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Simple Summary: The accurate prediction of incident cancers could be relevant to understanding
and reducing cancer incidence. The aim of this study was to develop machine learning (ML) models
that could predict an incident diagnosis of cancer. Data were available for 116,188 cancer-free
participants and 4232 incident cancer cases. The main outcome was an incident cancer (excluding
skin cancer) during follow-up assessment in a population-based cohort. The performance of three
ML algorithms was evaluated using supervised binary classification to identify incident cancers
among participants. An overall area under the receiver operator curve (AUC) < 0.75 was obtained;
the highest AUC was for prostate cancer AUC > 0.80. Linear and non-linear ML algorithms including
socioeconomic, lifestyle, and clinical variables produced a moderate predictive performance of
incident cancers in the Lifelines cohort.

Abstract: Cancer incidence is rising, and accurate prediction of incident cancers could be relevant
to understanding and reducing cancer incidence. The aim of this study was to develop machine
learning (ML) models that could predict an incident diagnosis of cancer. Participants without
any history of cancer within the Lifelines population-based cohort were followed for a median of
7 years. Data were available for 116,188 cancer-free participants and 4232 incident cancer cases.
At baseline, socioeconomic, lifestyle, and clinical variables were assessed. The main outcome was
an incident cancer during follow-up (excluding skin cancer), based on linkage with the national
pathology registry. The performance of three ML algorithms was evaluated using supervised
binary classification to identify incident cancers among participants. Elastic net regularization and
Gini index were used for variables selection. An overall area under the receiver operator curve
(AUC) <0.75 was obtained, the highest AUC value was for prostate cancer (random forest AUC = 0.82
(95% CI 0.77–0.87), logistic regression AUC = 0.81 (95% CI 0.76–0.86), and support vector machines
AUC = 0.83 (95% CI 0.78–0.88), respectively); age was the most important predictor in these models.
Linear and non-linear ML algorithms including socioeconomic, lifestyle, and clinical variables
produced a moderate predictive performance of incident cancers in the Lifelines cohort.

Keywords: classification; prediction; neoplasms; supervised machine learning; health behavior; lifestyle

1. Introduction

In European countries, the number of cancer incidence increased from 3.2 million
in 2012 to 3.9 million in 2018. Breast, colorectal, lung, and prostate cancer were the
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most commonly diagnosed cancers [1]. These increased cancer rates are mainly related
to the aging of the population, as over 50% of the new diagnosis of cancer are within
people aged 65 years or older; elderly people aged 75+ account for more than one-third
(36%) of cases, and the incidence in this group is expected to double by 2035 [2]. In
addition, the implementation of cancer screening programs improved early detection and
hence led to more cancers diagnosed [2,3] and the more prevalent lifestyle risk factors
among the population [1,4]. Lifestyle risk factors that have an established association with
the development of specific primary cancers are smoking [5], alcohol consumption [6],
unhealthy diet [7,8], high body mass index (BMI) [9], low level of physical activity [10],
and high level of sedentary behavior [11].

Thus far, predictions on the expected cancer incidence in a specified population are
mainly extrapolated based on previously observed rates of cancer and age distribution
within the population [12,13]. On the other hand, there are studies combining results from
observed cancer rates in relation to lifestyle risk factors, estimating the effect of lifestyle
modification on the expected incidence of cancer [14–16]. However, those estimated
numbers are susceptible to bias, mainly because the combined impact of those lifestyle risk
factors is dependent on population data available [12].

