. Consensus clusters of 100 runs are presented as heatmaps using the R-
package ComplexHeatmaps [56]. Explorative statistical analyses of the association between
cluster class and metastatic disease state were carried out using the R package vcd [57].
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For supervised statistical analyses, missing data were treated in a two-step procedure by
sequentially removing patient samples with the maximum numbers of missing values
and imputing residual absent values using the mice package for R [54]. Random forest
classification analysis was carried out following optimization of the random forest model
parameters using the R libraries caret and ranger [58–60]. The final model diagnostic
parameters were determined using the caret package [58]. The importance of variables was
calculated and presented using the randomForestExplainer package [61].

3. Results
3.1. In Silico Identification of Metastasis-Associated Methylated Loci Using KIRC Data

KIRC methylation data for 282 tumor tissues were subjected to univariate logistic
regression analysis comparing the subsets of 230 M0 and 52 M+ tumors. Statistical evalua-
tion identified CpG sites cg00824018, cg00065905, and cg00795341, which were annotated
to INA, NHLH2, and TBHS4, respectively, as being among the top 20 ranked candidates.
Associated mean fold changes in methylation were 1.68, 1.55, and 2.01 with corresponding
p-values of 1.30 × 10−34, 1.72 × 10−34, and 1.90 × 10−19, respectively. A literature inquiry
presented evidence of a functional or statistical association with tumorigenesis. Following
a technical evaluation, whether the loci of the corresponding candidate genes are expected
to be accessible to DNA methylation analysis was determined by pyrosequencing. Features
of the pyrosequencing assays are summarized in Table S1 and illustrated in Figure 1.

3.2. Association of INA, NHLH2, and THBS4 CpG Site Methylation with Adverse
Clinicopathological Parameters and Worse PFS

A statistical comparison of tumors with ccRCC and papillary histological classifica-
tion using bivariate logistic regression including age as a covariate exhibited a negative
association for the INA loci (p = 0.04, odds ratio (OR) = 0.95, 95% confidence interval (CI):
0.91–0.99), whereas THBS4 loci methylation exclusively demonstrated an association with
patient sex in the whole cohort (p = 0.04, OR = 1.03, 95% CI: 1.00–1.05) but not the ccRCC
subgroup (p = 0.09, OR = 1.03).

Therefore, we analyzed the possible associations between the candidate genes and
the state of distant metastasis as the most relevant clinical parameter for both the com-
plete cohort of tumors independent of the histological state of tissues (allRCC group) and
the larger subset of clear cell tumors (ccRCC group). Notably, all of the candidate genes
showed a significant association between methylation and the state of distant metastases
(Figure 2a–c). Moreover, all of the clinical parameters widely used to estimate the aggres-
siveness of tumors, including tumor stage, status of lymph node metastasis, and grade of
differentiation were significantly associated with higher methylation of the INA, NHLH2,
and THBS4 candidate loci in both the allRCC and ccRCC groups (Table 3a,b). Survival
analysis using available follow-up data for a subset of tumors demonstrated a possible sig-
nificant association of higher tumor methylation and shortened time to disease progression
in univariate log rank analyses for INA, NHLH2, and THBS4 methylation (Figure 3).
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Figure 2. Box plot of INA (a), NHLH2 (b), and THBS4 (c) methylation in tumors without (M0) and
with metastatic disease (M+) for the complete cohort (allRCC) and ccRCC subgroups. Medians are
shown with the estimated confidence interval (notches), 25% and 75% quartiles. Whiskers indicate
the 99.3% interval (two-sided 1.5-fold interquartile range) and black squares the outliers for the
relative methylation distributions. Corresponding p-values and odds ratios are presented in Table 3.
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Table 3. Bivariate logistic regression analysis of association of INA, NHLH2, and THBS4 methylation
and clinicopathological characteristics.

(a) Complete Cohort (allRCC)

Methylation
INA nhlh2 THBS4

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Metastasis (M0 vs. M1) 1.05 (1.02–1.09) 0.002 1.05 (1.02–1.07) <0.001 1,04 (1.01–1.07) 0.008
Lymph node status (N0 vs. N1) 1.04 (1.00–1.09) <0.001 1.05 (1.02–1.09) <0.001 1.04 (1.01–1.07) 0.021
Tumor stage (low vs. high T *) 1.07 (1.04–1.10) <0.001 1.06 (1.04–1.09) <0.001 1.05 (1.03–1.08) <0.001

Differentiation (low vs. high G **) 1.08 (1.04–1.12) <0.001 1.06 (1.03–1.09) <0.001 1.05 (1.02–1.08) <0.001

