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Simple Summary: Our analysis of a 17-gene expression signature resulted in being significantly
different among patients with clear cell renal cancer cell (ccRCC) who reported a recurrence-free
survival (RFS) >5 years and patients with a RFS < 1 year. This Genomic Signatures could be useful to
better identify good prognosis (with favorable genomic signature) against poor prognosis (with unfa-
vorable genomic signature) ccRCC. Accordingly, both follow-up and treatment could be profoundly
personalized for patients with neodiagnosis of ccRCC in the near future.

Abstract: The Identification of reliable Biomarkers able to predict the outcome after nephrectomy of
patients with clear cell renal cell carcinoma (ccRCC) is an unmet need. The gene expression analysis
in tumor tissues represents a promising tool for better stratification of ccRCC subtypes and patients’
evaluation. Methods: In our study we retrospectively analyzed using Next-Generation expression
analysis (NanoString), the expression of a gene panel in tumor tissue from 46 consecutive patients
treated with nephrectomy for non-metastatic ccRCC at two Italian Oncological Centres. Significant
differences in expression levels of selected genes was sought. Additionally, we performed a univariate
and a multivariate analysis on overall survival according to Cox regression model. Results: A 17-gene
expression signature of patients with a recurrence-free survival (RFS) < 1 year (unfavorable genomic
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signature (UGS)) and of patients with a RFS > 5 years (favorable genomic signature (FGS)) was
identified and resulted in being significantly correlated with overall survival of the patients included
in this analysis (HR 51.37, p < 0.0001). Conclusions: The identified Genomic Signatures may serve as
potential biomarkers for prognosis prediction of non-metastatic RCC and could drive both follow-up
and treatment personalization in RCC management.

Keywords: clear cell renal cancer cell (ccRCC); prognosis; Next-Generation Sequencing (NGS);
Next-Generation expression analysis (NanoString); recurrence; biomarker

1. Introduction

Renal Cell Carcinoma (RCC) accounts for approximately 3% of all malignancies [1]. In
Italy, it causes more than 3.717 deaths/year and the incidence of new cases is estimated
at approximately 12,600 new cases/year [2]. The most frequent (70–85%) histologic sub-
type is the clear cell renal cell carcinoma (ccRCC), a highly vascular tumor arising from
the proximal tubules of [3]. The treatment of choice for early-stage disease is radical or
partial nephrectomy; however, about 50% of subjects with clinically localized disease will
eventually relapse, and two-thirds of them will recur within the first year [4–6]. Further,
effective adjuvant therapies have not been established yet, since VEGF TKIs have failed in
high-risk (pT3, pT4, node-positive), resected RCC, and the ASSURE [7,8], S-TRAC [9,10]
and PROTECT trials [11]. Using Sorafenib, Sunitinib, and Pazopanib in an adjuvant setting
did not reveal an improvement in DFS and OS. The double-blind, phase 3 trial, KEYNOTE-
564, showed that patients with clear-cell renal-cell carcinoma who were at high risk for
recurrence after nephrectomy, with or without metastasectomy, who received adjuvant
pembrolizumab therapy had significantly longer disease-free survival than placebo (disease-
free survival at 24 months, 77.3% vs. 68.1%; hazard ratio for recurrence or death, 0.68;
95% confidence interval [CI], 0.53 to 0.87; p = 0.002 [two-sided]) [12]. According to this
data on the role of pembrolizumab as adjuvant treatment, the identification of a prognostic
gene signature could be very helpful for better selection of those patients at higher risk of
recurrence who may benefit from adjuvant treatment.

Presently, two clinical models can be used to evaluate the risk of ccRCC progression:
the Mayo Clinic Stage, Size, Grade, and Necrosis (SSIGN) [13] score and the University of
California Los Angeles Integrated Staging System (UISS) [14]. The SSIGN system analyzes
histological features as TNM tumor stage (p < 0.001), size ≥ 5 cm (p < 0.001), nuclear grade
(p < 0.001), and tumor necrosis (p < 0.001) and assigns a risk score from 3 to 10, the higher
the score, the shorter the median survival.