Recently it was shown that machine learning (ML) algorithms can be useful in the field
of cancer prediction, since these algorithms are designed to identify complex or non-linear
relationships between variables. These algorithms can also incorporate a large number of
variables, which may increase model complexity and predictive performance compared
to other statistical approaches [17–23]. The goal of these efforts was clearly to improve
the early detection and prediction of incident cancers, prognosis, and survival [21–23].
However, there are some doubts as to whether ML algorithms indeed will perform better
than traditional methods [24]. Moreover, it is suggested that scenarios showing a better
performance of ML algorithms compared to commonly used statistics might have a very
high risk of bias in the validation procedures, in addition to other limitations (i.e., relatively
small sample size, limited number of predictors, or limited information about handling
missing data) [24]. Furthermore, when structured clinical data are used to predict an
incident cancer, the predictive performance of statistical methods and ML algorithms tends
to be moderate to low [25]. As a result of this controversy, it is of importance to clarify if ML
algorithms can demonstrate better performance in predicting an incident cancer when the
above-mentioned limitations are overcome and to better understand how these predictions
are accomplished. Considering this, the aim of the present study was to develop a model
based on lifestyle, socioeconomic, and routine clinical variables to predict incident cancers
in a prospective population-based cohort by using linear and non-linear ML algorithms.

2. Materials and Methods
2.1. Study Design

The present study used data from 167,729 participants collected between 2006 and
2013 from Lifelines, which is a multi-disciplinary prospective population-based three-
generation designed cohort with 10% of the population from the northern Netherlands [26].
Participants were asked to fill in several structured and validated self-administered ques-
tionnaires about lifestyle, health status, and demographics. For a complete overview of the
collected data, please see https://catalogue.lifelines.nl/ (accessed on 22 March 2021) [27].
The study protocol was approved by the medical ethics review committee of the University
Medical Center Groningen [28]. Cancer diagnoses were provided by the linkage of the
Lifelines database to the PALGA Foundation (Pathologisch-Anatomisch Landelijk Geau-
tomatiseerd Archief) database. The PALGA Foundation database contains the registry
of histopathology and cytopathology in the Netherlands and has nationwide coverage
since 1991.

https://catalogue.lifelines.nl/
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2.2. Participants

In the here presented analysis, we included adult participants (aged ≥ 18) from the
Lifelines baseline assessment. If a participant was known with any type of cancer according
to PALGA at the baseline assessment, they were excluded. In addition, participants with
skin cancer diagnosis were excluded from the analysis, since this type of cancer might have
different environmental causes than the ones evaluated in our analyses (i.e., UV exposure
or radiation) [16].

2.3. Patient Outcome

The primary outcome was defined as any cancer diagnosis as provided by PALGA
(date and location of cancer) after the date participants filled in the Lifelines baseline ques-
tionnaire (linkage of the data between PALGA and Lifelines was provided in September
2019). The outcome was further stratified as follows: all cancer types, and the most common
cancer subtypes in Europe and among Lifelines participants: breast cancer, gastrointestinal
cancers (colorectal, stomach, and esophagus, since they are considered to share similar
lifestyle risk factors [8]), and prostate cancer.

2.4. Predictive Variables

Lifestyle, clinical, and socioeconomic variables extracted from the Lifelines database
were used to predict outcome, as summarized in Supplementary Materials Table S1. Vari-
ables with more than 30% missing values were excluded from the analysis, resulting in a
total of 71 variables. Socioeconomic status was indicated by the level of education, which
is commonly used for this purpose because it is easy to obtain, is more likely to have
a low percentage of missing data, can be self-reported, and correlates well with other
indicators of social stratification [29]. Education was classified as follows: low (i.e., no
education, primary education, lower or preparatory vocational education, or lower general
secondary education), medium (i.e., intermediate vocational education or apprenticeship,
higher general senior secondary education, or pre-university secondary education), and
high (i.e., higher vocational education or university). BMI was calculated by dividing the
participant’s weight by the square of her or his height (kg/m2). Diet components were
assessed with the 110-item food-frequency questionnaire (FFQ) that measured food intake
over the previous month. The answers on these items were converted to grams per day
using the method advised by the food-based Lifelines Diet Score [30]. Alcohol intake was
also assessed by the FFQ. Physical activity was measured by the Short Questionnaire to
Assess Health-enhancing Physical Activity (SQUASH) [31]. This questionnaire includes
questions on routine activities (e.g., commuting, leisure, household, work, and school)
and has been validated in the Dutch population. Only moderate to vigorous activities
(expressed as total hours per week) in commuting and leisure time were considered for
this analysis, because these domains better represent health behavior than occupational
physical activity [32]. Sedentary behavior was evaluated by the total number of hours the
participant spent watching TV per day. Smoking was expressed as the number of pack-
ages that a person consumed per year, by calculating the total grams of tobacco currently
smoked, using the following equivalence: 1 cigarette = 1 g, one cigarillo = 3 g, and one
cigar = 5 g [33] and then expressed as the total packages per year.

