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Simple Summary: The present review is aimed to discuss the relevance of assaying for the presence
and isolation of circulating tumor cells (CTCs) in patients with sarcoma. Just a few studies have been
performed to detect and enumerate viable CTCs in sarcoma and a majority of them still represent
proof-of-concept studies, while more frequently tumor cells have been detected in the circulation by
using the PCR-based method. Nevertheless, recent advances in technologies allowed detection of
epithelial–mesenchymal transitioned CTCs from patients with mesenchymal malignancies, despite
results being mostly preliminary. The possibility to identify CTCs holds a great promise for both
applications of liquid biopsy in sarcoma for precision medicine, and for research purposes to pinpoint
the mechanism of the metastatic process through the characterization of tumor mesenchymal cells.
Coherently, clinical trials in sarcoma have been designed accordingly to detect CTCs, for diagnosis,
identification of novel therapeutic targets and resistance mechanisms of systemic therapies, and
patient stratification.

Abstract: Bone and soft tissue sarcomas (STSs) represent a group of heterogeneous rare malignant
tumors of mesenchymal origin, with a poor prognosis. Due to their low incidence, only a few
studies have been reported addressing circulating tumor cells (CTCs) in sarcoma, despite the well-
documented relevance for applications of liquid biopsy in precision medicine. In the present review,
the most recent data relative to the detection and isolation of viable and intact CTCs in these tumors
will be reviewed, and the heterogeneity in CTCs will be discussed. The relevance of epithelial–
mesenchymal plasticity and stemness in defining the phenotypic and functional properties of these
rare cells in sarcoma will be highlighted. Of note, the existence of dynamic epithelial–mesenchymal
transition (EMT)-related processes in sarcoma tumors has only recently been related to their clinical
aggressiveness. Also, the presence of epithelial cell adhesion molecule (EpCAM)-positive CTC in
sarcoma has been weakly correlated with poor outcome and disease progression, thus proving the
existence of both epithelial and mesenchymal CTC in sarcoma. The advancement in technologies
for capturing and enumerating all diverse CTCs phenotype originating from these mesenchymal
tumors are presented, and results provide a promising basis for clinical application of CTC detection
in sarcoma.

Keywords: sarcoma; CTC; epithelial–mesenchymal plasticity; clinical practice

1. Introduction

Sarcomas are an uncommon and heterogeneous group of mesenchymal malignant
tumors originating from bone, cartilage as well as other mesenchymal tissues, such as
muscle, fat, peripheral nerves, fibrous, or related tissues [1]. The most common soft-tissue
histologic subtypes are high-grade undifferentiated pleomorphic sarcoma, gastrointestinal
stromal tumors (GIST), liposarcoma, and leiomyosarcoma, while bone sarcomas include
osteosarcoma, chondrosarcoma, and Ewing sarcoma [2–4]. Although the raised progress in
discovering genetic aberrations and their functions in these tumors, the major therapeutic
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option for the majority of local recurrence and metastatic sarcomas remain cytotoxic
chemotherapy. Chemotherapy remains controversial in the adjuvant curative setting for
the most common types of adult soft tissue sarcomas (STSs) and recent improvements in
bone sarcomas have been achieved only thanks to the use of intensive chemotherapy, thus
paying the price of short and long-term side effects. Therefore, conventional treatments
remain the standard and sometimes the sole option for patients with sarcomas.

Additionally, metastatic disease is the most crucial factor that determines the survival
of the great majority of newly diagnosed patients with sarcoma [5]. Even if the incidence is
low, sarcoma presents a high mortality rate due to high metastatic potential, late diagnosis,
and relapse [6]. Thus, new tools need to be developed to help in the identification of
patients’ responses or resistances to specific therapies and the prediction of toxicity side
effects due to therapies. In this contest, recent studies on pharmacogenomics biomark-
ers described their modulation due to both conventional and new chemotherapeutics
drugs, in several sarcoma histotypes [7]. Radiographic imaging is routinely performed
for follow-up after surgery, thus depicting the effects of neoadjuvant therapies [8], but
often cannot detect metastatic loci and does not differentiate tumor histology and not
accurately predict the survival of high-risk patients [9], as recently discussed in STS [10].
Conventional therapy combines neoadjuvant chemotherapy followed by surgical removal,
and postoperative chemotherapy [11–13]. In patients with localized disease long-term
survival has dramatically improved through neoadjuvant and adjuvant chemotherapy,
supporting the presence of micrometastatic disease at diagnosis in most patients [14,15].
However, ~50% of relapsing of patients with sarcomapresent chemo-sensitive tumors [16],
and patients with overt metastases still have a poor prognosis. Despite multidisciplinary
therapies, metastasis remains a critical issue [17]. Moreover, the response rates toward
novel molecular-targeting drugs are not very high [18,19], and new treatment strategies
are required [20]. Therefore, the presence of occult micro-metastases should be assessed
at diagnosis, during therapy, and follow-up and their impact should be confirmed on
progression and outcome. A potential new approach for the early detection of relapse is to
capture CTCs from peripheral blood of patients with sarcoma who are in remission. The
availability of a non-invasive method allowing sensitive detection, reliable identification,
and molecular characterization of CTC potentially has great clinical value to help individu-
alized therapy, for initial staging of the disease, for early detection of relapse, to improve
prognosis and predict response to chemotherapy, and for identification of non-responders
to therapeutic interventions. Recently, several circulating biomarkers have been proven
to be useful in order to predict metastasis and to assess tumor activity, including CTCs,
cell-free DNA (cfDNA), and microRNAs [21–23], confirming the diagnosis of standard
imaging, histological techniques, and having prognostic value.

In the review, we discussed the most recent data relative to the detection and isolation
of viable and intact CTCs in these tumors, and the heterogeneity in CTCs. Conversely, more
recent literature extensively reported data discussing the relevance and implications of
detecting extracellular exosomes and nucleic acids (both circulating tumor DNA, ctDNAs,
and cfRNAs) in sarcoma [24–27].

In this contest, a method that detects CTCs and circulating cancer stem cells [28,29]
would be most useful in assessing invasiveness, accurate prognosis, drug susceptibility, and
resistance to therapy [30]. Briefly, the metastatic cascade consists of sequential steps, which
include: (1) the intravasation of circulating tumor cells (CTCs), released from the primary
tumor into the systemic circulation; (2) the extravasation of a small subset of neoplastic
cells through the capillary endothelium of distant organs; and (3) the establishment of an
even fewer number of cells and proliferation into clinically detectable secondary tumors
in the new tissue environment [31–36]. Several technologies have been developed for
CTCs capture and enumeration [37–40], and CTC counts have been proven to act as a
predictive biomarker in solid tumors, correlating with poor outcomes, disease progression,
and metastases [41–45]. The CellSearch™ System has been extensively validated in large
patient cohorts for CTC enumeration, with the aim to identify patients at high-risk with
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decreased progression-free survival (PFS) and overall survival (OS) in breast, prostate,
and colorectal cancers [46,47]. Also, several studies have proven the utility of molecular
profiling of CTC for prognosis prediction, patient stratification, and therapeutic response
monitoring [41,45].

2. CTC Heterogeneity: Epithelial–Mesenchymal Transitioned and Stem
Cell-Like CTCs

The most recent improvements in microfluidic devices, together with new insight
in single-cell-resolution next-generation sequencing (NGS) and mass cytometry technolo-
gies [48–51] have led to a better knowledge of the metastatic process. Thus, several studies
identified the oligoclonal CTCs, the molecular profiling of CTCs, which differ compared
to primary and metastatic tumors, and the identification of gene expression signatures in
metastatic precursors and diverse CTC subsets [52]. Indeed, CTCs are heterogeneous at
multiple levels and only a fraction of them consists of metastatic precursors [53–56], thus
confirming the need to study CTCs at the single-cell level to pinpoint the mechanisms
of metastasis.