The UISS model evaluates histological parameters like TNM stage, Fuhrman grade,
and Eastern Cooperative Oncology Group performance status and stratifies patients with
localized RCC in low, intermediate, and poor risk groups with 5-year survival rates of 92%,
67%, and 44%, respectively.

The ccRCC is characterized by high molecular heterogeneity, as pointed out by the
number of involved driver genes. Even if the most prevalent loss-of-function mutation
in ccRCC affects the von Hippel–Lindau (VHL, 44–90% of cases) [15], gene mutations
have also been identified in PBRM1 (32–41%), BAP1 (6–15%), SETD2 (3–11%), TP53, (5%),
KDM5C (3–5%), PIK3CA (3%), TSC1 (3%), ARID1A (2%), and CDKN2A (2%). Dissection
of the molecular heterogeneity characterizing the tumor tissues is, thus, of paramount
importance to explain the landscape of clinical manifestations, progression risk, and dif-
ferential response to pharmacological therapies. In particular, gene expression analysis
in tumor tissues represents a promising tool for better stratification of ccRCC subtypes
and patients’ evaluation. Previous studies reported ccRCC gene expression signatures
associated with prognosis, as the ClearCode34 [15–17], or associated with recurrence risk
and therapy response [18,19]. The molecular markers identified by different studies differ
according to the patient selection criteria (tumor type, stage, grade, therapies) and to the
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selected outcome (survival, progression, recurrence). Therefore, presently there are no
validated gene expression prognostic biomarkers applicable in all ccRCC setting. Further,
to enhance clinical adoption of sophisticated molecular diagnostic panels, such as gene
expression analysis, a better performance compared to histological/clinical evaluation
should be demonstrated.

In recent years, a novel, medium-throughput (up to 800 genes analyzed simultane-
ously) technology for gene expression analysis, that is, the Nanostring nCounter system [20],
allows implementing gene signatures in clinical practice [21]. We developed a Nanostring
195-plexed gene expression panel for ccRCC evaluation, including probes for (1) the most
relevant (to our knowledge) prognostic gene signatures reported in literature, (2) genes
frequently mutated in ccRCC, and (3) genes reported as differentially expressed in ccRCC
compared to normal tissue (see Materials and Methods). In this retrospective study, we
employed this analytical panel to compare gene expression between non-metastatic ccRCC
patients who had a recurrence-free survival (RFS) of < 1 year and non-metastatic ccRCC
patients who had an RFS of >5 year.

2. Materials and Methods
2.1. Patients

This was an observational, case-control, retrospective, multicenter study, including
46 adult patients (age ≥ 18) referred to the Sant’Andrea Hospital “Sapienza” University
of Rome and “Regina Elena” National Cancer Institute of Rome in the period 2012–2018.
Patients were consecutively enrolled, according to the stage at the time of diagnosis (stage
I–III ccRCC) and treated with nephrectomy (defined as “partial” or “radical”) with no
previous systemic therapy. After that surgery, no adjuvant treatment was done. Patients
were excluded if biopsies’ samples were derived from metastases. Follow-up of patients
was performed according to the standard of care at the participating institutions. The
SSIGN scoring system (1997 TNM stage, tumor size ≥ 5 cm nuclear grade, and histological
tumor necrosis) was used to define the aggressiveness of ccRCC.

Patients were categorized according to the RFS, defined as the time from the date of
surgery to the date of recurrence or last follow-up. The group with unfavorable genomic
signature (UGS, N = 22) had an RFS of <1 year and the favorable genomic signature (FGS,
N = 24) had an RFS of >5 years. Data collected from medical records and pathology reports
included Karnofsky performance status (PS), diameters of the primary tumors, Fuhrman
grade, lymph node involvement, tumor necrosis, sarcomatoid component, surgery (cy-
toreductive, partial or radical nephrectomy), tumor stage, date of radiographic or clinical
progression, and date of death or last follow-up. Overall survival (OS) was calculated from
the time of surgery to the date of death for any cause or last follow-up.

Ethical approval for this study was obtained by the local committees (Prot. n. 107
SA_2017 del 19.04.2017; RIF. CE: 4407) and patients provided written, informed consent.