2.5. Statistical Analysis

Since the final dataset was highly imbalanced (the ratio of participants with a cancer
diagnosis and without a history of cancer was low, see Table 1), and this can severely
bias the performance of ML algorithms [34], several steps on analysis were undertaken
to address this. First, a sample-size equalization strategy was applied in two different
ways: (a) new cancer cases were matched to controls by sex, age, and education level; (b) a
random selection of the participants with no history of cancer (only female participants
for breast cancer model; only male participants for prostate cancer model); this resulted in
multiple balanced datasets (50% cancer cases/50% no history of cancer) for every proposed
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scenario (all types of cancer, breast, prostate, and gastrointestinal cancer). Second, to
evaluate the effect of aging, datasets were stratified for separate models by groups of age
(i.e., 18–39; 40–49; 50–59; 60–69; and older than 70). That was done because the models
matched by age, sex, and education level did not include these variables in their analysis.

Table 1. Baseline characteristics of the 120,420 participants stratified by those who had a new cancer diagnosis in the
follow-up versus those without any history of cancer (for age and sex-matched controls and the others without any history
of cancer).

Variation
Cancer in

Follow-Up Controls Without Any History of Cancer

(n = 4232) (n = 4232) (n = 116,188)

Baseline age (SD) 52.53 (13.12) 52.53 (13.12) 43.62 (12.68)
Sex

Females (%) 2581 (61.0%) 2581 (61.0%) 67,679 (58.2%)
Education level

Low (%) 1715 (40.5%) 1658 (39.2%) 34,678 (29.8%)
Medium (%) 1432 (33.8%) 1418 (33.5%) 46,238 (39.8%)

High (%) 1085 (25.6%) 1156 (27.3%) 35,272 (30.4%)
Baseline body mass index (SD) 26.62 (4.22) 26.31 (4.30) 25.97 (4.30)

Baseline alcohol intake grams/day (SD) 8.12 (9.69) 7.15 (8.67) 7.20 (8.93)
Smoking packages/year (SD) 10.20 (13.89) 7.92 (11.83) 5.90 (9.57)

Baseline physical activity h/week (SD) 4.51 (5.49) 4.46 (5.14) 4.14 (4.80)
Baseline sedentary behavior TV h/day (SD) 2.70 (1.53) 2.66 (1.53) 2.46 (1.48)

SD: standard deviation; h: hours; TV: television.