The early steps of metastasis rely on the activation of the epithelial–mesenchymal
transition (EMT) process of static epithelial tumor cells, into an acquired mesenchymal
phenotype, with functional and dynamic changes in cell structure, migration, and inva-
sion [32]. EMT is orchestrated by conserved inducing signals, transcriptional regulators,
and effectors [32,57–59], in response to the inputs from the microenvironment, and pro-
motes the dissociation of tumor cells from the primary site, with subsequent migration
and dissemination to distant places. EMT programs are tissue-context dependent, and
activated only partially and transiently, reflecting the balance of transcriptional drivers and
suppressors of EMT [34,39,60–65]. These intermediate states represent crucial drivers of
tumor progression [63]. The term ‘epithelial–mesenchymal plasticity’ (EMP), also referred
to as partial EMT, or metastable EMT state describes the ability of cells to adopt E/M
epithelial–mesenchymal features and to interconvert, reversibly, between intermediate
states [60,65–68]. Thus, EMT status cannot be assessed exclusively based on a reduced num-
ber of markers, and both epithelial or mesenchymal traits and features, such as invasion,
increased survival, or decreased proliferation, should be included as criteria for accurately
defining EMT status. A common feature is an attenuation in the early phase of the epithelial
phenotype [69–73]. Of note, tumor cells activating EMT acquire just a few mesenchymal
traits, sufficient to confer the ability to invade adjacent tissues, and disseminate to distant
sites [34,65,74–76]. The activation of alternative EMT programs and intermediate mes-
enchymal states generate great phenotypic heterogeneity within tumors and is proven to
occur also in CTCs released by primary cancers and their metastases [77,78].

Cancers originating from the mesenchymal or neuronal lineages consistently present
higher EMT scores, while solid tumors of epithelial origin have different EMT gradients,
which might explain the unconvincing clinical significance of EMT in such cases [79].
Multiple tumor cell subsets associated with different EMT stages have been identified [61],
reflecting heterogeneous levels of markers previously associated with tumor stemness,
EMT, or metastasis initiation—such as CD61, CD51, and CD106 [80–84].

The epithelial cell adhesion molecule EpCAM is overexpressed in tumors of epithelial
origin [85,86], and undifferentiated human embryonic stem cells [87]. In tumor cells, the
dynamic expression of EpCAM correlates with the EMT and the reverse mesenchymal–
epithelial transition (MET) processes since it is transiently lost during the early phase and
subsequently re-acquired in metastatic niches [88], thus limiting the detection of epithelial–
mesenchymal transitioned CTCs [89,90]. Conversely, the EMT process is associated with
overexpression of vimentin [91], a constituent of adhesion networks, which is confirmed
in single-cell profiling of CTCs [91–93] and directs CTCs to reseed the metastatic niche.
Accordingly, CTCs were recently detected and enumerated from patients with epithelial
colon cancer using cell-surface vimentin (CSV) [94]. CSV+ EMT CTCs might represent
a unique subset of CTCs not responding to chemotherapeutic regimens, and could be



Cancers 2021, 13, 2189 4 of 29

associated with cancer stem-like cells, providing evidence that EMT CTCs detection is
critical for patients with tumor progression.

The hypothesis that full EMT is associated with increased metastatic potential and
promotes initial steps of metastasis is still a matter of debate [34,61,63,95–101], despite
a lot of evidence of EMT as a relevant switch in systemic cancer and treatment resis-
tance [62,95,98]. On the other side, the metastatic potential has been proven to greatly
correlate with the intermediate EMT state, and to less extent with the levels of expression
of the CD106 metastatic marker [61]. In accordance, the majority of CTCs underwent
EMT and expressed both epithelial and mesenchymal markers [77,95]. Of note, even the
most mesenchymal states are not irreversibly committed, and cells can undergo MET
within the metastatic microenvironment [102]. The distinct intermediate EMT states are
associated with diverse invasive, metastatic, and differentiation characteristics: tumor
cells with hybrid phenotypes more efficiently enter the circulation, and generate metas-
tases, with implications in tumor heterogeneity, invasion, metastasis, and resistance to
therapy [34,36,61,65,74,75].

EMT has been documented to confer resistance to cell death in tumors to chemo-
and immunotherapy in experimental and clinical studies [32,96,97,103], and targeting
EMT holds promise in overcoming therapy resistance. Earlier reports which addressed
EMT in CTCs demonstrated a correlation between mesenchymal CTCs and therapy re-
sistance [77,96,97]. The mesenchymal lineage is linked to enhanced escaping of anoikis
and drug-induced death [103], which has been linked to drug susceptibility and to the
entrance of tumor cells into a non-proliferative state in which they have stem-cell-like
properties [104]. Thus, even if the functional implications of EMT heterogeneity are still
unknown, several clinical trials have accepted the notion of EMT plasticity for the potential
for targeted therapy to prevent cancer metastasis.

Interestingly, CTC clusters, which are defined as a group of two or more distinct clonal
carcinoma cells, have a greater metastatic potential and are more effective in colonizing
secondary sites than single mesenchymal CTCs [52], thus highlighting that mesenchy-
mal cancer cells require at least partially reverse to the epithelial state for metastatic
growth [105]. Although representing a minority of the CTCs in the peripheral circulation,
the presence of CTC clusters is associated with the worse clinical outcome in multiple can-
cer types [52,106,107]. CTC clusters have distinct gene expression profiles and disseminate
differently compared to single CTCs. They retain epithelial features, with cell–cell junc-
tions exerting a key function for their maintenance in the circulatory system [52,108–110].
Heterogeneous clusters might seed polyclonal metastases [108,111,112], thus increasing the
likelihood that a tumor will colonize distant tissues and might eventually present increased
resistance to therapies.

Numerous pieces of evidence in the literature reported the link between the acquisition
of EMT and cancer stemness, characterized by an increase in tumor-initiating cells (TICs)
frequency [65,102,113,114]. As recently reviewed, several lines of evidence coherently
confirmed that the metastatic potential of a tumor is due to a low number of a minor
subpopulation of cancer cells—termed cancer stem cells (CSCs)—able to self-renew and to
efficiently regenerate the phenotypic heterogeneity of a parental tumor, and responsible for
initiating overt metastases; of note, CTCs with stemness properties have been documented,
which represent the most aggressive tumor cells in the circulation [55]. Activation of EMT
is a major mechanism for the generation of cancer stem cells (CSCs), and TIC frequency
increased at the earliest EMT state [102]. Different subsets of CSCs coexist, which present
an EMT-derived stem cell phenotype, expressing a CD44highCD24low profile [114–116], or
a high intracellular aldehyde dehydrogenase 1 activity, as a marker of stemness [117,118].
CSC-like properties and EMT features were both induced by the gene signature for the
induction of pluripotency [119]. Cells with an intermediate mesenchymal–epithelioid
state exhibit CSC-like properties [114,120–124]. Recently, a sub-set of metastasis-initiating
cells (MICs) has been described among CTCs [56,125,126], Thus CTCs with a hybrid
epithelial/mesenchymal phenotype present also stemness traits [61,77,127,128], which
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have been correlated to adverse disease outcomes and drug resistance [129,130]. Following
recent literature [96,97], mesenchymal-type CTCs were more resistant to chemotherapy
compared to epithelial-type CTCs. Systemic tumor cells with a hybrid phenotype, which
is defined as primarily epithelial and moderately mesenchymal, represented the most
aggressive cells, with enhanced ability to generate metastases, consistently with EpCAM
function in cell adhesion, proliferation, and epithelial differentiation [131], and correlated
with the occurrence of lung metastases in several types of cancer [101], such as in prostate,
breast, bladder, and pancreatic carcinomas [96,125,126,132–134]. In a clinical cohort of
patients with stages III and IV metastatic breast cancers, by using EpCAM as a marker for
EMT, the loss of epithelial phenotype in CTCs has been demonstrated, while bone marrow-
derived disseminated tumor cells retained an epithelial phenotype [118]. These results
support the notion that, despite the low numbers [41,42], EpCAM+ systemic circulating
tumor cells represent the primary source of MICs [125,126].