2.2. Gene Expression Panel Selection

The full list of selected genes, with probes’ sequences and isoform coverage, is reported
in the Supplementary Table S1. The gene expression panel was designed to include genes
previously identified as prognostics’ factors [16,19], gene-defining molecular subtypes
according to Beuselinck et al. [16], genes identified as differentially expressed between
BAP1- and PBRM1-mutant tumors [22], genes involved in energy metabolism and in
ccRCC [23], and genes from the ccRCC dataset from The Cancer Genome Atlas (TCGA) [24].
Nine housekeeping genes were also included.

2.3. RNA Extraction and Nanostring Analysis

Total RNA was extracted using the High Pure FFPET RNA Isolation Kit (Roche,
Basilea, Switzerland), according to the manufacturer’s protocol, and quantified using the
NanoDrop2000 spectrophotometer (Thermo Fisher Scientific, Waltham, DE, USA). After
evaluation of RNA size and integrity using the 2100 Bioanalyzer (Agilent Technologies,
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Santa Clara, CA, USA), samples were stored at −80 ◦C until analysis. RNA samples were
excluded from the analyses if they had concentrations <25 ng/µL or a RNA Integrity
Number value < 6.5.

Nanostring analysis was performed according to the manufacturer’s instructions.
Briefly, 5 µL of each sample were mixed with 8 µL of the hybridization cocktail containing
the reporter code set. Then, 2 µL of the capture code set were added. Hybridization was
performed in a 65 ◦C thermocycler (Veriti Thermal Cycler, Applied Biosystems, Foster City,
CA, USA) for 18 h. The samples were then loaded onto the Nanostring cartridge using the
automated Nanostring prep station, and the cartridge was scanned with the Nanostring
Digital Analyzer to obtain probes’ counts.

2.4. Statistics
2.4.1. Sample Size Calculation

In order to determine sample size, we focused on the False Discovery Rate (FDR).
This rate depends strongly on the formula (1-π)/α where α is the type I error and π is the
proportion of the genes that are not differentially expressed between the two compared
groups. The value of (1-π) is typically in the range of 0.005 to 0.05, but in our study we
expected a higher rate because of the candidate gene approach we used and because the
two groups are highly different in prognostic terms (patients with RFS of <1 year and
patients with RFS of >5 years). The ssize.fdr package version 1.2 (R version 2.14.2) was
used. Assuming an effect size of 0.80, a power of 80%, and a FDR = 0.05, a range of different
sample sizes according to π were investigated. On the basis of this calculation and of
availability of retrospective information and practical consideration, a total of 46 patients
were included in the study (24 patients with RFS of < 1 year and 22 with RFS of > 5 years);
this sample size allowed us to assess a π = 0.90. Differences between patients’ characteristics
in the two groups were assessed by chi-square test when related to categorical variables
and by Mann–Whitney test when considering quantitative items. Cox proportional hazard
model was used to estimate hazard ratios and their 95% confidence intervals.

The primary end point was the identification of an UGS associated with worse progno-
sis (RFS < 1 year) and of a FGS associated with a better prognosis (RFS > 5 years). The gene
expression signature associated with poor prognosis was assessed by tumor characteristics,
including the SSIGN (Stage, Size, Grade, and Necrosis) score. The SSIGN score, com-
posed of four clinical assessment measures (7th version TNM classification system, tumor
size ≥ 5 cm, nuclear grade, and histological tumor necrosis), was used to define aggressive-
ness of ccRCC.

2.4.2. Nanostring Data Analysis

The raw data file from the Nanostring Digital Analyzer was analyzed by the Nanos-
tring nCounter nSolver™ 4.0 using the Nanostring Advanced Analysis Module 2.0 plugin.
The Advanced Analysis Module 2.0 software uses open-source R programs for quality
control (QC), normalization, and differential expression (DE) analysis. The analysis panel
included six positive control probes with known expected counts’ number and eight
negative control probes to test for analytical quality of each experimental run. Thus,
technical normalization was performed using nSolver™ 4.0, according to the Nanostring
Gene Expression Data Analysis Guidelines (Nanostring MAN-C0011-04), before running
the Advanced Analysis Module 2.0. Biological normalization was then achieved by se-
lecting the best reference probes among the nine housekeeping genes included in the
panel. These reference genes (ACTB, CLTC, VDAC2, PGK1, B2M) were selected using the
geNorm function of the Advanced Analysis Module, which ranks housekeeping genes
according to the minimum expression variance among samples. DE analysis between the
PP group and the GP group was performed using batch and cartridge IDs factored as
confounding factors.
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2.5. Study Design