2.6. Model Development and Validation

The performance of three common ML algorithms was evaluated to predict an incident
cancer case for every balanced dataset (random selection, case-control, and stratified age
categories) by supervised binary classification: (i) logistic regression, (ii) random forest, and
(iii) support vector machines. Those algorithms have the ability to predict, either by linear
(logistic regression) or non-linear approaches (random forest [35], support vector machines)
a binary outcome and are the most frequently applied when using structured clinical
data in cancer prediction [25]; this might be explained because they are computationally
less expensive in comparison to other methods [21] (i.e., deep learning) but still with a
high predictive performance, and they also are flexible over the possible distributions
of the data included. In addition, the predictive factors can be directly obtained from
the algorithms [21–23,25] (for further details about the algorithms, see Supplementary
Materials File S3). For all the datasets, the same model architecture and modeling procedure
was followed (see Figure 1). The first step was to randomly split the data and to use 80%
of the data for training and the remaining 20% for testing. Then, missing data in the
training set were estimated through multiple imputation by chained equations (MICE) [36],
setting five rounds of imputation and replacing the missing values with the fifth round
for all models, using the “mice” package in R statistics. After imputation, all the variables
in the training set were standardized by using uniform means and standard deviations
(subtracted by the mean and divided by the standard deviation). Missing values in the
testing set were estimated separately also using MICE; in addition, standardization of the
variables in the testing set was calculated using the mean and standard deviation of the
training set.
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training of the prediction model, and the remaining one was used for testing; this was 
repeated until all folds in the training set had been used. During classification, the follow-
ing hyperparameters were tuned: (a) for random forest, using the ranger function in the 
caret package: (i) number of randomly selected variables for each split (mtry), (ii) number 
of trees (200, 300, 500), and (iii) minimum node size (0, 0.5, and 1); (b) for support vector 
machines a linear kernel was used, and the adjusted hyperparameter was the cost of con-
straints violation “C”, searched from 0 to 2 in steps of 0.5. 

Initially, all the variables were included in the classification process. In the next step, 
only variables relevant for incident cancer prediction were used (see Figure 1). To identify 
these important variables, two different techniques were used. First, the mean decrease 
Gini index criteria (MDG) scales the importance of the variables within the algorithm in a 
range from 0 to 100. Within that range, as a standard procedure, the most important 20 
variables in the Gini scale from the initial random forest classifier were considered for the 
final models. Second, the elastic net regularization was applied, and variables with coef-
ficients equal to zero were not included in the further models [37] (see Figure 1). A heat 
map was generated to show the most important variables across the models. As a final 
step, the prediction ability of every model was evaluated in the testing set. The area under 
the receiver operator characteristic curve (AUC) was the performance metric, a higher 
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Figure 1. Data analysis process, variable selection strategies: (A) by elastic net regression and (B) Gini index, and cross-
validation performance to obtain the optimal models for cancer prediction. * Variables in the testing set were standardized
using the mean and standard deviations from the training set.

The predictive performance of the algorithms in the training set was evaluated using
a 10-fold cross-validation technique. In every fold, data from 9/10 folds were used for
the training of the prediction model, and the remaining one was used for testing; this
was repeated until all folds in the training set had been used. During classification, the
following hyperparameters were tuned: (a) for random forest, using the ranger function
in the caret package: (i) number of randomly selected variables for each split (mtry),
(ii) number of trees (200, 300, 500), and (iii) minimum node size (0, 0.5, and 1); (b) for
support vector machines a linear kernel was used, and the adjusted hyperparameter was
the cost of constraints violation “C”, searched from 0 to 2 in steps of 0.5.

Initially, all the variables were included in the classification process. In the next step,
only variables relevant for incident cancer prediction were used (see Figure 1). To identify
these important variables, two different techniques were used. First, the mean decrease
Gini index criteria (MDG) scales the importance of the variables within the algorithm in
a range from 0 to 100. Within that range, as a standard procedure, the most important
20 variables in the Gini scale from the initial random forest classifier were considered for
the final models. Second, the elastic net regularization was applied, and variables with
coefficients equal to zero were not included in the further models [37] (see Figure 1). A heat
map was generated to show the most important variables across the models. As a final
step, the prediction ability of every model was evaluated in the testing set. The area under
the receiver operator characteristic curve (AUC) was the performance metric, a higher
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AUC value indicates a better performance of the model (where an AUC value of 1 equals
optimal performance and an AUC value of 0.5 is considered low predictive performance).
To improve transparency, the model development followed the “transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis” (TRIPOD) statement;
these guidelines were established to improve the reliability when developing and reporting
prediction models and might help to address limitations from previous studies, to produce
fair comparisons among models and more reliable metrics [38,39]. All analyses were
conducted in R statistics, version R-3.5.2, with the ‘Caret’ package. All results are reported
as mean AUC (±95% CI), unless stated otherwise.

