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Simple Summary: Intraoperative radiotherapy (IORT) is increasingly used in the therapy of early
breast cancer. Besides the direct radiotoxic effects, IORT may add at inhibiting local recurrences
by a modulation of the microenvironment. Our aim was to assess the impact of IORT in altering
immunological responses and wound healing processes. Thus, we analyzed surgical wound fluid
collected after breast conserving surgery with and without IORT concerning acute changes in im-
mune cell populations and cytokine levels. Furthermore, their impact on functions of breast cancer
cells and mammary mesenchymal stromal cells (MSC) was assessed. We found no changes in the
immune cell composition, yet group-related differences in the expression levels of several cytokines.
The application of the wound fluid in MSC cultures caused group-dependent differences in MSC
proliferation, wound healing and migration with an alteration of the MSC secretome. Our findings
help to elucidate the biological effects of IORT and to clarify the concomitant role of MSC.

Abstract: Intraoperative radiotherapy (IORT) displays an increasingly used treatment option for early
breast cancer. It exhibits non-inferiority concerning the risk of recurrence compared to conventional
external irradiation (EBRT) in suitable patients with early breast cancer. Since most relapses occur
in direct proximity of the former tumor site, the reduction of the risk of local recurrence effected
by radiotherapy might partially be due to an alteration of the irradiated tumor bed’s micromilieu.
Our aim was to investigate if IORT affects the local micromilieu, especially immune cells with
concomitant cytokine profile, and if it has an impact on growth conditions for breast cancer cells as
well as mammary mesenchymal stromal cells (MSC), the latter considered as a model of the tumor
bed stroma.42 breast cancer patients with breast-conserving surgery were included, of whom 21
received IORT (IORT group) and 21 underwent surgery without IORT (control group). Drainage
wound fluid (WF) was collected from both groups 24 h after surgery for flow cytometric analysis of
immune cell subset counts and potential apoptosis and for multiplex cytokine analyses (cytokine
array and ELISA). It served further as a supplement in cultures of MDA-MB 231 breast cancer cells
and mammary MSC for functional analyses, including proliferation, wound healing and migration.
Furthermore, the cytokine profile within conditioned media from WF-treated MSC cultures was
assessed. Flow cytometric analysis showed no group-related changes of cell count, activation state
and apoptosis rates of myeloid, lymphoid leucocytes and regulatory T cells in the WF. Multiplex
cytokine analysis of the WF revealed group-related differences in the expression levels of several
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cytokines, e.g., oncostatin-M, leptin and IL-1β. The application of WF in MDA-MB 231 cultures
did not show a group-related difference in proliferation, wound healing and chemotactic migration.
However, WF from IORT-treated patients significantly inhibited mammary MSC proliferation, wound
healing and migration compared to WF from the control group. The conditioned media collected
from WF-treated MSC-cultures also exhibited altered concentrations of VEGF, RANTES and GROα.
IORT causes significant changes in the cytokine profile and MSC growth behavior. These changes
in the tumor bed could potentially contribute to the beneficial oncological outcome entailed by this
technique. The consideration whether this alteration also affects MSC interaction with other stroma
components presents a promising gateway for future investigations.

Keywords: breast cancer; intraoperative radiotherapy; tumor microenvironment; mesenchymal
stromal cells; oncostatin-M; IL-1β; leptin; VEGF; GROα; RANTES

1. Introduction

Breast cancer is the most frequent and the most fatal cancerous disease in women.
Besides surgery, radiotherapy is an essential hallmark in the curative approach of therapy.
After breast conserving surgery (BCS), adjuvant radiotherapy is the most important and
most effective intervention to decrease the risk of intramammary relapses. Meta-analyses
of randomized studies described a reduction of local and distant recurrence rates as well
as a decreased breast cancer specific mortality [1,2]. Yet, 90% of all local relapses occur in
direct proximity of the former tumor site [3], developing from cancer cells remaining in
peritumoral tissue including perilymphatic and perivascular invasion or positive resection
margins [4]. In recent years, the role of the tumor bed’s microenvironment within the
progress of development of local recurrences has gained significance. Surgical tumor
extirpation, although exerted with curative intent, causes wound healing and thus creates a
local milieu that is not only beneficial for tissue regeneration, but also for local relapse and
metastasis [5–7]. According to recent research, the induction of epithelial-to-mesenchymal
transition (EMT) within the wound healing phase can enable epithelial tumor cells to gain
invasive properties and thereby promote metastatic spread of the tumor [8,9].