This study design considered two groups of patients who were very different in
prognostic terms. In the first step, the gene finding and the standard t statistic were used
for the ranking; the t statistic is calculated as the difference in the class-specific means of
log expression divided by an estimate of the standard error of the difference. In order to
control the “false discovery rate” (FDR), a stringent threshold of significance was used
(p = 0.01). Considering a total of 195 genes to be investigated, the expected number of false
positives was about two genes; the FDR was given by the ratio between 2 and the number
of genes for which the univariate significance level was less than 0.01.

The second step consisted of the development of a predictive classifier. A class
predictor, or predictive classifier, is a computable function that can be used to predict a
class from an expression profile. As suggested by Simon, in developing this predictive
classifier, the principal aim was the predictive accuracy, sensitivity, specificity, and positive
and negative predictive values and not the goodness of fit to the data or the statistical
significance of regression coefficients.

The third step was the validation of this classifier, and a cross-validation method was
implemented based on the leave-one-out procedure. The cross-validated prediction error
is an estimate of the prediction error associated with the application of the algorithm for
model building to the entire dataset.

At the end of the entire process, the classifier was completely specified (including
cutoffs) to allow validation in external independent sets.

3. Results

According to RFS, patients were divided in two groups: 24 patients in the group with a
RFS of >5 years versus 22 patients with an RFS of < 1 year. The two study groups were well
balanced in terms of sex, tumor grade, necrosis, and sarcomatoid component representation
in the histology, whereas the median age, disease stage, Karnofsky PS, and surgery done
were significantly different between the two groups (Table 1). Differential analysis of gene
expression between the RFS ≤ 1 year and RFS > 5 years groups identified 17 genes that
maintained significantly different expression levels after Bonferroni correction (Table 2).
This molecular signature was entirely down regulated in the RFS ≤ 1-year group compared
to the RFS > 5-years group and was thus named as UGS.

Furthermore, we compared our risk assessment tool with existing clinical nomogram
to predict death from ccRCC. SSIGN score distribution in two prognostic groups was
very heterogeneous (Figure 1), suggesting an independent contribution of this signature
to prognosis.

Table 1. Patients’ characteristics (valid cases and percentages).

RFS > 5 Years (N = 24) RFS < 1 Year (N = 22) p Value

Sex
Male 13 (54.2) 11 (50.0)

0.77Female 11 (45.8) 11 (50.0)

Age (Median, range) 52 (34–76) 65 (49–82) 0.001

Grade
G1 4 (17.4) 2 (9.1)

0.55
G2 8 (34.8) 6 (27.3)
G3 11 (47.8) 13 (59.1)
G4 0 1 (4.5)

Necrosis
Yes 7 (29.2) 8 (40.0)
No 17 (70.8) 12 (60.0) 0.45
ukn 0 2
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Table 1. Cont.

RFS > 5 Years (N = 24) RFS < 1 Year (N = 22) p Value

Sarcomatoid
component

Yes 0 2 (9.5)
No 24 (100) 19 (90.5) 0.12

unknown 0 1

Stage
I 15 (62.5) 6 (27.3)
II 4 (16.7) 2 (9.1) 0.02
III 5 (20.8) 11 (63.6)

Karnofsky
100 23 (95.8) 6 (27.3)

80–90 1 (4.2) 13 (59.1) <0.0001
60–70 0 3 (13.6)

Surgery
2 (8.3)

22 (91.7) 0.01Radical 9 (40.9)
Partial nephrectomy 13 (59.1)

Abbreviations: Recurrence-free survival (RFS).

Table 2. List of differentially expressed genes between recurrence-free survival (RFS) of <1 y and RFS
of >5 yrs.