(b) ccRCC Subgroup

Methylation
INA NHLH2 THBS4

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Metastasis (M0 vs. M1) 1.05 (1.01–1.09) 0.019 1.03 (1.00–1.07) 0.026 1.04 (1.00–1.08) 0.048
Lymph node status (N0 vs. N1) na *** na *** na *** na *** na *** na ***
Tumor stage (low vs. high T *) 1.07 (1.03–1.10) <0.001 1.05 (1.02–1.08) <0.001 1.05 (1.02–1.09) 0.001

Differentiation (low vs. high G **) 1.07 (1.03–1.12) <0.001 1.05 (1.02–1.08) <0.001 1.04 (1.01–1.08) 0.021

Note that statistical results of covariate age are not shown as statistical significance was either not reached (ccRCC)
group or low ORs of 0.95–0.96 with p-values from p = 0.02–0.05 were obtained indicating weak model effects.
Abbreviations: vs. versus; na not available; OR odds ratio; 95% CI 95% confidence interval * Low defined as T1
and T2; high defined as T3 and T4; ** Low defined as G1, G2; high defined as ≥G3; *** Due to small group sizes
no statistics available.

Figure 3. Kaplan–Meier survival analysis of INA (a), NHLH2 (b) and THBS4 (c) and progression free
survival. Blue curve, patients with methylation levels above the gene-specific optimum cut-off. Red
curve, patients with methylation levels below the gene-specific optimum cut-off. Optimized cut-off
values applied for dichotomization were 24% (INA), 11% (NHLH2), and 25% (THBS4).

3.3. INA, NHLH2, and THBS4 Associated Candidate Loci Exhibit Tissue-Specific
Hypermethylation in Tumor and Metastatic Tissues

To analyze whether the candidate genes have tumor-specific hypermethylation, we
measured 120, 141, and 132 corresponding pairs of adN and tumor tissue specimens for
methylation of INA, NHLH2, and THBS4 (Figure 4a). Evaluation of INA was limited to
the ccRCC tissue pairs due to a possible effect of histology on methylation. In contrast,
NHLH2 and THBS4 could be analyzed independent from tumor histology. We found
significant tumor-specific hypermethylation for all of the candidate genes in the paired
tissue comparisons (p = 3.72 × 10−24, 3.17 × 10−13, 1.58 × 10−19).

Methylation of the INA, NHLH2, and THBS4 loci was also measured in a subset of
136–142 primary tumor tissues free of lymph node or distant metastasis and a total of
202 cancer metastatic tissues isolated from 100 renal cell cancer patients suffering from
metachronous metastatic disease (Figure 4b, Table 4). Relative fold-changes in mean
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methylation of 1.44, 1.91, and 1.57 was detected for the metastatic tissue groups compared to
localized primary tumor tissues, showing uniformly metastasis-specific hypermethylation
for each of the candidate genes (p = 7.88 × 10−8, 5.57 × 10−10, 2.06 × 10−7). Interestingly,
methylation as observed in some of the multiple metastases available for a subset of primary
tumors was heterogeneous and reached high methylation values of more than 80% overall.

Figure 4. (a) Strip chart presentation of the hypermethylation analysis of INA, NHLH2, and THBS4 in
paired adjacent normal tissue (adN) and renal tumors (TU) samples. The corresponding statistical
analysis revealed significant tumor-specific hypermethylation for all candidate genes (p = 3.72× 10−24,
3.17 × 10−13, 1.58 × 10−19). (b) Box plot of INA, NHLH2, and THBS4 methylation in independent
tissue sample groups representing localized primary tumor and metastatic tissue samples. All
of the candidate genes demonstrated metastatic tissue-specific hypermethylation (p = 7.88 × 10−8,
5.57 × 10−10, 2.06 × 10−7 respectively).

Table 4. Statistical association of INA, NHLH2, and THBS4 methylation and metastatic tissue in
logistic regression analyses.

Methylation Gene
Mean Methylation (%)

OR (95% CI) adjOR p-Value
Tu Mtx

TUvs. Mtx
INA 22.8 32.8 1.07 (1.05–1.1) 1.98 7.88 × 10−8

NHLH2 14.4 27.4 1.07 (1.05–1.1) 2.47 5.57 × 10−10

THBS4 19.4 30.4 1.06 (1.04–1.08) 1.85 2.06 × 10−7

Abbreviations: adjOR adjusted odds ratio for difference of group means, OR odds ratio, 95% CI 95% Confidence
interval, TU tumor, Mtx metastatic tissue.

3.4. Combined CpG Site-Specific DNA Methylation Is Informative of the Metastatic Disease State
in Unsupervised and Supervised Statistical Analysis

To investigate whether methylation levels provide information supporting molecular
identification of renal tumor tissues exhibiting metastatic disease (i.e., primary tumor tissue
with proven M+ state or Mtx), a CpG loci-centric evaluation was carried out by performing
both unsupervised and supervised classification of samples.

