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Simple Summary: Prostate cancer is a very common malignancy worldwide. Treatment resistant
prostate cancer poses a big challenge to clinicians and is the second most common cause of premature
death in men with cancer. Gene expression analysis has been performed on clinical tumours but
to date none of the gene expression-based biomarkers for prostate cancer have been successfully
integrated to into clinical practice to improve patient management and treatment choice. We applied
a novel laboratory prostate cancer model to mimic clinical hormone responsive and resistant prostate
cancer and tested whether a network of genes similarly regulated by transcription factors (gene prod-
ucts that control the expression of target genes) are associated with patient outcome. We identified
regulons (networks of genes similarly regulated) from our preclinical prostate cancer models and
further evaluated the top ranked JMJD6 gene related regulated network in three independent clinical
patient cohorts.

Abstract: Background: Prostate cancer (PCa) is the second most common tumour diagnosed in men.
Tumoral heterogeneity in PCa creates a significant challenge to develop robust prognostic markers
and novel targets for therapy. An analysis of gene regulatory networks (GRNs) in PCa may provide
insight into progressive PCa. Herein, we exploited a graph-based enrichment score to integrate data
from GRNs identified in preclinical prostate orthografts and differentially expressed genes in clinical
resected PCa. We identified active regulons (transcriptional regulators and their targeted genes)
associated with PCa recurrence following radical prostatectomy. Methods: The expression of known
transcription factors and co-factors was analysed in a panel of prostate orthografts (n = 18). We
searched for genes (as part of individual GRNs) predicted to be regulated by the highest number of
transcriptional factors. Using differentially expressed gene analysis (on a per sample basis) coupled
with gene graph enrichment analysis, we identified candidate genes and associated GRNs in PCa
within the UTA cohort, with the most enriched regulon being JMJD6, which was further validated
in two additional cohorts, namely EMC and ICGC cohorts. Cox regression analysis was performed
to evaluate the association of the JMJD6 regulon activity with disease-free survival time in the
three clinical cohorts as well as compared to three published prognostic gene signatures (TMCC11,
BROMO-10 and HYPOXIA-28). Results: 1308 regulons were correlated to transcriptomic data from
the three clinical prostatectomy cohorts. The JMJD6 regulon was identified as the top enriched
regulon in the UTA cohort and again validated in the EMC cohort as the top-ranking regulon. In
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both UTA and EMC cohorts, the JMJD6 regulon was significantly associated with cancer recurrence.
Active JMJD6 regulon also correlated with disease recurrence in the ICGC cohort. Furthermore,
Kaplan–Meier analysis confirmed shorter time to recurrence in patients with active JMJD6 regulon
for all three clinical cohorts (UTA, EMC and ICGC), which was not the case for three published
prognostic gene signatures (TMCC11, BROMO-10 and HYPOXIA-28). In multivariate analysis,
the JMJD6 regulon status significantly predicted disease recurrence in the UTA and EMC, but not
ICGC datasets, while none of the three published signatures significantly prognosticate for cancer
recurrence. Conclusions: We have characterised gene regulatory networks from preclinical prostate
orthografts and applied transcriptomic data from three clinical cohorts to evaluate the prognostic
potential of the JMJD6 regulon.

Keywords: prostate cancer; prognostic biomarkers; gene regulatory network; regulon; transcrip-
tional regulator

1. Background

Prostate cancer (PCa) is the second most common cancer among men and the fifth
leading cause of death worldwide [1]. Tumour heterogeneity in PCa (between patients
and among different tumour foci within individual patients) creates a major obstacle to
the identification of clinically relevant molecular subtypes [2]. As a result, PCa treatment
decisions are not based on tumour biology. Disease recurrence following treatment remains
a significant problem, even following radical treatment such as radical prostatectomy or
radical radiotherapy [3]. Despite the use of docetaxel chemotherapy or second generation
androgen receptor pathway inhibitors along with androgen deprivation therapy (ADT),
patients presenting with advanced and/or metastatic disease are at high risk of recurrent
disease, which tend to be aggressive and incurable as either castration resistant (CRPC)
or neuroendocrine PCa variants [4,5]. Therefore, there is an unmet need to improve our
understanding of progressive PCa in order to identify new targets for therapy as well as
prognostic biomarkers.