Gene Log2 Fold
Change

Std Error
(log2)

Lower
Confidence
Limit (log2)

Upper
Confidence
Limit (log2)

Linear
Fold

Change

Lower
Confidence

Limit
(Linear)

Upper
Confidence

Limit
(Linear)

p-Value BONF.
p.Value

IL6 −3.72 0.545 −4.79 −2.65 0.076 0.0363 0.159 2.91 × 10−8 4.98 × 10−6

G6PD −1.16 0.21 −1.57 −0.75 0.447 0.336 0.595 1.98 × 10−6 3.39 × 10−4

TALDO1 −1.02 0.203 −1.42 −0.627 0.492 0.373 0.647 9.34 × 10−6 1.60 × 10−3

POLD4 −0.769 0.165 −1.09 −0.446 0.587 0.469 0.734 3.37 × 10−5 5.77 × 10−3

SQSTM1 −0.686 0.152 −0.984 −0.388 0.622 0.506 0.764 5.30 × 10−5 9.06 × 10−3

CP −2.32 0.52 −3.34 −1.3 0.2 0.0986 0.405 6.13 × 10−5 1.05 × 10−2

DBN1 −1.21 0.273 −1.75 −0.677 0.432 0.298 0.626 6.73 × 10−5 1.15 × 10−2

TMEM8A −0.768 0.176 −1.11 −0.423 0.587 0.463 0.746 8.24 × 10−5 1.41 × 10−2

TBC1D7 −0.735 0.173 −1.07 −0.395 0.601 0.475 0.76 1.24 × 10−4 2.12 × 10−2

SERPINA3 −4.03 0.97 −5.93 −2.13 0.0613 0.0164 0.229 1.62 × 10−4 2.78 × 10−2

GIPC1 −0.678 0.165 −1 −0.354 0.625 0.5 0.783 1.90 × 10−4 3.25 × 10−2

BAP1 −0.641 0.157 −0.949 −0.333 0.641 0.518 0.794 2.01 × 10−4 3.44 × 10−2

TKT −0.645 0.158 −0.954 −0.335 0.64 0.516 0.793 2.02 × 10−4 3.45 × 10−2

TLCD1 −1.53 0.377 −2.27 −0.789 0.347 0.208 0.579 2.21 × 10−4 3.77 × 10−2

SLC4A3 −2.3 0.567 −3.41 −1.18 0.204 0.0944 0.44 2.21 × 10−4 3.78 × 10−2

PKM −0.674 0.168 −1 −0.344 0.627 0.498 0.788 2.55 × 10−4 4.36 × 10−2

MTX1 −0.67 0.169 −1 −0.339 0.628 0.5 0.791 2.85 × 10−4 4.88 × 10−2



Cancers 2022, 14, 178 7 of 11

Cancers 2021, 13, x FOR PEER REVIEW 7 of 11 
 

 

SERPIN
A3 

−4.03 0.97 −5.93 −2.13 0.0613 0.0164 0.229 1.62 × 10−4 2.78 × 10−2 

GIPC1 −0.678 0.165 −1 −0.354 0.625 0,5 0.783 1.90 × 10−4 3.25 × 10−2 
BAP1 −0.641 0.157 −0.949 −0.333 0.641 0.518 0.794 2.01 × 10−4 3.44 × 10−2 
TKT −0.645 0.158 −0.954 −0.335 0.64 0.516 0.793 2.02 × 10−4 3.45 × 10−2 

TLCD1 −1.53 0.377 −2.27 −0.789 0.347 0.208 0.579 2.21 × 10−4 3.77 × 10−2 
SLC4A3 −2.3 0.567 −3.41 −1.18 0.204 0.0944 0.44 2.21 × 10−4 3.78 × 10−2 

PKM −0.674 0.168 −1 −0.344 0.627 0.498 0.788 2.55 × 10−4 4.36 × 10−2 
MTX1 −0.67 0.169 −1 −0.339 0.628 0,5 0.791 2.85 × 10−4 4.88 × 10−2 

Furthermore, we compared our risk assessment tool with existing clinical nomogram 
to predict death from ccRCC. SSIGN score distribution in two prognostic groups was very 
heterogeneous (Figure 1), suggesting an independent contribution of this signature to 
prognosis. 