At present, for a clinical application of CTC [33,42], collected data suggest that EpCAM-
dependent enrichment systems underestimate CTC numbers, even if without losing clin-
ically relevant cells. Accordingly, EpCAM+ CTCs counts predict the clinical outcome of
patients with metastatic and non-metastatic breast cancer [42,135].

Bone and STSs may reside in an intermediate metastable phenotype, shifting from a
more proliferative (epithelial-like) to a more invasive (mesenchymal) state, which expresses
both epithelial and mesenchymal markers. Comparative expression of epithelial mark-
ers and adhesion molecules indicated heterogeneous expression across types [136–139].
Accordingly, a strong variance in EpCAM expression has been documented between his-
totypes in pediatric sarcomas and the association with patient outcome [140,141]. The
metastable EMT state is common in aggressive sarcomas and frequently contributes to
drug resistance [142]. Osteosarcoma and desmoplastic small round cell tumors (DSRCT)
have been documented to express both epithelial and mesenchymal markers, such as
keratin, cadherins, desmin, and vimentin [143,144]. Due to deregulation of EMT-related
genes, DSRCT presents high inter-tumor heterogeneity, frequently disseminates and resists
drug treatment [145]. Similarly, in synovial sarcoma restricted areas of the primary tumor
mass, as sites of spontaneous EMT, differentiate towards the epithelial lineage [146]. An
epithelial/mesenchymal differentiation has been documented in Ewing sarcoma and ep-
ithelioid sarcomas too. Ewing sarcoma tumor cells with strong EWSR1-FLI1 transcription
activity have an epithelial-like phenotype, whereas low-level EWSR1-FLI-positive cells
mostly express cell-matrix proteins, have higher motility and invasive capacity but reduced
proliferative activity [147]. Of note, MET-related programs occur in sarcomas expressing
epithelial markers, such as E-cadherin and β-catenin in synovial sarcomas [146], or in Ew-
ing/PNET tumors, which have high levels of tight junction proteins [139]. The prognostic
significance of expression of an epithelial marker and adhesion molecule in sarcoma tumors
has not been assessed systematically and only a few data have been reported. Desmoplakin
and pGSK3β represent independent good prognostic factors for PFS, while ZO-1 and
Snail are independent good prognostic factors for OS [138]. An active role of MicroRNA
(miRNAs) (i.e., miR-130a, miR-126, miR-145) in the modulation of cadherins and epithelial
cell markers has been reported, which determine a shift from a proliferative state to a more
invasive phenotype of osteosarcoma cells [148]. Regulation of EMT/MET-related genes
in rhabdomyosarcoma (RMS) tumors has also been described, mediated by activation
of the Rac1/Cdc42-PAK signaling pathway, with loss of E-cadherin and expression of
N-cadherin [149]. RMS cells express the lowest levels of EpCAM and E-cadherin among all
sarcoma histotypes due to PAX3-FOXO1 transcription factor, which antagonizes wild-type
Pax3-induced cell aggregation and epithelioid changes.

A dynamic expression of EpCAM during tumor evolution has been observed in
diverse sarcoma subtypes, with a correlation between high EpCAM expression and signifi-
cantly poorer patient’s OS and adverse outcome [141]. In patients with RMS, no significant
difference in EpCAM expression has been observed between the onset at diagnosis and
relapse, during the follow-up. However, patients with higher levels of EpCAM had a
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significantly poorer outcome, while EpCAM levels were not significant for PFS. Simi-
larly, patients with DSRCT overexpressing EpCAM had a poor prognosis and OS. Thus
EpCAM-positive tumor cells might exert a role in metastasis in sarcoma. It has been proven
that EpCAM expression can be acquired during tumor progression [150] and is highly
expressed in cancer stem cells [151]. The numbers of CTC-positive in patients with sarcoma
and total CTCs in pediatric sarcomas are similar to data previously reported at diagnosis in
carcinomas [152], with progressive disease and poor outcome in patients with the highest
EpCAM levels [141].

3. Technologies for Detection of CTCs in Sarcoma

Recent papers report novel technical advancements in assaying for the presence,
isolation, and enumeration of CTCs in patients with sarcoma, and several technologies
have been described, based on imaging, microfilter, and microchip devices [89,90,153,154];
even if some studies still represent proof-of-concept. Standardization of methodologies is
important to test the clinical utility of CTCs in prospective clinical trials for the identifica-
tion of therapeutic targets and resistance mechanisms of systemic therapies, and patient
stratification [155]. Few studies have been performed on sarcoma-derived CTCs (Figure 1),
while in the majority of cases tumor cells have been detected by using PCR-based meth-
ods in peripheral blood and/or bone marrow, in Ewing sarcoma [156–160], RMS [161],
synovial sarcoma [146], osteosarcoma [162], and alveolar sarcoma [163,164], analyzing
tumor-specific markers (i.e., translocations [165], or by gene expression analysis [163,166]),
with several limitations. Reports on the identification of mutations in ctDNA in predefined
cancer genomic hotspots in sarcoma have been published [167,168], by improved sequenc-
ing techniques [169], providing a highly sensitive tool to detect mutations, for assessment
of therapy response in metastatic patients with poor prognosis [170]. However, currently,
the number of actionable mutations and defined drug-sensitivity networks is relatively low.
In addition, mutations in the ctDNA may not be the endpoint of tumor transformation
and may derive from apoptotic cells more sensitive to antitumor therapies. Additionally,
ctDNA remains difficult to be detected in pre-metastatic patients. MicroRNAs have also
been studied in sarcoma [171,172], although their utility in clinical practice has not been
yet demonstrated.

Although few researchers reported the detection of transitioned CTCs using the ex-
isting technologies from patients with mesenchymal malignancies [77,92,173–176], the
uncertainty calls for the discovery of novel markers for EMT CTCs. Mesenchymal mark-
ers, such as N-Cadherin, frequently present a relevant expression in peripheral blood
mononuclear cells (PBMC) and, are not suitable to detect CTC and predict metastasis oc-
currence [177]. Recently, CTCs were detected and enumerated from patients with epithelial
colon cancer using CSV [94]. A cut-off of <5 or ≥ 5 EMT CTCs has been defined as the
threshold concerning therapeutic response, with a predictive value for the therapeutic
outcome of 87%.

It has been proven that EpCAM expression can be acquired during the progression of
tumors [150] with a high expression in cancer stem cells [151]. By using the CellSearch™
System for CTC capturing, CTCs have been detected in the peripheral blood of patients
with pediatric bone sarcoma and STS, which are not of hematopoietic origin [141]. CTCs
were assayed in 11 patients at diagnosis before starting the therapy, by using epithelial and
mesenchymal markers to capture CTCs, such as cytokeratins (CK8/18/19) and Desmin.
Among sarcoma patients, 64% present at least one CTC per 7.5 mL, while 5 out of 11 (45%)
patients had at least two CTCs, resembling data previously reported for carcinomas [152].
Moreover, 4 (57%) CTCs-positive patients had one Desmin-positive CTC, thus expressing
markers of either an epithelial or mesenchymal phenotype [150].
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In 2005, the earliest study has been performed to assay the validity and usefulness in
clinics of an immunomagnetic method for detection of tumor cells in bone marrow (BM) and
peripheral blood (PB) of patients with osteosarcoma, through testing of two osteosarcoma-
associated antigens, namely a cell surface antigen with homology to the bone isoenzyme
of alkaline phosphatase and the high molecular weight melanoma-associated antigen
9.2.27 [178]. Micrometastatic osteosarcoma cells have been isolated and enumerated,
allowing rapid screening of 2 × 107 mononuclear cells with high sensitivity in BM (63%
of the patients were positive), but with a low detection rate of tumor cells in the blood
(8%). A high number of live cells rosetted with magnetic beads has been isolated, and
the expression of proteins, with clinical and biological relevance, expressed on tumor
cells, such as antigens used as therapeutic targets, or prognostic markers, e.g., HER-2/neu
and MDR, can be analyzed [156,179]. A high fraction of bone marrow samples were
positive at diagnosis, both in patients without and with metastatic disease, as detected
with conventional diagnostic procedures. Of note, a higher fraction of patients with
micrometastatic cells in BM relapsed concerning patients with negative samples [178].