Unsupervised analysis was carried out following a comparison of various cluster-
ing and partition methods aiming to identify the most stable sample clusters, including
bootstrapping and cross validation of samples. We found that k-means partitioning with
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three centers provided the most stable patient clusters, with Jaccard indices of 0.96, 0.88,
and 0.81, respectively. A heatmap of the corresponding k-means clustering (Figure 5)
shows the three patient consensus clusters, approximately characterized by low (cluster 1),
median (cluster 2), and high (cluster 3) average methylation levels. Statistical analysis of the
corresponding matching table (Table 5) revealed that patient clusters were not independent
from the metastatic disease state of tissues (p = 1.1 × 10−10, chi-squared test), and the
corresponding mosaic plot demonstrated that clusters 2 and 3 included higher fractions
of metastatic RCC tissues (Figure 6, blue groups in clusters 2 and 3 for metastatic disease
column), whereas cluster 1 contained significantly more M0 tumors than expected by
chance (Figure 6, blue group in cluster 1 for non-metastatic disease column). Interestingly,
clustering of CpG sites in the heatmap (Figure 5) demonstrated that, in general, the smallest
distances were observed for directly neighboring CpG loci and, thus, in large part matched
the physical neighborhoods of CpG sites.

Figure 5. Heat map of unsupervised partitioning of the CpG site-specific methylation as observed
in all tumor and metastatic tissue samples. Rows show patient- and sample-specific methylation
data following normalization and color coding as indicated (from blue: minimum methylation to
red: high methylation). The three patient clusters show most stable consensus clusters obtained by k-
means partitioning. Columns present the clustered normalized ages of patients and CpG site-specific
methylation data. For comparison sample corresponding metastatic disease state (M0: localized
primary tumors, M+: primary metastatic tumors or metastatic tissue samples) are presented.
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Table 5. Matching of unsupervised clustering and metastatic disease state.

Cluster
Patients Without Metastasis

(M0)
Patients with Metastatic Disease State

(M+, Mtx)

Cluster 1 103 33

Cluster 2 42 66

Cluster 3 15 33

Figure 6. Left and right columns show the associations of clusters with either non-metastatic (left
column, primary tumor M0 group) or metastatic disease state (right column, primary tumor M+
group and metastatic tissue Mtx group). Blue boxes indicate over-represented disease states in a
cluster (Pearson residuals > 2), whereas red boxes correspond to under-represented disease states
(Pearson residuals < −2), providing statistical evidence that clustering is not independent from the
metastatic disease state (p = 1.1 × 10−10).

Supervised statistical analysis required prior completion of data by imputing 29 of 2140
(1.36%) and 35 of 2160 (1.62%) missing values in the training and test cohorts, eventually
providing 107 (58 tumors, 49 metastases) and 108 (61 tumors, 47 metastases) final cases
for analysis. Applying the optimized random forest classification model obtained by
resampling the training cohorts (25 bootstrapped repetitions, mtry = 2, splitrule = gini) to
the unknown test data, a comparison of the real and predicted status of the localized tumor
or metastatic tissue in a confusion table revealed 35 true positive, 16 false positive, 45 true
negative, and 12 false negative classifications. Therefore, prediction of the independent
test cohort demonstrated an accuracy of 0.73 (95% CI: 0.64–0.81, p = 4.93 × 10−6, one-sided
binomial test in which accuracy is greater than the no information rate of 0.52). Classifiers
did not demonstrate different proportions of errors for the training and test data (p = 0.46,
McNemar´s test). Sensitivity and specificity were 0.74 (95% CI: 0.61–0.85) and 0.72 (95% CI:
0.60–0.82), respectively. The positive likelihood ratio (PLR) and negative likelihood ratio
(NLR) were 2.67 and 0.35, respectively.

Importance analysis of the variables suggested that 6 of the 7 (86%) INA, 2 of the 4
(50%) NHLH2, and 2 of the 7 (29%) THBS4 annotated CpG loci were the most important
predictors in the random forest classification model when using the mean decrease in gini
and times_a_root parameters as measures (Figure S1).



Cancers 2022, 14, 39 12 of 16

4. Discussion

In the present study, we analyzed whether candidate markers, DNA methylated loci
in the INA, NHLH2, and THBS4 genes, show an association with metastasis in RCC and
could contribute to predicting the metastatic potential of renal cancer by providing new
information on the biomarker signatures of aggressive disease.