3. Results

A total of 120,420 participants were included in the study, out of which 4232 had a
new cancer diagnosis (see Table 1). The majority of participants were females (58.34%,
n = 70,260); those participants without a history of cancer had a mean age of 43.62 years
(SD 12.68). The mean age of the of the new detected cancer cases was 52.53 (SD 13.12);
there was a higher prevalence of new cancer incidents among females (61.0% n = 2 581).
From the participants who were diagnosed with a new cancer, 74.3% (n = 3 147) reported
a low or medium socioeconomic status. The most incident cancer cases in the follow up
were breast cancer (n = 977), followed by gastrointestinal (n = 609) and prostate (n = 508)
(see Table 2).

Table 2. Characteristics of the participants for the case control analysis stratified by cancer diagnosis.

Breast
Cancer in

Follow-Up

Breast
Cancer

Random
Controls

Breast
Cancer

Controls

Prostate
Cancer in

Follow-Up

Prostate
Cancer

Random
Controls

Prostate
Cancer

Controls

GI Cancer
in

Follow-Up

GI Cancer
Random
Controls

GI Cancer
Controls

(n = 977) (n = 977) (n = 977) (n = 508) (n = 508) (n = 508) (n = 609) (n = 609) (n = 609)

Baseline
age (SD) 50.76 (10.60) 43.74 (12.83) 50.76 (10.60) 62.75 (7.48) 45.08 (12.70) 62.75 (7.48) 57.22 (10.73) 44.68 (12.01) 57.22 (10.73)

Sex
Females (%) 977 (100%) 977 (100%) 977 (100%) - - - 249 (40.9%) 361 (59.2%) 249 (40.9%)
Education

level
Low (%) 390 (39.9%) 305 (31.2%) 364 (37.3%) 222 (43.7%) 166 (32.7%) 228 (44.9%) 274 (45.0%) 177 (29.1%) 274 (45.0%)
Medium

(%) 345 (35.3%) 392 (40.1%) 365 (37.4%) 134 (26.4%) 198 (39.0%) 131 (25.8%) 189 (31.0%) 258 (42.4%) 171 (28.1%)
High (%) 242 (24.8%) 280 (28.7%) 248 (25.4%) 152 (29.9%) 144 (28.3%) 149 (29.3%) 146 (24.0%) 174 (28.5%) 164 (26.9%)

Body mass
index (SD) 26.47 (4.53) 25.74 (4.81) 26.10 (4.57) 26.72 (3.19) 26.18 (3.18) 27.04 (3.53) 27.47 (4.15) 25.91 (4.06) 26.51 (3.82)

Alcohol
intake

grams/day
(SD)

5.97 (7.45) 4.75 (5.88) 5.10 (6.41) 10.93 (9.74) 10.39 (11.35) 10.47 (10.16) 9.58 (10.95) 7.17 (8.89) 8.19 (8.89)

Smoking
pack-

ages/year
(SD)

6.46 (9.66) 5.36 (9.03) 6.53 (9.46) 11.66 (13.87) 7.35 (10.44) 12.52 (14.97) 13.14 (16.60) 5.84 (9.15) 9.19 (12.97)

Physical
activity
h/week

(SD)

4.26 (4.90) 4.30 (5.01) 4.35 (5.05) 5.45 (6.46) 4.40 (5.20) 5.32 (6.27) 4.73 (5.92) 4.65 (5.80) 5.06 (6.10)

Sedentary
behavior

TV
h/day(SD)

2.66 (1.41) 2.42 (1.32) 2.63 (1.33) 2.80 (1.70) 2.42 (1.23) 2.78 (1.37) 2.84 (1.48) 2.44 (2.09) 2.67 (1.31)

GI: gastrointestinal; SD: standard deviation; TV: television; h: hours.