In 2008, the presence of metastatic cells from patients with RMS was assessed in BM
and PB by a flow cytometric method [180]. To identify tumor cells, a panel of antigens,
i.e., CD45, CD56, CD90, and CD57, was used, and the RMS-specific transcript Myogenin
(Myf4) [181] was molecularly detected. All seven BM samples from RMS stage IV presented
the CD45– CD56+ phenotype and expressed the Myf4 transcript. Furthermore, four cases
were positive also for CD90 and two for CD57. Neither the CD45– CD56+ phenotype
nor Myf4 has been recorded in patients with localized disease. No circulating RMS cells
were detected at diagnosis in the seven high-grade RMS patient samples, except for a PB
sample collected on the progression of the disease, but only 100 µL of plasma were tested
in flow cytometry. Since detection of the CD45– CD56+ phenotype by flow cytometry
in BM aspirates has been recommended for staging or diagnosis in neuroblastoma stage
4 [180,182], similar detection in BM could be used only for the staging of diagnosed patients
with RBM. Thus, these findings suggest that, since flow cytometry identified circulating
cells in the PB from a subset of patients with neuroblastoma, but not of patients with
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stage 4 RMS, PB might be tested for non-invasive diagnosis, and flow cytometry may be a
method to effectively detect RMS metastasizing cells [180].

In 2009, PBMCs of patients with bone sarcomas were analyzed by flow cytometry
for mesenchymal stem cells (MSCs) phenotype, demonstrating an >9-fold increase in
the number of cells in patients compared with control subjects [183]. Enumerated MSC-
like cells were positive for CD44, CD90, and CD105 and negative for CD14, CD34, and
CD45, as markers of hematopoietic cells [184]. Also, a higher level of plasma hepatocyte
growth factor (HGF) [185] and vascular endothelial growth factor (VEGF) [186], mediating
systemic mobilization of MSC-like cells into the peripheral circulation [187], have been
measured [183]. The increased number of MSC-like circulating cells and elevated plasma
concentration of HGF and VEGF may be used for diagnosis or prognosis in patients with
bone sarcoma.

In a relevant study in 2010, Dubois et al. [157] were the first to enumerate CTC in a
patient with Ewing sarcoma through flow cytometric analysis of PBMCs, 75% of patients
with Ewing sarcoma present with clinically localized tumors [131] and micrometastatic
disease since the great majority of patients experienced recurrence [188]. To test the proof-
of-concept of the method, cells with the CD99+CD45− profile were detected in both blood
(0.0021%) and bone marrow (0.048%) of a subject with newly diagnosed localized Ewing
sarcoma [157]. The presence of CD99+CD45− mononuclear cells in the bone marrow
from patients without Ewing sarcoma at a higher rate compared to PBMCs, representing
early monocytic progenitor cells [189,190], demonstrate at present no sufficient specificity
of BM testing for Ewing sarcoma diagnosis. Clinical evaluation and validation of the
method are ongoing since follow-up indicated that patients with clinically non-metastatic
tumors have detectable EWS fusion transcripts in PB and/or BM and may have an inferior
outcome [156]. Flow cytometry for detection of CD45 and CD99 circumvents the need of
RT-PCR technique of prior knowledge of EWS fusion oncogene present in the tumor for
CTCs analysis. A clinical study to determine the ability of the methodology to detect CTCs
in patients with the newly diagnosed or relapsed disease is ongoing.

In 2014, to detect and enumerate mesenchymal CTCs from sarcoma tumors, irrespec-
tive of the origin, a monoclonal antibody directed against the cell-surface vimentin protein
(CSV) has been generated, while not recognizing the intracellular vimentin expressed in
normal mesenchymal cells, including the majority of white blood cells [92]. Upon CD45
depletion and CSV–positive selection, cells were recovered and subjected to immunofluo-
rescence staining and detected by flow cytometry. An increase in CTC count was observed
in metastatic patients at the time of the first clinical presentation; also, CTC counts were
lower in patients previously subjected to chemotherapy. Once isolated, CTCs were further
characterized by single-cell mutation analysis or fluorescence in situ hybridization (FISH).
In angiosarcoma, mutations in TP53, and not in FLT4, were detectable only in CTCs, con-
cerning the primary tumor, thus confirming cell heterogeneity [191]. Osteosarcoma-derived
CTCs were assayed for MDM-2 and KRAS amplification, highlighting a difference between
patients diagnosed with metastasis in the lung or localized osteosarcoma [192,193], thus
predicting the onset of metastatic lesions at distant sites and potentially the therapeutic
efficacy of drugs [92]. This is the first proof-of-principle study to enumerate and validate
CTC from different sarcomas using a single marker, providing a prognostic tool to monitor
cancer metastasis and relapse.

The cytometric technique for sarcoma CTCs capture and detection has been validated
also using cryopreserved PBMCs preparations from patients with multiple sarcoma and
CSV as a specific target [194]. EMT-like CTCs have been captured and enumerated with
high sensitivity and specificity [92,142,195]. The technology will enable the bio-banking of
samples to be processed in large numbers and will improve the CTC-based diagnosis and
treatment in clinical settings [194].

The minimal residual disease (MRD) assessment is of the utmost importance to evalu-
ate the risk of metastasis and treatment efficacy. In advanced localized RMS, recurrence
is common, and the prognosis is poor [161]. RMS is thought to originate from myogenic
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precursors expressing PAX3 [196], thus—due to its expression in most RMS tumors [197]—
PAX3 has been tested in flow cytometry as a marker for circulating RMS cells, even if not for
differential diagnosis since its expression has been described also in Ewing sarcoma [198].
PAX3 is expressed in all RMS tumors analyzed, thereby pointing to PAX3 as an additional
MRD marker to detect circulating or disseminated disease [199]. Of note, PAX3 levels were
heterogeneous in RMS, higher in alveolar (aRMS) than in embryonal (eRMS) subtype. The
usefulness of flow cytometry has thus been confirmed as a more specific and reliable tool
for MRD assessment in RMS than qPCR, especially due to its greater sensibility.

Recently, the potential role of nuclear-programmed death-ligand 1 (PD-L1) expression
in vimentin-positive CTCs, has been assessed as a clinically relevant prognostic marker
in tumors [195], thus detecting epithelial–mesenchymal transitioned CTCs. Aberrant
expression of PD-L1 has been documented in several cancer types [200–202] and clinical
trials are ongoing to assess the prognostic relevance of PD-L1 [203]. CTCs were enumerated
also in osteosarcoma and PD-L1 expression has been analyzed using confocal microscopy.
PD-L1 was detectable in CTCs and localized in the membrane, cytoplasm, and nucleus, in
the majority of cells [195].

A method for the enumeration of CTCs, based on abnormal chromosome numbers
(aneuploidy) in CTCs, was recently developed and validated in a prospective cohort of
patients with primary and recurrent/metastatic osteosarcoma subjected to surgery [204].
Accordingly, CTCs were characterized by FISH and immunocytochemistry for cytokeratin
and CD45, in order to exclude epithelial and lymphocytic cells, respectively. Patients with
osteosarcoma with ≥2 CTCs per 7.5 mL of PB had significantly shorter PFS than patients
with <2 CTCs. The FISH technique represents a reliable tool for the quantification of CTCs
and can be clinically standardized.

Flow cytometry-based technologies for detection of sarcoma CTCs [9,157,205,206]
present some limitations, for instance, the lack of a histology-specific marker and the
heterogeneous expression of target markers, while CD99 is expressed at a low extent also
on cells of the B lineage [189], which may reduce the detection sensitivity. Also, the use of
flow cytometry requires extensive processing of cells, and CTC clusters are not detected
due to gating on single cells [52,207]. Thus, other technologies have been applied for
CTC capture.