 
Figure 1. SSIGN score distribution in the two groups (RFS > 5 years (green) and RFS < 1 year (red)). X = SSIGN; Y = n pts. 

As expected, those patients who reported a RFS from the time of surgery of >5 years 
and a FGS had a longer OS than patients who reported a RFS of < 1 years and UGS. The 
univariate analysis on OS according to Cox regression model showed an association 
between Karnofsky Performance Status (p < 0.0001), tumor stage (p = 0.03), and SSIGN 
score (p = 0.003) and signature (p < 0.0001); no association was found for gender (p = 0.90), 
age (p = 0.11), grade (p = 0.78), necrosis (p = 0.75), and type of surgery (p = 0.08). (Table 3) 
However, at the multivariate analysis, when significant associations were tested 
simultaneously, and not considering signature, only Karnofsky (p < 0.0001) and SSIGN (p 
= 0.006) maintained their significance. When introducing signature, this was the only 
significant parameter (HR 51.34 (6.75–390.96); p < 0.0001)) (Table 3). 

  

Figure 1. SSIGN score distribution in the two groups (RFS > 5 years (green) and RFS < 1 year (red)).
X = SSIGN; Y = n pts.

As expected, those patients who reported a RFS from the time of surgery of >5 years
and a FGS had a longer OS than patients who reported a RFS of < 1 years and UGS.
The univariate analysis on OS according to Cox regression model showed an associa-
tion between Karnofsky Performance Status (p < 0.0001), tumor stage (p = 0.03), and
SSIGN score (p = 0.003) and signature (p < 0.0001); no association was found for gender
(p = 0.90), age (p = 0.11), grade (p = 0.78), necrosis (p = 0.75), and type of surgery (p = 0.08).
(Table 3) However, at the multivariate analysis, when significant associations were tested
simultaneously, and not considering signature, only Karnofsky (p < 0.0001) and SSIGN
(p = 0.006) maintained their significance. When introducing signature, this was the only
significant parameter (HR 51.34 (6.75–390.96); p < 0.0001)) (Table 3).

Table 3. Cox proportional hazard model with overall survival as outcome.

UNIVARIATE
HR (95% CI)

MULTIVARIATE
HR (95% CI)

GENDER –
(male vs. female) 0.95 (0.41–2.19) p = 0.90

AGE –
(>60 vs. <60 years) 2.06 (0.86–4.93) p = 0.11

KARNOFSKY PS
(100 vs. <100%) 0.15 (0.06–0.37) p < 0.0001 0.14 (0.05–0.34) p < 0.0001

GRADE –
(G3–G4 vs. G1–G2) 1.14 (0.46–2.79) p = 0.78
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Table 3. Cont.

UNIVARIATE
HR (95% CI)

MULTIVARIATE
HR (95% CI)

NECROSIS –
(yes vs. no) 1.90 (0.75–4.83) p = 0.75

STAGE –
(III–IV vs. I–II) 2.64 (1.09–6.41) p = 0.03

SURGERY –
(radical vs. partial) 2.25 (0.90–5.62) p = 0.08

SSIGN
(for each point) 1.23 (1.05–1.44) p = 0.003 1.28 (1.07–1.52) p = 0.006

SIGNATURE
(UGS vs. FGS) 51.37 (6.75–390.96) p < 0.0001 Not considered

Abbreviations: hazard ratio (HR); unfavorable geneomic signature (UGS); favorable genomic signature (FGS).

4. Discussion

We identified a 17-gene expression signature to predict the outcome of ccRCC patients.
The primary endpoint was the identification of an unfavorable genomic signature associ-
ated with worse prognosis (RFS of <1 year) and of a favorable genomic signature associated
with a better prognosis (RFS of >5 years). The gene expression signature associated with
poor prognosis was assessed by tumor characteristics, including the SSIGN score. In this
analysis, we distinguished two different subtypes of ccRCC characterized by different out-
comes. Overexpression of a gene involved in infection/inflammation, PI3K-Akt signaling,
HIF-1 signaling, and pentose phosphate pathway, was associated with an increased risk
of recurrence.