The tumor bed presents itself as a promising target for local treatment forms of breast
cancer. The technique of intraoperative radiotherapy (IORT) was developed to precisely
apply high radiation doses directly into the wound cavity resulting from tumor extirpation,
to eliminate residual tumor cells. Under clinical aspects, by this, the volume being most
at risk to develop relapse is properly irradiated with a high single dose while sparing
the surrounding tissue and delivering satisfactory cosmetic and toxicity results [10–15].
However, wound healing disorders are a possible side effect [16,17]. This suggests that
IORT not only triggers a direct radiotoxic effect, but also affects tissue regeneration by
modifying the local micromilieu.

We hypothesized that IORT provides an improved therapeutic intervention, not only
by eliminating residual tumor cells, but also by altering the milieu within the tumor bed
and the induced wound healing processes, involving immune and inflammatory responses.
Especially the local immune response could convey the virtue of IORT in the treatment of a
disease with early metastatic spread by an early antagonization of the formation of distant
metastases [18,19], as IORT does not impair white blood counts during long-term follow-
up [19]. In a previous investigation, we already pointed out that IORT efficiently targets the
tumor bed by showing that mammary mesenchymal stromal cell (MSC) outgrowth does not
occur after IORT [20]. This supports the notion that IORT targets cells of the tumor bed by
modifying the growth conditions after BCS. Supporting this notion, Segatto et al. showed
that IORT induced miR-223 expression in cells of the tumor bed. miR-223 expression led
to reduced epidermal growth factor (EGF) expression which ultimately inhibited breast
cancer cell growth and tumor recurrence in vivo [21].
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Further, recent studies describe the influence of IORT on the cytokine composition
of surgical wound fluid (WF) [22–24]. Belletti et al. made an essential contribution by
examining the proteomic and functional properties of WF gained from wound drainages
24 h after BCS with and without IORT. IORT changed the molecular composition and the
biological activity of WF and thus the growth conditions in the tumor bed, potentially
to the disadvantage of recidivation [22]. Compared to WF from untreated patients, WF
from IORT patients impaired the stimulatory activity on growth, invasion and migration
of breast cancer cells in line with significant changes in IL-10 and IL-13 concentrations [22].
Kulcenty et al. further contributed to this by showing that IORT-mediated a radiation-
induced bystander effect, which let to reduction of EMT and altered breast cancer cell gene
expression and function [25,26]. To extend on this, we aimed to study the cytokine profile
and the immune cell composition within the draining WF comparing IORT-treated and
non-treated patients. To address the changes within the tumor milieu, we further assessed
the effects of the WF not only on breast cancer cells but also on mammary MSC. Since MSC
are part of the stroma and can be recruited into the tumor bed, the interaction of naive
MSC with the irradiated tumor bed is of potential interest.

We hypothesized that IORT alters the tumor bed milieu targeting cells within the
tumor bed (tumor cells and MSC) and also the cytokine milieu, by this not only modulating
immune cell infiltration, but also tumor cell and MSC functioning. Thus, we examined
surgical WF harvested 24 h after BCS from patients after BCS with and without IORT,
analyzing (a) the cytokine milieu and (b) the composition of the immune cells. Furthermore,
(c) the effect of WF on proliferation, wound healing and chemotactic migration of both
breast cancer cells (cell line MDA-MB 231) and mammary MSC, isolated from biopsies of
unirradiated patients, was assessed.