Some authors have addressed the sensitivity and specificity of the ‘isolation by size
of tumor cells’ (ISET) diagnostic technique, for CTC enrichment and detection [208,209].
This method relies on the tumor cellular size which is larger than leukocytes, thus isolating
also CTCs in epithelial–mesenchymal transition [210,211]. CTCs have been detected in
patients with metastatic/recurrent or locally advanced sarcomas. Cells were identified by
cytomorphology and further characterized by immunocytochemistry with anti-vimentin
or anti-Pan CK, and anti-CD45, to distinguish them from endothelial cells, leukocytes, and
epithelial cells [212]. Of note, circulating tumor microemboli (CTM), which are a marker
of poor prognosis [213], have been also identified. The ability and sensitivity of the ISET
method have been previously assessed in sarcoma cells [208,214], and Hofman et al. [215]
reported the detection of CTCs from patients with sarcoma. In Chinen et al., CTCs have
been reliably identified and counted in all patients, and CTC enumeration could be used in
patient follow-up, to monitor therapy for personalized medicine [212]. Vimentin has been
detected in CTCs from STSs, which is associated with EMT, stemness, and more malignant
characteristics of these tumors [36,214,216]. Different types of sarcomas have been assayed,
the majority of which are not characterized by genetic mutations or fusion transcripts, thus
not detectable through a PCR-based test. Also, ISET allows the study of CTC morphology
and cell immunomolecular characterization. Future studies are required to correlate its
expression with the clinical outcome of patients.

The CellSieve™ size-exclusion low-pressure microfiltration system [217] has been
proven an effective method to efficiently collect CTCs in several carcinomas [111], with a
potential application in monitoring disease response and prediction of metastatic relapse.
Its utility has been confirmed also in patients with high-grade sarcomas of different his-
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tology [217]. This approach has several benefits since cells are minimally processed and
a sarcoma-specific cell surface antigen is not required. Sarcoma CTCs were defined as
positive for vimentin, negative for CD45, and with a nuclear morphology that is distinct
from normal white blood cells. Both epithelial and mesenchymal types of CTCs have
been captured, with high sensitivity, and accurately quantified. Additionally, CTC clusters
have been identified and enumerated, more frequently in patients with a newly diagnosed
disease or metastases. CTC-derived RNA was analyzed, demonstrating an EWS-FLI1
translocation and identifying a previously unrecognized p53 mutation in Ewing sarcoma,
and single-cell RNA sequencing in aRMS. Twenty-eight differentially expressed genes
positively identify the cells in the cluster, being part of a previously published aRMS
expression profile or expressed in either the myogenic lineage or in RMS cells. CTCs have
been collected after minimal manipulation, for molecular analyses for either diagnostic or
research purposes.

The ApoStream™ CTC isolation device has been designed by the National Cancer
Institute as a clinically-suitable technology for the capture of rare tumor cells and the
analysis of molecular biomarkers of pharmacodynamics response to drug therapy. It uses
dielectrophoresis principles to separate cells—i.e., non-hematopoietic cells from PBMC
fraction—with distinct morphological and biophysical properties—i.e., membrane capac-
itance, morphology, size, electrical conductivity [218–220]. Upon isolation, CTCs from
patients with Alveolar Soft Part Sarcoma have been efficiently identified using a multiplex
immune-phenotyping assay to CTC biomarkers vimentin (VIM), cytokeratin (CK), and
β-catenin (β-cat), while CD45+ cells have been excluded, to increase the confidence of
cell identification and potentially include CTCs from different sarcoma [221]. The great
majority of cells presented the CD45−/(CK/β-cat)−/VIM+ phenotype. The identity of
enriched tumor cells has been proven through the detection of the hallmark ASPL-TFE3-T1
translocation [222]. Data demonstrated the heterogeneity of CTC phenotypic profiles: of
note, at baseline, the epithelial phenotype has been evidenced in CTC by the presence
of a CD45−/(CK/β-cat)+/VIM-subset. This study is an initial proof of research and
clinical reliability of the ApoStream™ instrument, which will facilitate isolation of viable
CTC, monitoring over time of drug effects, and disease management for patients with
sarcoma [221].

On-chip sort is a cell sorter on a microfluidics chip that includes a collection reservoir
to reliably collect the target cells without loss [223]. A protocol has been established for the
collection and molecular profiling of CTCs from sarcoma [224]. A multi-gene panel test
was used to confirm somatic mutations present in the tumor of origin. CTCs have been
enriched by blood cell depletion using CD45 and CD235a MicroBeads. The remaining cells
were fixed and stained to detect vimentin, which is specific for sarcoma, or CD45 and CD14,
to detect white blood cells. Then CTCs, represented by the CD45−/vimentin+ fraction,
have been enumerated and sorted using the on-chip sort system. By improving the sorting
method, CTCs can be identified in patients before metastasis. In a pilot study, CTCs were
recovered from a patient with locally advanced myxofibrosarcoma. The nonsynonymous
mutation for KMT2B p.Ile2602Val was identified in the tumor biopsy and confirmed in
CTC. The clinical utility of the current protocol to laboratory testing for monitoring early
metastasis and recurrence and molecular profiling of tumors and for decision making must
be tested in larger cohorts.

4. Clinical Significance of CTC in Sarcoma Tumor

Clinical trials have demonstrated that the presence of detectable CTC is associated with
poor prognosis in carcinoma [225–228]. Preliminary studies showed a trend [166] or clear
evidence [156,160] of the prognostic value of CTC detection even in sarcoma. However,
research regarding the utility of detection of CTCs in sarcoma remains insufficient and
only a few clinical trials have been set on this item (as listed in Table 1) [229]. Briefly,
results on CTCs assessment have been reported in just two out eight studies, which have
been terminated. In a first study (NCT00474760), in order to monitor the response to
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Anti-IGF-IR CP-751,871, both total and Insulin-like Growth Factor 1 Receptor (IGF-1R)
Positive CTCs were quantified using an automated microscope system; however cells
were detected in an insufficient number of patients to confirm any clinical validity. In the
second study (NCT02783599), a reduction in the number of CTCs, measured through a
fluorescence scanning method, has been reported in patients responsive to at least one
cycle of olaratumab as monotherapy [230].

In preliminary results of Satelli et al. [92], MDM-2 and KRAS amplification has been
assayed in osteosarcoma-derived CTCs; these genomic alterations have been reported in
lung metastasis, while absent in localized tumors. Since MDM-2 and KRAS amplifications
have been previously documented in metastatic osteosarcoma [193], detection of this
amplification in CTC could predict the onset of distant metastatic lesions.

Single-cell analysis of CTCs has recently provided evidence of the existence of ane-
uploid CTCs [231]. Aneuploidy is defined as an unbalanced chromosome content and
is a hallmark of cancer [232], associated with altered gene expression profiles, increased
metastatic potential, resistance to treatments, and overall poor prognosis [233,234]. In a
prospective cohort of surgical patients with primary and recurrent/metastatic osteosar-
coma (n = 23), the number of CTCs, identified by aneuploidy, as assayed in FISH, were
compared in patients with primary, recurrent or metastatic osteosarcoma: patients with
≥2 CTCs per 7.5 mL of PB had significantly shorter PFS than patients whose PB contained
<2 CTCs [204]. CTC enumeration in patients with osteosarcoma has prognostic value in
both primary and metastatic tumors, since the presence of CTCs is associated with poor
clinical outcome [204], it is minimally invasive to recover samples and it is required a
simple protocol to enumerate cells. Moreover, it may be utilized as a personalized therapy
monitoring tool to select effective treatment strategies in early and advanced osteosarcoma.
However, the validation of the sensitivity and specificity of the method and its prognostic
power should be further addressed in a multi-center prospective clinical trial with larger
patient cohorts.