The TCGA data showed the correlation between disease aggressiveness and metabolic
shift that involved increased dependence on pentose phosphate shunt, downregulation
of AMP-activated protein kinase (AMPK), and the Krebs cycle and increased glutamine
transport and fatty acid production [25]. Additionally, Zhang Q. and colleagues showed
the association between overexpression of glucose 6-phosphate dehydrogenase (G6PD)
with poor prognosis [26].

In our study, patients with UGS were characterized by overexpression of POLD4.
Interestingly, the role of POLD4 is a gene involved in mismatch repair, base excision repair,
DNA replication, homologous recombination, and nucleotide excision repair. POLD4
downregulation activates checkpoint proteins, induces G1-S arrest, and delays the cell cycle
from S to G2. POLD4 reduction induces also modest genomic instability, while allowing
cells to grow until DNA damage reaches an intolerant level [27,28]. Its role in ccRCC
is unclear.

USG was characterized by a high expression of interlekin-6 (IL-6), a gene involved in
infection/inflammation that seems to play a pro-tumorigenic role, contributing to prolifera-
tion and invasion of the tumor cell. Wang et al. [29] showed the correlation between a high
level of IL-6 and poor survival in RCC patients. Multigenic assay by Rini included IL-6 in
inflammatory pathway [19]. Some studies showed the association between a high level of
IL-6 and tyrosine kinase inhibitors’ resistance. IL6 is shown to be closely related to hypoxia
inducible factor 1-α (HIF-1α) as well as increased VEGF activity. IL-6 binds IL-6 Receptor
and results in activation of the JAK/STAT3 signaling pathway, leading to the transcription
of STAT3 target genes, i.e., VEGF or SOCS3. SOCS3 suppresses STAT1 activation. STAT3
and NF-κB interact at multiple levels and promote inflammation, increasing tumor cell
proliferation and survival as well as tumor angiogenesis and metastasis [30–33]. Motzer RJ
presented at the 2020 ASCO annual virtual meeting the biomarker analyses from the phase
3 ChekMate 214 trial of nivolumab plus ipilimumab vs. sunitinib in clear-cell advanced
renal cell carcinoma [34,35]. The angiogenesis gene signature was associated with ORR
for sunitinib (high score) and Nivolumab + Ipilimumab (low score). Prolonged PFS with
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Nivolumab + Ipilimumab was associated with higher expression of Hallmark inflammatory
response and Hallmark epithelial–mesenchymal transition gene sets. These results suggest
the knowledge that our signature could also play an important role in the therapeutic
choice (immunotherapy vs. TKI vs. TKI +immunotherapy).

As shown also with a ClearCode 34-based model, these genomic models were better
predictors for recurrence than the SSIG Model [16,36].

Adjuvant treatment with the VEGF receptor tyrosine kinase inhibitors showed no
survival benefit in resected, high-risk ccRCC. Therefore, our genomic signature can also
explain the hypothesis that the biology of cancer recurrence might be independent of angio-
genesis in this setting [37–39]: Micrometastases in the adjuvant setting do not require the
support of tumor angiogenesis. Therefore, a VEGFR TKI would not eradicate micrometas-
tases. Currently, the role of immune checkpoint inhibitors in an adjuvant setting shows
promising results, but are still under investigation in ongoing trials.

Our 17-gene expression signature was significantly associated with RFS of < 1 year
and showed greater superiority in predicting localized renal cell carcinoma recurrence
when compared with a clinicopathological characteristics’ scoring system (SSIGN score).

We acknowledge that our study has limitations: This was a retrospective trial. The
population was small and characterized by two predefined distinct groups of patients
selected a priori on recurrence-free survival of <1 years vs. >5 years.

However, our genomic signature enhances risk stratification. Future prospective
studies, with large cohorts of patients, will be necessary to validate this signature.

5. Conclusions

This genomic panel could drive treatment personalization and support different
surveillance programs to improve management of two distinct ccRCC prognostic groups.
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