2. Materials and Methods
2.1. Patients

After having obtained informed consent (Ethics Committee II approval 2013-589N-
MA), samples were collected from a total of 42 patients that were treated for breast cancer in
the Department of Obstetrics and Gynecology of the University Medical Center Mannheim,
Heidelberg University. Patients who received IORT during BCS formed the study group
(= IORT group, 21 patients) and 21 women who underwent BCS without IORT formed
the control group. In patients treated with IORT a single dose of 20 Gy (prescribed to the
applicator surface) was delivered to the tumor bed during BCS in a standardized protocol
(INTRABEAM® System, Carl Zeiss Meditec, Oberkochen, Germany) immediately after the
wide excision of the tumor [27]. Patients of the control group underwent BCS only with-
out IORT. Both groups exhibited comparable compositions concerning molecular cancer
phenotype and histological subtype (Table 1) without the presence of distant metastases.

Table 1. Distribution of histological subtypes and histological phenotypes in the tissue samples from
patients of IORT and control group, n = 42 (IORT 21, control 21).

Specification IORT Control

- Histological Subtype
No special type 81.0% 81.0%

Lobular histology 19.0% 14.3%
Tubular histology 0.0% 4.8%

- Molecular Phenotype
Luminal A 57.1% 61.9%

Luminal B (HER2 negative) 33.3% 38.1%
HER2 positive 4.8% 0.0%
Triple negative 4.8% 0.0%
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2.2. Sample Collection

WF and peripheral blood was collected 24 h after surgery. WF was harvested from
redon drainages inserted in the wound cavity. The WF samples were centrifuged, and the
supernatants were cryopreserved at −80 ◦C. The cellular fractions of both sample types
were processed for flow cytometric analysis as a standardized procedure.

2.3. Flow Cytometric Analysis

Isolated leukocytes of WF and peripheral EDTA blood samples were analyzed at the
day of harvest. Absolute cell counts and counts of myeloid and lymphoid cells were deter-
mined using TruCOUNTTM tubes (BD Biosciences, San Jose, CA, USA) and a simultaneous
staining with the following mouse anti-human antibodies: myeloid panel: CD45, CD14,
CD15, CD16, CD56, CD64; lymphoid panel: CD45, CD3, CD4, CD8, CD69, CD154 (fluores-
cence minus one (FMO) controls for CD69 and CD154); regulatory T cell (Treg) panel: CD4,
CD25, CD127, CD196 and FoxP3 (all clones, fluorochromes and manufacturers, Table S1).
Gating was performed as shown in Table S2. In addition, early and late apoptosis of white
blood cells was measured using Annexin V/Propidium iodide (PI) dual staining [28]. All
antibodies were properly titrated. Cells were acquired and analyzed using FACSCanto and
FACSDiva software (Becton Dickinson, Franklin Lakes, NJ, USA).

2.4. Multiplex Cytokine Analysis

First a preliminary screening was performed. WF samples of the first 15 patients
that were recruited (eight IORT vs. seven control) were individually analyzed using a
semiquantitative human cytokine antibody array that detects 80 cytokines simultaneously
(Human Cytokine Array C5, RayBiotech, Norcross, GA, USA). Evaluation was done with
the open-source program Image J [29] and the corresponding Protein Array Analyzer
tool [30]. Confirmatory ELISA tests were performed for HGF, OSM, GRO-α, IL-1β, Leptin,
RANTES, uPA and VEGF (DuoSet, R&D Systems Inc., Minneapolis, MN, USA) on 19 IORT-
vs. 20 control-WF samples. Due to limited sample volume, it was not possible to perform
ELISAs on all 21 individuals per group (see specifications of associated figures).

2.5. Cell Culture

The breast cancer cell line MDA-MB 231 [22,31–33] stably expressing nuclear green
fluorescent protein (GFP) was cultured using DMEM with 10% FBS and seeded at a
standard density of 4000 cells/cm2.

MSC were isolated from unirradiated breast tissue biopsies as described [20]. MSC
were cultured in DMEM (PAN Biotech, Aidenbach, Germany), 4 mM L-glutamine (Thermo
Fisher, Waltham, MA, USA) and 10% human AB serum (German Blood Donor Service Baden-
Württemberg-Hessen). The cells were cultured with a change of media twice weekly until
70–80% confluence. These cultures were passaged using trypsin-Ethylenediaminetetraacetic
acid (EDTA, AppliChem, Darmstadt, Germany) 1× and cells were seeded at a standard
density of 200 cells/cm2. A pool of five patients’ MSC exhibiting a representative marker
profile was made and cryopreserved in fetal bovine serum (FBS)/10% dimethyl sulfoxide
(DMSO, WAK Chemie Medical, Steinbach, Germany) in passage (P) 1.