Aneuploid CTCs have also been identified in STS patients, in a pilot study in 2020;
FISH analysis has been performed and CTCs were identified in all four metastatic STS
patients tested, with a median value of 4 per 7 mL of blood [235]. In silico evidence using
data from STS cohort of The Cancer Genome Atlas Project and the validated Aneuploidy
Score confirmed the prognostic role of aneuploidy in mesenchymal cancers, with a signifi-
cantly worse PFS and OS in the group with a high DNA aneuploidy, independently of the
histology of the tumor. Coherently, a transcriptional signature of 67 genes related to mitosis
and chromosome integrity (CINSARC) has prognostic potential for clinical outcome in
STS patients [236]. The method used is agnostic for the expression of surface markers,
thus CTCs in different stages of their epithelial–mesenchymal or mesenchymal– epithelial
transitions could be identified. The longitudinal evaluation of the number and ploidy of
CTCs might represent a novel tool to evaluate STS patients’ prognosis and response to
treatment and is currently under prospective evaluation.
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Table 1. Clinical trials including detection of CTCs in sarcoma registered at https://www.clinicaltrials.gov, 1 February 2021.

Clinical Trial ID. Title Status Study Results Tumor Types Clinical
Intervention Phase No. Subjects Study Type

NCT02983539
Detection of Circulating
Tumor Cells in Patients

with Sarcomas
Unknown status No Results

Available

Leiomyosarcoma,
Pleomorphic
Liposarcoma,

Synovial Sarcoma,
Liposarcoma

20 Observational

NCT03357315
Mix Vaccine for

Metastatic Sarcoma
Patients

Completed No Results
Available Metastatic Sarcoma Biological: Mix

vaccine Phase 1, Phase 2 30 Interventional

NCT02849366

Combination of
Cryosurgery and NK
Immunotherapy for
Recurrent Sarcoma

Completed No Results
Available

Recurrent Adult Soft
Tissue Sarcoma

Device:
Cryosurgery

Biological: NK
immunotherapy

Phase 1, Phase 2 30 Interventional

NCT02783599

A Study of Olaratumab
(LY3012207) in

Participants with Soft
Tissue Sarcoma

Completed Has Results Soft Tissue Sarcoma

Drug: Olaratumab,
Doxorubicin

External Beam
Radiotherapy

Phase 1 51 Interventional

NCT04239443

Clinical Study of PD-1
Monoclonal Antibody

SHR-1210 and Apatinib
in Advanced NSCLC,
Soft Tissue Sarcoma,
and Uterine Cancer

Recruiting No Results
Available

Advanced
Non-Small Cell

Lung Cancer,
Uterine Cancer, Soft

Tissue Sarcoma

Drug: PD-1
inhibitor, Apatinib Phase 2 120 Interventional

NCT01831609
Biomarker Analysis of
Solid Cancers Such as

Gastrointestinal Cancer
Recruiting No Results

Available Sarcoma 1000 Observational

NCT04628806

Heat Shock Protein
(HSP) 70 to Quantify

and Characterize
Circulating Tumor Cells

Not yet
recruiting

No Results
Available

Melanoma Stage IV,
Sarcoma, Squamous

Cell Carcinoma,
Pancreatic Cancer
Stage IV, Prostate

Cancer, Breast
Cancer Stage IV

Diagnostic Test:
CTC isolation by

HSP70
120 Observational

https://www.clinicaltrials.gov
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Table 1. Cont.

Clinical Trial ID. Title Status Study Results Tumor Types Clinical
Intervention Phase No. Subjects Study Type

NCT03011528

First-line Treatment of
Ewing Tumors with

Primary
Extrapulmonary
Dissemination in

Patients From 2 to
50 Years

Recruiting No Results
Available

Ewing Sarcoma
Family of Tumors

Drug: VDC-IE x2,
VDC-IE, TEMIRI,

BuMel
Local treatment by

surgery or
radiotherapy

Phase 2 45 Interventional

NCT03818412 Circulating Tumor DNA
in Soft Tissue Sarcoma Recruiting No Results

Available Soft Tissue Sarcoma
Procedure: tumor
tissue collection
and blood draws

Not Applicable 40 Interventional

NCT02859415

Continuous 24h
Intravenous Infusion of

Mithramycin, an
Inhibitor of Cancer

Stem Cell Signaling, in
People with Primary

Thoracic Malignancies
or Carcinomas,

Sarcomas or Germ Cell
Neoplasms with

Pleuropulmonary
Metastases

Recruiting No Results
Available

Esophageal
Neoplasms, Lung

Neoplasms,
Mesothelioma,

Thymus Neoplasms,
Neoplasms, Germ

Cell, and Embryonal

Drug:
Mithramycin Phase 1, Phase 2 60 Interventional

NCT00474760
Study of Anti-IGF-IR

CP-751,871 In Patients
With Solid Tumors

Completed Has Results Sarcoma, Ewing’s Drug: CP-751,871 Phase 1 65 Interventional

NCT03085225

Trabectedin Combined
with Durvalumab in

Patients with Advanced
Pretreated Soft-tissue

Sarcomas and Ovarian
Carcinomas.

Active, not
recruiting

No Results
Available

Ovarian Carcinoma,
Soft Tissue Sarcoma

Drug:
Combination of
trabectedin with

durvalumab

Phase 1 50 Interventional
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Table 1. Cont.

Clinical Trial ID. Title Status Study Results Tumor Types Clinical
Intervention Phase No. Subjects Study Type

NCT02636725

Axitinib and
Pembrolizumab in

Subjects with Advanced
Alveolar Soft Part

Sarcoma and Other Soft
Tissue Sarcomas

Active, not
recruiting

No Results
Available

Alveolar Soft Part
Sarcoma, Soft Tissue

Sarcomas

Drug: Axitinib,
Pembrolizumab

Blood Draw,
Tumor Specimen

Collection

Phase 2 33 Interventional

NCT03946943

Study of Anlotinib
Hydrochloride and

Toripalimab in Subjects
with Unresectable

or Metastatic
Undifferentiated

Pleomorphic Sarcoma

Not yet
recruiting

No Results
Available

Soft Tissue
Sarcomas,

Undifferentiated
Pleomorphic

Sarcoma

Drug: Anlotinib,
Toripalimab
Blood Draw,

Tumor Specimen
Collection

Phase 2 25 Interventional

NCT01528774

Culture and
Characterization of

Circulating Tumor Cells
(CTC) in Melanoma and

Other Cancers

Completed No Results
Available Melanoma Blood Draw 150 Observational

NCT03600649

Clinical Trial of SP-2577
(Seclidemstat) in

Patients with Relapsed
or Refractory

Ewing Sarcoma

Recruiting No Results
Available Ewing Sarcoma Drug: SP-2577 Phase 1 50 Interventional

NCT04052334

Lymphodepletion Plus
Adoptive Cell Therapy
with High Dose IL-2 in
Adolescent and Young

Adult Patients With Soft
Tissue Sarcoma

Recruiting No Results
Available Sarcoma

Drug: TIL,
Interleukin-2,

Fludarabine, Cy-
clophosphamide

Phase 1 15 Interventional
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Table 1. Cont.

Clinical Trial ID. Title Status Study Results Tumor Types Clinical
Intervention Phase No. Subjects Study Type

NCT01222767

Study of Zalypsis
(PM00104) in Patients

with Unresectable
Locally Advanced
and/or Metastatic
Ewing Family of

Tumors (EFT)
Progressing After at

Least One Prior Line of
Chemotherapy

Completed No Results
Available

Ewing’s Sarcoma,
Primitive

Neuroectodermal
Tumor (PNET),

Askin’s Tumor of
the Chest Wall,
Extraosseous

Ewing’s Sarcoma
(EOE)

Drug: Zalypsis Phase 2 17 Interventional

NCT00588510

Detection of Circulating
Osteosarcoma Tumor
Cells in the Blood of
Patients Using the
Polymerase Chain

Reaction

Completed No Results
Available Osteosarcoma Blood draw 59 Observational

NCT04512495

Circulating “Cancer
Cells/Macrophage”

Hybrid Cells in Patients
With Sarcoma?