3.1. General Model

In the models analyzing all types of cancer, including those stratified by age subgroups,
the AUC was below 0.70 (see Supplementary Materials Table S2). The best performance
of the three algorithms was achieved in the model with random forest variable selection
and random controls (random forest AUC = 0.65 (95% CI 0.62–0.67), logistic regression
AUC = 0.66 (95% CI 0.63–0.68) and support vector machines AUC = 0.65 (95% CI 0.63–0.67),
respectively). However, this was not substantially higher when compared to the mod-
els that included all the variables (random forest AUC = 0.64 (95% CI 0.62–0.67), logis-
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tic regression AUC = 0.64 (95% CI 0.62–0.66) and support vector machines AUC = 0.63
(95% CI 0.61–0.66), respectively). The variables that added the most to these models were
age (MDG = 100), savory and ready product intake (MDG = 26.26), summed polysaccharide
intake (MDG = 17.13), granulocyte count (MDG = 16.66) and number of smoking pack
years (MDG = 15.69) see Figure 2.
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3.2. Breast Cancer Model

The breast cancer models had an AUC below 0.70 (Supplementary Materials Table S3).
The highest predictive performance was achieved by the model for age group 70+ years
with random forest variable selection (random forest AUC = 0.68 (95% CI 0.44–0.92),
logistic regression AUC = 0.56 (95% CI 0.30–0.82), and support vector machines AUC = 0.56
(95% CI 0.30–0.82), respectively). Variables with high MDG in these models were number
of television hours per day (MDG = 100), eosinophils count (MDG = 94.97), cholesterol LDL
(MDG = 82.69), lymphocytes count (MDG = 77.00) and refined grain intake (MDG = 74.47)
(see Figure 2). In the models with random controls, age groups 40–49, 50–59, 60–69, and
70+, it was not possible to develop models with elastic net variable selection, because no
relevant variables were identified (Supplementary Materials Table S3).

3.3. Gastrointestinal Cancer Model

The performance of the gastrointestinal cancer models was below AUC = 0.75 (Supple-
mentary Materials Table S4). The best performing algorithm was based on random forest
variable selection and random controls (random forest AUC = 0.71 (95% CI 0.65–0.77),
logistic regression AUC = 0.75 (95% CI 0.69–0.80), and support vector machines AUC = 0.72
(95% CI 0.66–0.77), respectively); nevertheless, it was not considerably higher compared
to the model that included all variables (random forest AUC = 0.73 (95% CI 0.68–0.79),
logistic regression AUC = 0.72 (95% CI 0.66–0.77), and support vector machines AUC = 0.73
(95% CI 0.67–0.79), respectively). In these models, the most contributing variables were
age (MDG = 100), number of smoking pack years (MDG = 24), savory and ready product
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intake (MDG = 22.42), glycosylated hemoglobin level (MDG = 19.73), BMI (MDG = 13.36),
and triglyceride level (MDG = 11.38).

3.4. Prostate Cancer Model

In the prostate cancer models, all the case controls scenarios had an AUC below
0.70 (Supplementary Materials Table S5), and the highest AUC for all the algorithms was
achieved when using random controls, either by the inclusion of either optimal features by
random forest variable selection (random forest AUC = 0.82 (95% CI 0.77–0.87), logistic
regression AUC = 0.81 (95% CI 0.76–0.86), and support vector machines AUC = 0.83
(95% CI 0.78–0.88), respectively) or by including all variables (random forest AUC = 0.82
(95% CI 0.77–0.87), logistic regression AUC = 0.76 (95% CI 0.70–0.82), and support vector
machines AUC = 0.80 (95% CI 0.74–0.85), respectively). Variables that contributed most
to these models were age (MDG = 100), savory and ready product intake (MDG = 14.62),
creatinine level (MDG = 8.07), glycosylated hemoglobin level (MDG = 8.07), and sugar
beverage intake (MDG = 6.23) (see Figure 2).