2.6. Effects of Wound Fluid on Cell Function

The impact of WF on proliferation, wound healing and chemotactic migration of
MDA-MB 231 cells and MSC was assessed using live cell imaging (IncuCyte ZOOM®

system, Sartorius, Hertfordshire, United Kingdom) (Figure S1). Cells were cultivated
with increasing concentrations of pooled WF (0.1/0.5/1/5/10% IORT-WF vs. control-WF,
pooled from all donors of the according group) supplemented to the culture medium.
DMEM with 10% HS or FBS, respectively, was used for positive and serum-free DMEM for
negative controls. All assays were reproduced in three independent experiments including
multiple technical replicates. For quantification, we used adapted analysis masks (IncuCyte
Basic Software, Sartorius, Hertfordshire, United Kingdom) (Figure S1).
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• Proliferation assay. MDA-MB 231 and MSC were seeded at a density of 2 × 103 cells
per well and cultivated at 37 ◦C, 5% CO2 for 24 h. MDA-MB 231 cells were cultured
for additional 24 h in serum-free medium. Subsequently, the culture medium was re-
placed by WF-containing media. Cell proliferation was monitored using the IncuCyte
ZOOM® system and quantified as percent confluence using either phase contrast
(MSC) or nuclear GFP (MDA-MB 231) values.

• Wound healing/scratch assay. MDA-MB 231 and MSC were seeded at a density of
2 × 104 cells per well and incubated at 37 ◦C, 5% CO2 for 18 h. MDA-MB 231 cells
were starved then for 24 h in serum-free medium. Afterwards, a scratch wound was
set to the confluent monolayer (IncuCyte WoundMakerTM, Sartorius, Hertfordshire,
United Kingdom). The cells were washed twice and WF containing media was added.
Wound healing was monitored for 48 h. For both cell types, wound healing related
migration was determined using phase contrast.

• Migration/chemotaxis assay. The insert plate of a IncuCyte ClearView 96 well plate
(Sartorius, Hertfordshire, United Kingdom) was coated with fibronectin. Subsequently,
MDA-MB 231 and MSC were seeded at a density of 1 × 103 cells per well in DMEM +
1% HS or FBS; respectively. After settling for 1 h at ambient temperature, the medium
was replaced with serum-free DMEM. The insert plate was mated with the reservoir
plate loaded with WF-containing media. Cell migration to the reservoir plate was
monitored for 48 h). For both cell types, chemotactic migration was determined using
phase contrast.

2.7. Collection of Conditioned Media

To examine the influence of IORT-WF on the secretome of MSC, MSC were cultured in
0.5% pooled WF. After 72 h, conditioned media (CM) were harvested and cryopreserved
at −80 ◦C. HGF, PDFG-BB, OSM, GRO-α, IL-1β, leptin, RANTES, uPA, I-309 and VEGF
levels were assessed (DuoSet, R&D Systems Inc., Minneapolis, MN, USA) according to the
manufacturer’s instructions.

2.8. Statistical Methods

Statistical tests were performed using JMP 13 statistical software (SAS Institute Inc.,
Cary, NC, USA). Data were calculated as the arithmetic mean ± standard deviation (SD).
Statistical differences were calculated using double-sided t-tests for the cytokine and flow-
cytometric analyses. For the live cell imaging analyses, Mauchly tests were conducted
before MANOVA analyses to determine data sphericity. If there was a lack of data sphericity,
Greenhouse-Geisser correction was applied. Differences were considered significant at
p < 0.05.