In a gene-centric statistical evaluation of INA, NHLH2, and THBS4 methylation data,
we found a uniform association of increased methylation with both the metastatic state of
primary tumors and the metastatic tissue itself. Therefore, findings from in silico analyses
of the TCGA KIRC data were confirmed for all of the candidate genes in independent
tissue cohorts and by using a different method of methylation detection. Interestingly, this
could also be achieved for the NHLH2 loci, despite some genomic distance between the
pyrosequencing assay and candidate loci location. Neither the KIRC study nor the large
part of molecular analysis of RCC include an analysis of metastatic tissue from primary
RCC. Thus, to the best of our knowledge, only two studies have reported metastatic
tissue-specific alterations in the DNA methylation of RUNX3 and TBR1 [21,62]. Although
our findings of metastatic hypermethylation of INA, NHLH2, and THBS4 do not allow
functional conclusions, it seems that cells carrying these epialterations are preserved,
or even expanded, in RCC metastases. Therefore, the corresponding genes are natural
candidates for further studies aiming to analyze epithelial–mesenchymal or mesenchymal–
epithelial transitions. In addition, the hypothetical functional relevance is supported by
our finding of the tumor-specific hypermethylation of all three candidates considering
that hypermethylation is frequently followed by epigenetic silencing of tumor suppressor
genes and subsequent functional changes in RCC [15]. In line with this, gene silencing by
hypermethylation and an association with more invasive tumors was recently reported
for INA and THBS4 in other tumor entities [36,48]. Considering our finding of both
tumor-specific hypermethylation and an additional increase in the methylation of genes
in metastatic tissues, the hypothesis that these epialterations may indicate an increased
metastatic potential of cells at an early state of tumor development is supported. Notably, all
of our statistical analyses interrogating possible associations of candidate loci methylation
with adverse clinicopathological parameters, as well as the survival of patients, point to
candidate loci methylation as a characteristic of aggressive cancers.

Unsupervised statistical analyses using CpG site-specific methylation data for the
INA, NHLH2, and THBS4 loci showed that tissue samples can be partitioned into three
stable clusters that are not independent from the metastatic status of tissues. Nevertheless,
detailed comparisons of the assigned clusters and metastatic disease state resulted in a
number of tumor misclassifications. This had to be expected considering that a subset of
tumors and derived metastases are not affected by INA, NHLH2, or THBS4 hypermethy-
lation, automatically increasing the number of false negative classifications. Moreover,
heterogeneous methylation patterns may not give rise to distinct and stable clustering,
increasing the chance of misclassification within larger but more stable clusters. In an
analogous but reversed manner, some false positive classifications may also be traced back
to this effect. However, both phenomena could probably be minimized by expanding the
sample cohorts. Interestingly, a considerable number of tumors within higher-methylated
clusters 2 and 3 exhibit a homogenously high level of methylation but are classified as
non-metastatic disease and appear as apparently false positives. Answering the highly
relevant question of whether such tumors may be candidates for metachronous metastasis
will, unfortunately, require the setup of a specific tissue cohort and, therefore, could not be
addressed in the current study.

Methylation panels combining the CpG methylation of different candidate genes were
previously reported to be associated with patient survival, with more robust statistical
results and improved performance compared to clinical prognostic models [25,63–65].
Moreover, in view of the complex molecular architecture of alterations observed during
tumorigenesis and metastasis and the individual variation of tumors, biomarker signatures
that are subject to subsequent continuous extension, reevaluation, and reselection, rather
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than single markers, may be useful for a specific diagnostic task. Our supervised classifica-
tion analysis of single CpG site methylation information using independent training and
test data subsets and random forest analysis revealed that methylation information for a
subset of 10 candidate loci from the total of 18 INA, NHLH2, and THBS4 annotated CpG
sites already permits the identification of tissue samples with a metastatic disease state
in an otherwise unknown tissue cohort with good accuracy. The diagnostic parameters
obtained for supervised classification of the test samples are already roughly within the
framework of parameters that are characteristic for medical tests [66]. Thus, the inclusion
and selection of additional informative candidate loci seems to be a realistic means to
achieve the level of accuracy required in order to translate the parameters into widely
used diagnostics. The potential value of such measurements has decisively improved with
recent findings showing that adjuvant treatment with pembrolizumab is beneficial for RCC
patients with high-risk tumors [10]. Thus, future involvement of methylation-based signa-
tures in prognostic models have the potential to improve risk stratification for adjuvant
treatments [10,65].

5. Conclusions

In conclusion, our analyses demonstrate the informativity of INA, NHLH2, and THBS4
CpG methylation for tissue-based prediction of the metastatic potency of RCC tissues.
Thus, these epigenetic markers may be part of a potential tissue biomarker signature for
the detection of aggressive disease development in localized RCC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14010039/s1: Table S1: Primer sequences, sequence to analyze and genomic position of
the analyzed region for pyrosequencing, Figure S1: Variable of importance analysis of the random
forest classification of tissue samples.
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