4. Discussion

The aim of the present study was to develop models to predict an incident cancer
case in a prospective population-based cohort, by using linear and non-linear algorithms
to identify the most contributing variables in these predictions. This is important to
gain insight into factors contributing to cancer development, which might become future
targets for cancer prevention. The models for the development of cancer in general and
breast cancer showed low predictive performance. On the other hand, gastrointestinal
cancer showed moderate predictive performance. The highest predictions obtained in this
study were achieved when random controls were included, and age was predominantly
the most contributing variable within those models. The predictive performance of the
models increased to some extent when performing variable selection. The best predictive
performance was obtained in the prostate cancer model when incident cases were matched
to random controls (AUC > 0.80). Age, savory-ready product intake, creatinine levels,
glycosylated hemoglobin levels, and sugar beverage intake were the most contributing
variables in these models.

Age was a strong predictor in the unmatched models, which is in line with the
expectation, as cancer is mainly a disease of aging [40], where older age is responsible for
half of the diagnoses irrespective of the type of cancer [2]. As such, age obscured the effect
of the other explanatory variables included. However, it is known that etiology differs
between cancer types; because of this, it is implicit that prediction models generally perform
better when designed for a specific cancer type [21]. To our knowledge, no predictive
models for general incident cancer prediction using machine learning algorithms have
been described in the literature. Therefore, the performance of our general incident cancer
prediction model could not be compared to other models. However, it was possible to
derive that lifestyle and clinical variables produced a low predictive performance in overall
cancer incidence prediction. In addition, variable selection using (ML) algorithms only
slightly improved the predictive performance in this particular scenario [41].

Breast cancer prediction, on the other hand, has been widely assessed [42–44], and
our models in this study showed comparable performance to those reported in a recent
review [44] where the AUC is usually <0.70 when genetic data are not included. Con-
versely, a recent study showed a striking predictive performance of cancer when using
ML algorithms compared to the breast cancer risk assessment tool (BCRAT) and the breast
and ovarian analysis of disease incidence and carrier estimation algorithm (BOADICEA)
models, using the same variables (AUC > 0.90), although this is an analysis that includes
specific genetic variations for breast cancer prediction. [20]. Although the predictive perfor-
mance is high, the procedure to compare the models might be biased or not so fair; since it
did not use a separate testing set to blind the outcome, ML algorithms used supervised
classification and rebalanced datasets during training. On the contrary, that study received
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serious criticism about the risk of bias in the validation procedure and the fair comparisons
between the models [45]. In contrast, the here-presented approach used the same variables
and the same structure to train the algorithms, used a separate testing set to blind the
outcome achieve internal validation. The availability of studies focused on prediction of
breast cancer by lifestyle, socioeconomic, and clinical variables using ML approaches is
scarce [44]. However, our results are in line with those reported for low biased breast cancer
prediction models using ML (AUC < 0.70) [42–44]. The observed limited performance is
likely due to the relevance of the variables included, as well as the fact that genetic data
were not included. In our models, the predictive performance increased when Gini index
variable selection was used.

The optimal gastrointestinal cancer models showed moderate predictive performance.
Although the association between diet and specific cancer risk has been clearly estab-
lished in previous studies [8], the here-presented analysis focused on the prediction and
not the risk assessment, which makes it difficult to compare these studies. The food
groups included here were evaluated separately and not included as diet indexes/diet
scores [46], which might have an impact on the prediction, because the combined effect of
the components could not be assessed in our approach.

The prostate cancer model showed the highest predictive performance for the optimal
models (AUC > 0.80), which is similar to the results obtained in a study using random
forest in which an AUC > 0.80 was achieved [47]. In this study, it was also reported that age
was the most contributing variable. One of the main differences with this previous study
was their inclusion of specific biomarkers in the prediction model, where our study only
included lifestyle, socioeconomic, and clinical variables. However, both studies achieved
comparable performance. To further strengthen the results of this study, external validation
of this prostate cancer model should be performed.