3. Results
3.1. Immune Cell Subpopulations, Their Activation and Apoptosis State Are Not Changed in
Wound Fluid from IORT-Treated Patients

To evaluate if IORT has an impact on the absolute count of immune cell subpopula-
tions, their state of activation or their vitality, the cellular fraction of the surgical WF was
analyzed and compared to peripheral blood samples taken from the patients. None of
the examined subpopulations (myeloid cells, T cells, Treg) showed different cell counts
or activation states comparing IORT vs. control 24 h after treatment (Figure 1A–C). Also,
no group-dependent change in the apoptosis rates of the leucocyte fraction was apparent
(Figure 1D). Therefore, no impact of IORT on cellular immune processes in the local envi-
ronment could be determined within the first 24 h after BCS. Further, except for monocyte
counts reduced from around 10% in peripheral blood to around 1% in WF, no significant
differences in the cellular composition of WF and peripheral blood were found.
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Figure 1. Absolute cell counts of myeloid (A), lymphoid (B), Treg (C) and apoptotic (D) cells.
Indicated values: mean ± standard deviation, statistical analysis by double sided t-test. Myeloid
analysis: N(WF) = 31 (IORT 19, control 12); N(PBMC) = 17 (IORT 11, control 6) Lymphoid analysis:
N(WF) = 33 (IORT 21, control 12); N(PBMC) = 22 (IORT 15, control 7) Treg analysis: N(WF) = 24
(IORT 14, control 10); N(PBMC) = 16 (IORT 11, control 5) Annexin staining: N(WF) = 30 (IORT 20,
control 10); N(PBMC) = 21 (IORT 14, control 7). (For PBMC, some patients did not consent to an
additional blood sampling and for some patients, cell numbers were insufficient for analysis.).

3.2. Wound Fluid from IORT-Treated Patients Exhibits an Altered Cytokine Profile

To ascertain whether humoral factors of the microenvironment are affected by IORT, cy-
tokine levels in WF were assessed. Using a semiquantitative human cytokine array, we iden-
tified 30 cytokines with group-related changes (Figure 2A,B). GRO-α, IL-1β, Oncostatin-M
and Leptin, all linked to tumor growth and inflammation, were significantly altered in
the IORT group: Leptin increased; GRO-α, IL-1β, oncostatin-M decreased. More sensitive
ELISA quantified the change to be 1.7-fold and 1.8-fold for IL-1β and leptin, respectively,
and 0.6-fold for oncostatin-M (p < 0.05, Figure 3). GROα showed a similar trend, yet not
significant. VEGF, RANTES, uPA and HGF were tested in addition given their potential
role in the modulation of the local micromilieu [22,34–37]. Yet, IORT appeared not to affect
the levels these factors in the WF (Figure 3).
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3.3. Wound Fluid from IORT-Treated Patients Affects MSC Behavior

As IORT affects the levels of certain cytokines associated with tumor growth, we
asked whether these changes cause functional alterations in tumor cells or MSC. First,
the proliferation of MDA-MB 231 cells and MSC in increasing concentrations of WF
(0.1%/0.5%/1.0%/5.0%/10.0%) versus 10% HS or FBS and serum free was assessed. We
previously verified that WF in serum-free conditions can support proliferation. 0.5 and 1%
WF were further evaluated as significant differences became apparent there.

In our experimental setup, proliferation of the MDA-MB 231 cell line was not changed
comparing IORT-and control-WF. Also, wound healing and chemotactic migration were
not affected (Figure 4).
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We next addressed the WF effect on mammary MSC function [20]. We observed that
WF from IORT-treated patients inhibits MSC proliferation with similar kinetics after 34 h,
corresponding to the cell doubling time of MSC (30–40 h) (Figure 5). Cells treated with
0.5% control-WF displayed an increased proliferation rate thereafter (mean confluence at
70 h: 49.52% vs. 28.21% in IORT-WF, p < 0.0001). Proliferation of MSC treated with 1%
IORT-WF was about 6 h delayed (mean confluence at 70 h: IORT 61.67% vs. control 50.48%,
p < 0.0001).

Contrary to the MDA MB231 cell line, IORT-WF reduced not only MSC prolifera-
tion, but also wound healing, comparing 1% IORT-WF to control-WF (p = 0.01, Figure 5).
Chemotactic migration towards 0.5% IORT-WF was also significantly reduced compared to
control-WF.