Recruiting No Results
Available Sarcoma Blood draw Not Applicable 60 Interventional

NCT03570437

Does Cediranib With
Paclitaxel, or Cediranib

and Olaparib, Treat
Advanced Endometrial

Cancer Better
Than Paclitaxel?

Recruiting No Results
Available

Carcinosarcoma,
Endometrial
Neoplasms

Drug: Paclitaxel,
Cediranib,
Olaparib

Phase 2 129 Interventional

NCT01804634
Reduced Intensity

Haploidentical BMT for
High-Risk Solid Tumors

Recruiting No Results
Available

Refractory and/or
Relapsed Metastatic

Solid Tumors

Drug: Cyclophos-
phamide,

Fludarabine,
Melphalan,
Tacrolimus

Low dose total
body irradiation

Phase 2 60 Interventional
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Table 1. Cont.

Clinical Trial ID. Title Status Study Results Tumor Types Clinical
Intervention Phase No. Subjects Study Type

NCT04214457

Development of a
Predictive Model for

Early Differential
Diagnosis of Uterine

Leiomyomas and
Leiomyosarcomas

Recruiting No Results
Available

Leiomyoma,
Leiomyosarcoma

Biopsy and
peripheral blood

collection
1000 Observational

NCT00898781

Study of Circulating
Cancer Cells in Patients
with Metastatic Breast,

Ovarian, Colon, or
Pancreatic Cancer

Terminated No Results
Available

Breast Cancer,
Colorectal Cancer,
Ovarian Cancer,

Pancreatic Cancer

80 Observational

Objective Remission Rate (ORR); Progression Free Survival (PFS); Overall Survival (OS); Duration of Response (DOR); Disease Control Rate (DCR); Complete Response (CR), Partial Response (PR), Event-Free
Survival (EFS), Maximum Observed Plasma Concentration (Cmax), Treatment-emergent Adverse Events (Aes), Serious Adverse Events (SAEs), Time to Reach Maximum Observed Plasma Concentration (Tmax),
Plasma Decay Half-Life (t1/2), Time to Reach Last Quantifiable Concentration (Tlast), Systemic Clearance (CL), Concentration at End of Infusion (Cendinf), Volume of Distribution (Vz), Volume of Distribution at
Steady State (Vss), Area Under the Curve (AUC), Insulin-like Growth Factor 1 Receptor (IGF-1R), National Cancer Institute Common Terminology Criteria for Adverse Events, version 5.0 (CTCAE), Maximum
Tolerated Dose (MTD), Recommended phase II dose (RP2D), Dose Limiting Toxicities (DLT), Common toxicity criteria from the NCI v4.0 (NCI-CTC, Objective Response (ORR), Clinical Benefit (CBR).
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In metastatic sarcoma patients, the prognostic impact of CTCs and CTM—and the
expression of EGFR in these cells, which are associated with reduced survival in solid
tumors [237]—has been analyzed before chemotherapy [238]. CTCs were detected by ISET
technology in 94.4% of patients, with a median number of 2.0 CTC/mL (0–11 CTCs/mL).
The presence of CTCs indicates inferior median PFS in patients, but without statistical
significance. CTMs have been detected in 27.7% of patients, with a lower median PFS and
OS compared to those with no CTMs, independently of the therapeutic regimen. EGFR
protein was expressed in CTC in the majority of patients (94%). A possible correlation
of EGFR-expressing CTCs with poor prognosis and clinical outcome has been reported,
even if not statistically significant. EGFR has been proven to be highly expressed in STS
tissues, and associated with high histological grade [239,240]. In a recent study, certain
sarcoma subtypes have been hypothesized to reside in a ‘metastable’ state expressing
both epithelial and mesenchymal features, with activation of reversible EMT/MET related
programs, individual tumor cells acquiring the characteristics of more differentiated cells
in response to specific stimuli [142]. This molecular heterogeneity could lead to clinically
highly aggressive cells, with important clinical implications. EGFR activity enhances tumor
growth, invasion, and metastasis, thus conferring a more aggressive phenotype, and further
supporting the epithelial–mesenchymal plasticity model in patients with sarcoma: indeed
invasion and dissemination in non-epithelial tumors could be due to EGFR expression on
CTCs. These results point to EGFR as a new target in STS treatment [238]. CTC, CTM, and
EGFR expression can be reliable tools to measure the therapeutic effectiveness and to select
patients for clinical intervention, requiring studies with a larger cohort of patients, defining
treatment options and follow-up time points to confirm data.

Recently, CTCs have been isolated from 18 patients diagnosed with Ewing sarcoma,
based on the immunomagnetic separation of CD99-positive tumor cells [241]; EWSR1/FLI1
or EWSR1/ETS-related gene transcripts have been confirmed through quantitative and
digital RT-PCR on cDNA obtained from CTCs, with a limit of detection of 1 cell/mL of PB.
PB samples were collected randomly during therapy, and from patients further hospital-
ized, thus 23 samples were processed according to the CTC immunoseparation protocol
and analyzed in RT-qPCR and RT-dPCR. CTCs have been detected in patients with Ewing
sarcoma, independently of the specific molecular rearrangement. Patients scored positive
for CTC and RT-PCR testing at diagnosis, while resulting negative after chemotherapy.
These techniques potentially improve risk stratification and early response assessment, for
prognostic and predictive purposes in Ewing sarcoma. In this study, the CTCs assay was
proven to reliably detect the amplification of EWSR1/FLI1 and EWSR1/ERG transcript
fusion genes. Isolation of CD99-positive CTCs will help identify the metastatic precursor
cells and direct novel diagnostic therapy and prognostic options upon therapeutic monitor-
ing of patients with Ewing sarcoma, for clinical decision-making. A clinical study to detect
tumor cells in the blood and bone marrow of patients with Ewing sarcoma, with newly
diagnosed or relapsed disease, by using the methodology described is ongoing.

Currently, chemotherapy in osteosarcoma consists of four alkylating agents: high-
dose methotrexate with leucovorin rescue, doxorubicin, cisplatin, and ifosfamide [92,242].
Frequently therapeutic response is low, with the development of lung metastases, high-
lighting the need to identify early biomarkers to detect recurrence and metastasis. CTCs
have been detected in a pre-clinical model of human osteosarcoma by using the DEPArray
technology, and the kinetics of release of CTCs and their modulation after chemotherapy
were monitored over time [243]. CTCs were detectable at an early stage, thus suggesting
that CTCs represent a non-invasive method to monitor the recurrence in osteosarcoma. Of
note, at the early stage, one cycle of ifosfamide decreased the number of lung metastases,
while a significant increase in CTCs number has been measured. At a later stage, one
or two cycles of ifosfamide, independently of the dose regimen, reduced the growth of
primary tumors and did not modulate CTC count, which was higher than the early stage
of the disease, thus pointing to a potential ‘equilibrium’ in osteosarcoma in the metastatic
process. However, detectable CTCs after ifosfamide therapy generated lung metastases less
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efficiently. Accordingly, CTC heterogeneity determines their extravasation capability into
the metastatic site, to give metastatic nodules [50,244]. The number of CTCs may reflect the
response to therapy in patients with osteosarcoma. The next step of this proof-of-concept
study will be to determine the value of CTC in osteosarcoma, both from a biological and
clinical setting, thus it will be required to enumerate and characterize CTCs in a large
series of metastatic and non-metastatic patients and to assess the kinetics of CTC release
during chemotherapy.