Recently published studies have been optimistic about the performance of cancer
prediction models, claiming that non-linear ML algorithms may outperform linear-based
statistical methods [23,48]. Nevertheless, it is of concern that such models could lead to
model overfitting or face a lack of interpretability by prioritizing prediction over explana-
tion [48]. The results from the present study showed that the predictive performance of
non-linear ML algorithms and linear-based methods are similar in this specific scenario, if
previous limitations (relatively small sample size, limited number of predictors, improper
internal validation, hyperparameter tuning, and no feature selection) are addressed by
adhering to reporting guidelines. This overall moderate or low performance might be
explained by the use of tabular structured data, or the use of lifestyle, socioeconomic, blood,
and urine test variables, but also because genetic data or specific biomarkers were not
included in the present analysis [25] and as such, the number of variables was limited.
In addition, the overall findings are in line with the results from a systematic review in
which low-bias clinical prediction models showed no differences in performance when
comparing ML algorithms to logistic regression [24].

Some strengths in the present study need to be mentioned: First, our study adhered to
the recently proposed guidelines to develop and improve the authenticity when reporting
prediction models (TRIPOD statement) [38]. Second, previous limitations stated in the
literature such as sample size, reduced number of predictors, proper internal validation,
hyperparameters tuning, feature selection, and an additional case control analysis were
addressed to reduce bias in the prediction models. Third, cancer cases were retrieved from
a nationwide pathology registry. Fourth, this study included a large number of predictors
from several health domains. Fifth, the dataset had a low number of missing values, and
those occurring were imputed according to reporting guidelines. Finally, a comprehensive
assessment of variables and check of their reliability was performed, in order to reduce bias
or measurement errors. In a study with these strong points, the predictive performance of
non-linear ML algorithms and linear-based methods are similar in this specific scenario.

In addition, several limitations need to be mentioned: first, the models did not incorpo-
rate time to event of diagnosis, and they only considered one time measurement at baseline
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to make a prediction; this might impact the results, since multiple measurements might
better show exposure to the predictors and therefore increase the predictability. Second,
genetic data were not included, since genetic data were not available for all the participants
included in this analysis; the inclusion of genetic data might also increase the predictive
performance of ML algorithms. Third, the analysis is only based on baseline assessment of
the predictors; no follow-up data were included; in the future, the inclusion of follow-up
data might improve the performance of the models. Fourth, the included variables are
seen as raw data; only smoking and physical activity were included as pack years smoked
and total hours of moderate and vigorous physical activity; thus, the combined effect of
some variables (i.e., diet scores) might not be reflected in the outcome. Fifth, since the
present study only evaluated in separate models the most common cancer diagnosis in the
Lifelines cohort, future research might evaluate independently other subtypes of cancer for
which this study did not have a large enough sample size.

What could be the implications of our findings? As to clinical applicability, the
moderate or high predictive performance in the prostate and GI cancer models is promising,
but this must be externally validated to derive possible clinical relevance. Of note, it is
important to emphasize that causality is not assumed in our models. This is because the
proposed ML algorithms did not include specific biomarkers and only focused on the
predictive effect of socioeconomic factors, lifestyle behaviors, and routine clinical variables
on a cancer outcome. For the exploration of possible causal factors, further analyses in the
current and other population-based cohorts are warranted. That could focus, for instance,
on the savory snacks and ready-to-eat products as well as glycosylated hemoglobin, which
we found to be among the most important variables in both prostate and GI cancer models.

5. Conclusions

In conclusion, the performance of linear and non-linear ML algorithms for predicting
all incident cancers, breast cancers, and gastrointestinal cancers using socioeconomic,
lifestyle, and clinical variables from the Lifelines cohort is moderate to low, where age is the
most important predictor. The model developed to predict incident prostate cancer, which
included all the variables, achieved high predictive performance. Explanations can be
that the data included to make these predictions are relatively homogeneously distributed.
Further studies might be able to include other types of data such as genetic, which might
help to improve the predictive performance of incident cancer cases.
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