All together these data show that IORT changes the composition of factors within the
WF, which reduces MSC proliferation, wound healing capacity and chemotactic migra-
tory activity.
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migration in 0.5 % WF (D). All assays were reproduced in 3 independent experiments with each
8–12 technical replicates for each condition. Indicated values: mean ± standard deviation in percent
over time. Statistical analysis by MANOVA, * p < 0.05, ** p < 0.01, *** p < 0.0001.

3.4. Wound Fluid from IORT-Treated Patients Modifies the Secretome of MSC

Wondering about the significantly differing proliferation curve profiles of MSC in
0.5% IORT-vs. control-WF, we argued that the IORT-WF does not affect adhesion and
spreading but mainly cell division. We suspected that the control-WF induced rise in
proliferation may relate to MSC autocrine/paracrine factors, and that the IORT-WF may
induce an anti-proliferative factor. Therefore, we analyzed the 72 h conditioned media
from MSC cultivated in 0.5% IORT- and control-WF for the cytokines HGF, OSM, GRO-α,
IL-1β, leptin, RANTES, uPA, I-309 and VEGF. Within the IORT-WF group, significantly
reduced levels of RANTES, GROα and VEGF were found (Figure 6).
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HGF (D), uPA (E), I-309 (F), PDGF-BB (G), OSM (H) and leptin (I). All experiments were reproduced
in three independent experiments, with each 8–12 technical replicates in each condition (IORT =
yellow, control = blue). Indicated values: mean ± standard deviation, statistical analysis by double
sided t test, * p < 0.05, ** p < 0.01).

4. Discussion

IORT is expected to exert not only a direct radiotoxic impact on residual cancer cells in
the irradiated tissue, but also to modify the local micromilieu in the tumor bed to hamper
EMT and thus relapse. To address this, we assessed (a) immune cell subsets, activation
state and apoptosis rates in WF and peripheral blood of control and IORT patients, (b) the
cytokine composition in WF and (c) effects of WF on proliferation, migration and wound
healing of the MDA MB 231 breast cancer cell line and mammary MSC.

4.1. Immune Cell Subpopulations, Their Activation and Apoptosis State Are Not Changed in
Wound Fluid from IORT-Treated Patients

The composition of main lymphocyte subsets, their activation state and apoptosis
rates within the draining WF and peripheral blood samples appeared not to be affected
by IORT, when assessed 24 h post-surgery. This observation extends previous findings
that the single application of IORT, in contrast to external radiation, does not affect white
blood cell counts in peripheral blood samples with a follow-up period up to 4 years [19].
A recent work also reports unchanged frequencies in Treg, granulocyte and monocyte
subsets, yet significantly increased CD56+high CD16+ NK cell numbers 3 weeks after IORT
in peripheral blood [38]. The lower number of monocytes in WF in comparison to the
peripheral blood samples may suggest their extravasation into the tissue as part of the local
wound healing process [39]. Various previous studies reported that EBRT affects the innate
and adaptive immune responses, and could induce an increased infiltration and activation
of subsets of inflammatory cells into the tissue [40–42]. These changes were reported
on tissues assessed after 48 h or later, while we assessed the WF samples standardized
after 24 h. Given that our chosen panels did not involve B cells, future investigations
could be expanded to B and more detailed innate immune and NK cell panels. Also, the
identification of NK cells might be optimized by the usage of anti-CD3 in the lymphoid
panel, since our strategy was the gating for positivity for CD45, CD56 and CD16 in addition
to a homogenous positivity for CD64.
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4.2. Wound Fluid from IORT-Treated Patients Exhibits an Altered Cytokine Profile