Using a modified immunomagnetic method [92,245] and CSV as a circulating cell
capturing tool through immunofluorescent imaging, a novel class of CTCs, positive for CSV
and macrophage-like (ML), have been identified in GIST. These cells have been defined as
macrophage-like, expressing macrophage markers CD14 and CD68 and tumor markers
C-kit, DOG-1, and CSV, and negative for CD45 [246]. Tumor-associated macrophages
(TAMs) originate from the microenvironment within several primary tumors and have a
key role in tumor invasiveness and immune suppression prediction [247]. CTCs extravasate
capillaries and, anchored to CTC-educated TAMs, set up secondary metastatic lesions, with
increased tumor invasiveness [246,248]. A cluster of CTCs and circulating TAMs have been
detected in different progressive and metastatic tumor types [92,142,245]. Significantly
greater numbers of CSV-positive ML-CTCs were detected in patients with metastatic
than localized GIST (p < 0.0001) [246], thus acting as a novel biomarker for prediction
of relapse/metastasis in patients with GIST. Upon validation in large sample cohorts,
ML-CTCs could be used in clinics for diagnosis of metastasis and relapse of GIST.

A strong correlation has been demonstrated between EpCAM expression level and
increased risk of relapse and lower OS in several prospective clinical studies [41,249,250].
By using the CellSearch™ platform, CTCs have been detected in the peripheral blood of
pediatric patients with sarcoma, they are not hematopoietic cells and express markers of
epithelial or mesenchymal phenotype [141]. In 8 out of 11 patients analyzed, EpCAM
expression was assessed in the primary tumor too. Of note, two patients with metastasis
at diagnosis (high-grade RMS) showed detectable CTCs and were positive for EpCAM
expression in tumor tissue. Among five patients who progressed during tumor evolution,
four were positive for tissue EpCAM expression and three had detectable CTCs at diagnosis.
Two out of these three patients had a fatal outcome.

By using CellSieve™ technology, CTCs have been detected at diagnosis in most pa-
tients with newly diagnosed high-grade sarcoma, including Ewing sarcoma, osteosarcoma,
dedifferentiated liposarcoma, RMS, synovial sarcoma, DSRCT, chondrosarcoma [217]. Al-
though the number of cells detected was relatively low in 11 of the 18 patients (26 or fewer
CTC and/or clusters), five patients presented higher numbers of CTC and/or clusters.
Of clinical relevance, CTC quantification precedes clinical symptoms and detection of
relapse through a radiographic test, before the development of overt metastasis, thus
allowing early detection of metastatic recurrence. Indeed, three out nine patients with
no radiographic evidence of tumor at sample collection presented CTCs, and all relapsed
within 1–2 months. Further, dynamic changes in CTC numbers have been analyzed due to
therapeutic response: samples were collected at several time points from 10 patients, all of
them had detectable CTC and CTC clusters at the initial time. Upon therapy, CTC became
undetectable in six patients, and five of these were in remission. Three of the four patients
with detectable CTC over time relapsed. This proof of principle study demonstrated that
sarcoma CTC can be reliably detected, accurately quantified, and collected; a reduction in
CTC number correlated with response to therapy. Also, the presence of CTC identified
patients relapsing, even if with documented radiographic remission, confirming the prog-
nostic potential as biomarkers of MRD in sarcomas. Clinical trials of maintenance therapy
should be designed accordingly.

5. Conclusions

In the present review, the clinical relevance of studying intact CTCs in sarcoma has
been discussed, and weaknesses encountered in recovering viable mesenchymal tumor
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cells, cells with epithelial–mesenchymal intermediate phenotypes and cancer stem cells
into the circulation of patients have been described, further highlighting the need for the
scientific community to solve this item to offer a more reliable approach based on liquid
biopsy to monitor sarcoma in the clinical setting. Preliminary results, as presented in the
last paragraph—even if most preliminary in small patients cohorts—hold a great promise
in this direction for individualized therapy of patients with sarcoma, and, hopefully, CTC
enumeration and characterization would be added in clinical practice as an additional
standard for monitoring over time tumor evolution. Technological advancement will
further improve the sensitive and reliable identification and isolation of viable sarcoma
cells, holding a great clinical value for initial staging of the tumor, for early detection of
relapse, to improve prognosis and predict response to chemotherapy, and for identification
of non-responders to therapeutic interventions. For instance, CTCs assessment could
be complemented with the most innovative imaging techniques in STS in order to both
improve non-invasive evaluation of response to neoadjuvant therapies and define tumor
heterogeneity. Ultimately these studies may uncover the mechanisms of aggressiveness
and metastatization in sarcoma for research purposes, with the potential to identify novel
therapeutic strategies.

Despite the promising results discussed above, CTC assessment obviously still present
some limitations for a reliable application in clinical practice [227,251]. For instance,
capturing viable/whole CTCs from peripheral blood is demanding, and strictly depends
on the technology used for CTC isolation or enrichment. Indeed, the selection of markers
for CTC detection is a key question, since it affects the pool of cells which might be
recovered with the available methodologies described in the literature. Furthermore, CTC
assays need more standardization, as recommended by international consortia, including
the European Liquid Biopsy Society (ELBS, www.elbs.eu, 1 February 2021). In addition,
in early stage patients frequently low amounts of CTCs circulate in the peripheral blood,
thus limiting the rate of recovery of tumor cells. Furthermore, the knowledge on the
biology of the heterogeneous CTCs in sarcoma and their significance is still preliminary,
thus requiring further studies in order to be reliably transferred to the bedside to improve
their clinical use.

Additional biomarkers in liquid biopsy are, at present, matter of investigation for both
research and clinical feasibility in sarcoma. Indeed, great interest has been directed in these
last years in addressing multiple biomarkers in the circulation of cancer patients at the
same time, for clinical practice, for instance circulating exosome, CTCs, and nucleic acids,
deserving a revision of the most recent literature on this topic.
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251. Heidrich, I.; Ačkar, L.; Mossahebi Mohammadi, P.; Pantel, K. Liquid Biopsies: Potential and Challenges. Int. J. Cancer 2021, 148,
528–545. [CrossRef]

http://doi.org/10.1080/15384047.2018.1538000
http://www.ncbi.nlm.nih.gov/pubmed/30572767
http://doi.org/10.1186/s13008-015-0009-7
http://doi.org/10.1111/febs.13591
http://www.ncbi.nlm.nih.gov/pubmed/26555863
http://doi.org/10.1200/JCO.1990.8.3.538
http://www.ncbi.nlm.nih.gov/pubmed/2407813
http://doi.org/10.1159/000509326
http://www.ncbi.nlm.nih.gov/pubmed/32818940
http://doi.org/10.1038/nm.2174
http://www.ncbi.nlm.nih.gov/pubmed/20581836
http://doi.org/10.1038/nrc1609
http://doi.org/10.1080/15384047.2018.1433498
http://doi.org/10.1002/cncr.20986
http://doi.org/10.1016/j.ejso.2006.01.012
http://doi.org/10.2147/CMAR.S141623
http://www.ncbi.nlm.nih.gov/pubmed/2649985
http://doi.org/10.1016/j.jbo.2018.07.002
http://www.ncbi.nlm.nih.gov/pubmed/30123735
http://doi.org/10.1016/j.ctrv.2013.11.006
http://www.ncbi.nlm.nih.gov/pubmed/24345772
http://doi.org/10.1373/clinchem.2014.228122
http://www.ncbi.nlm.nih.gov/pubmed/25336717
http://doi.org/10.1080/2162402X.2017.1420450
http://www.ncbi.nlm.nih.gov/pubmed/29721368
http://doi.org/10.1016/j.ccr.2014.05.016
http://doi.org/10.1080/2162402X.2015.1093277
http://doi.org/10.1200/JCO.2007.15.8923
http://doi.org/10.1002/ijc.28230
http://doi.org/10.1002/ijc.33217

	Introduction 
	CTC Heterogeneity: Epithelial–Mesenchymal Transitioned and Stem Cell-Like CTCs 
	Technologies for Detection of CTCs in Sarcoma 
	Clinical Significance of CTC in Sarcoma Tumor 
	Conclusions 
	References