Confirming previous observations that IORT has an impact on cytokine levels within
the WF [22,24], we observed that especially cytokines associated with wound healing and
inflammation were modified by IORT. Oncostatin-M (OSM) was reduced in IORT-WF,
whereas the levels of leptin and IL-1β were increased. These findings are in line with
our hypothesis that IORT exerts an indirect anti-tumorigenic effect by changing the local
micromilieu within the tumor bed. OSM is secreted by macrophages and cancer-associated
adipose tissue and has been identified as a relevant factor in tumor progression [43].
Thereby, a selective inhibition of OSM resulted in a decreased peritumoral angiogenesis
and an inhibition of the STAT3 signaling pathway [43]. Further, OSM suppressed the
expression of estrogen receptor-alpha (ERα) of MCF 7 and T47D cell lines highly effectively
and dose dependently [44]. Consequently, the estrogen receptor is not available as a target
for anti-hormonal therapy, leading to a poorer overall prognosis. Furthermore, OSM
has been shown to enhance the loosening of cell-cell and cell-matrix contacts of breast
cancer cells and by this increasing invasiveness [45]. Beyond that, it acts as an external
stimulus for EMT and as an inductor for cancer stem cells [46,47]. Since the signaling
molecule Leptin is mainly produced by adipocytes, its high level in WF after IORT could
possibly be attributed to radiation-induced damages of the fat tissue. Beyond the general
known effect of Leptin as anti-hunger hormone, it has been shown to affect hematopoiesis,
thermogenesis, reproduction and angiogenesis [48]. It exerts a slight pro-inflammatory
effect and modulates the innate and adaptive immune response, linking metabolism and
the immune system [48,49]. Leptin could explain the positive correlation between obesity
and an elevated risk for breast cancer, accelerated tumor progression and poorer overall
prognosis [50]. Yet the literature does not allow us to link the IORT-driven leptin-levels to
pro- or anti tumorigenic effects.

The role of IL-1β during the pathogenesis of breast cancer appears to be similarly
context-specific. One study describes IL-1β to trigger the development of osseous metas-
tases [51], whereas other studies suggest that IL-1β could rather impede the colonization
of metastasis inducing tumor cells [52]. The induction of inflammation processes by radio-
therapy is commonly known, so that our finding of an elevated level of pro-inflammatory
cytokines like IL-1β is plausible. Thus, we interpret IL-1β as a stress signal indicating the
activation of the local immune system [53], which may assist to control tumor progression.
Belletti et al. also observed significantly altered levels of the immune response-related cy-
tokines IL-10 and IL-13 [22]. Elevated IL-1β levels were also reported by Kulcenty et al. [24].
However, they observed that, only WF of Luminal A breast cancer patients, but not that of
the Luminal B subtype [24] showed IORT-mediated increased IL-1β levels. This fits to our
observations, with the majority of samples representing the Luminal A subtype (Table 1).

4.3. Wound Fluid from IORT-Treated Patients Affects MSC, but not MDA-MB 231, Behavior

Belletti et al. previously showed that the local wound healing process affects the
composition of the drainage WF and that this promotes proliferation, migration and
invasion of breast cancer cells [22]. IORT, in contrast, nearly completely abrogated these
effects. Contrary to their findings, we observed no changes of proliferation, wound healing
and migration of MDA-MB 231 cells when incubated with different concentrations of
IORT-WF. Arguing that the cells might be less dependent on external factors due to their
highly malignant phenotype, we added an additional serum-starvation period for 24 h, but
this was not sufficient to document potential differential effects of IORT-WF. We can also
not exclude that the nuclear expression of GFP may have changed features of the MDA
MB 231 cell line. Possibly, a three-dimensional culture would be needed to observe these
effects: Belletti et al. showed that the differences between IORT- and control-WF were most
notably in three-dimensional cell culture [22,54,55].

In a previous study, we already demonstrated that IORT ultimately restricts MSC
outgrowth [20]. However, because MSC can become recruited to sites of injury or wound
healing, we speculated that IORT could affect the micromilieu to reduce migration, wound
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healing and proliferation of MSC. Indeed, MSC’s functionality was reduced in the pres-
ence of IORT-WF compared to control-WF. Especially striking were the largely differing
proliferation kinetics, suggesting an effect on cell cycle rather than adhesion. Postulating
that IORT-WF affects the secretion profile of MSC’s autocrine signals [56], we detected
significantly reduced levels of RANTES, GROα and VEGF. VEGF overexpression has been
shown not to alter proliferation, morphology and differentiation of MSC [57], but whether
reduced expression limits proliferation has to the best of our knowledge not been shown.
Yet, all three factors are known to be related to tumor growth/tumor aggressiveness [58–60].
VEGF is an important therapeutic target to inhibit specifically the signaling pathway of
angiogenesis and thus tumor growth [61]. GROα increased TNBC cancer cell migration
and invasiveness, whereas a GROα knockdown diminished these effects. Moreover, cor-
responding signs of EMT were observed [62]. RANTES, also known as CCL5, plays a
central role in the interaction of MSC with the tumor stroma and thus supports the mecha-
nisms of metastasis of breast cancer [35]. A subcutaneously injected mixture of MSC and
breast cancer cells of low malignancy formed a tumor xenograft with a significantly higher
metastatic potential. Supporting our findings of an IORT-WF changed secretion profile of
MSC, Kulcenty et al. reported similar radiation-induced bystander effects on breast cancer
cell lines [23,24]. Conditioned medium of irradiated breast cancer cells exerted similar
effects as IORT-WF: it reduced WF-mediated EMT and induced genotoxic effects [23,24].
Cells cultivated in IORT-WF showed transcriptomic changes: pathways related to cell
proliferation, division, DNA damage response, and metabolism were enriched while in-
flammatory responses reduced [26]. Furthermore, the group showed that WF affected
miRNA (miR-21, miR155 and miR-221] expression, yet differently in different breast can-
cer [63]. In three of four cell lines, WF reduced miRNA levels compared to control. In
the HER2-overexpressing cell line, however, miRNA expression was strongly induced by
control-WF, but to a lesser extent by IORT-WF. The three analyzed miRNA are associated
with tumor progression and severity and may predict radiation responses.

In summary, besides showing that IORT appears not to induce short-term changes in
the composition of immune cell subpopulations in WF and peripheral blood, we document
changes of mammary MSC function and secretome. We hypothesize that these processes
altogether contribute to the therapeutic efficacy of IORT, affecting the local cellular growth
but also the auto-/paracrine tumor bed micromilieu in a way that is unfavorable for the
development of local relapse and metastasis. With this new aspect, we contribute to a better
understanding of how IORT influences the tumor bed by inducing a radiation-induced
bystander effect.

5. Conclusions

Our results support the hypothesis that IORT affects components of the tumor bed
not only by its radiotoxic effect but also by a radiation-induced bystander effect. Although
not inducing short-term changes in the composition of immune cells, IORT modifies the
local microenvironment indicated by changes in the cytokine content within the WF. This
conditioning of the local environment by cytokines plays a decisive role within this context
and may explain the IORT’s proven effectiveness. A better understanding of the direct
and especially the indirect bystander effects may help to identify and improve effective
treatments for breast cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13092140/s1: Table S1: Reagents used for immunophenotyping, Table S2: Rating
strategies for the immunophenotyping, Figure S1: Captures and analysis masks monitored during
MDA-MB 231 experiments with IncuCyte ZOOM®).
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Abbreviations
◦C degree Celsius
BCS breast conserving surgery
CD cluster of differentiation
cm2 square centimetres
CO2 carbon dioxide
CSC cancer stem cells
DMEM Dulbecco’s Modified Eagle Medium
DMSO dimethyl sulfoxide
EBRT external beam radiotherapy
EDTA ethylenediaminetetraacetic acid
ELISA enzyme-linked immunosorbent assay
EMT epithelial-mesenchymal transition
et al. et alia
FBS foetal bovine serum
FGF fibroblast growth factor
GFP green fluorescent protein
GROα growth-regulated oncogene alpha
Gy Gray
h hours
HGF hepatocyte growth factor
HS human serum
IL-1β interleukin 1 beta
IORT intraoperative radiotherapy
MANOVA multivariate variance analysis
MSC mesenchymal stromal cells
N number of biological replicates
n number of technical replicates
NST no special type
OSM oncostatin-M
p p value
P cell passage
PBMC peripheral blood mononuclear cells
PDGF platelet derived growth factor
RANTES regulated and normal T cell expressed and secreted, also: CCL5
SD standard deviation
STAT3 signal transducer and activator of transcription 3
TNBC triple negative breast cancer
Treg regulatory T cells
uPA urokinase-type plasminogen activator
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VEGF vascular endothelial growth factor
WF wound fluid
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