Inter-patient tumoral heterogeneity and intra-tumour heterogeneity among different
tumour foci are well reported, making it unlikely that a single gene will be a representative
biomarker of PCa progression [6]. Investigating a gene set-related network may leverage
the correlations of the expression of multiple interacting genes [7]. Several gene set-based
panels are offered as prognostic tests for PCa patients. Commercial assays [8–10] including
Decipher™, Oncotype DX® and Prolaris, together with scoring methods published in the
literature, have been developed using microarray, Illumina or Nanostring transcriptome
profiles [9–11] to apply mRNA expression data to predict the risk of cancer recurrence
and/or progression. While gene expression-based models have resulted in promising data
for predicting cancer behaviour in vitro [11], significant improvements are required before a
stratification/prognostic tool in PCa patients can be considered for routine clinical practice,
including the prediction of the risk of cancer recurrence following treatment [12]. The
limitations of existing commercial molecular PCa diagnostic tests may stem from potential
biases introduced during the signature identification step (including factors related to
patient ethnicity [13], immune [14] and stromal [15] components of the tumours) that
may influence the gene expression profiles. Moreover, gene set-based methods typically
focus on the expression of individual genes or gene sets, without the ability to incorporate
biologically important information associated with gene-gene interactions [7].

Alterations in transcriptional programmes are frequently implicated in PCa progres-
sion [16]. Genes that co-operate within the same biological pathways are often under the
regulatory control of shared (one or more) transcription factors. Conveniently, interacting
genes tend to be associated at the expression levels [17], providing the chance to infer their
relationships from transcriptomics data. Gene regulatory networks (GRNs) are graphs de-
scribing transcriptional regulators and their target genes as nodes, while the relationships
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(level of correlation) among the regulators and target genes are presented as the edges.
Statistical and/or machine learning approaches have been applied to gene expression
data [18] to predict the topology of GRNs, namely the arrangement of transcriptional
regulators and their target genes as well as the direction of each transcription factor-target
interaction (i.e., positive or negative regulation). Within GRNs, data on the agreement
between the predicted regulations and differential gene expression analysis can be applied
to explore the underlying biological mechanisms to explain specific phenotypes (such as
cancers with lower or higher chances of recurrence/progression).

Preclinical models of human PCa cells grown as orthotopic xenografts in mice (or-
thografts) represent a useful tool to mimic progressive clinical disease. However, the use of
preclinical PCa as a tool to identify potential GRNs involved in progressive disease has not
been tested. Here, to generate a robust scoring method, we derived GRNs from a collection
of preclinical hormone naïve (dependent on androgens for growth) and castration resistant
(growth despite androgen deprivation therapy) human PCa orthografts to capture the
heterogeneous nature of clinical disease, leveraging the strength of correlations in the
expression patterns of genes transcribed by tumour cells only. Filtering the GRNs for
statistically significant associations led to the identification of putative regulons, signifying
the network of target genes and shared transcription factor (or transcriptional regulator) in-
volved. Integrating data from preclinical orthografts and clinical PCa cohorts, we modelled
regulon signatures to identify patients at risk of cancer recurrence, and identified the JMJD6
(Jumonji Domain Containing 6, arginine demethylase and lysine hydroxylase, a protein
hydroxylase or histone demethylase) regulon as a prognostic marker in PCa (Figure 1).

Figure 1. Workflow summarising the study analysis pipeline.

2. Materials and Methods

See Supplementary Information for additional details for datasets and methods.

2.1. Datasets

Hormone naïve human prostate cancer cell lines (CWR, LNCaP and VCaP) were
implanted into the prostates of androgen proficient (6 weeks old) nude male mice to
generate androgen dependent prostate orthografts. Castration resistant (or androgen
independent) prostate orthografts were generated from the 22Rv1, LNCaPAI and VCaPR
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human PCa cell lines by orthotopic implantation into the prostates of castrated nude
(6 weeks old) male mice. RNA-seq data were obtained from 18 orthografts derived from
the six human PCa cell lines studied (n = 3 mice per cell line) [19], referred to as the UGLA
dataset. All data were included for the inference of the gene regulatory network.

RNA-seq data from three clinical PCa cohorts were included in this study: The Uni-
versity of Tampere (UTA-EGAD00001000609), the Erasmus Medical Center in Rotterdam
(EMC-EGAD00001004215), and the International Cancer Genome Consortium (ICGC-
EGAD00001004791). A summary of the clinicopathological characteristics of the cohorts is
provided in Table 1.

Table 1. Clinicopathological characteristics of patient cohorts (NA, data not available).

Clinical Cohorts UTA EMC ICGC

Number (n) n = 27 % n = 37 % n = 85 %

age at diagnosis

range 47–71 NA 32–52

mean 60 NA 47

median 61 NA 48

na 0

psa at diagnosis (ng/mL)

range 3.5–48.1 0.3–36.2 3.1–743

mean 10.4 11.8 30.48

median 8.3 9.4 8.21

na 0 0 0

tumour stage

t1 10 37.0 1 2.7 0 0.0

t2 16 59.3 15 40.5 61 71.8

t3 1 3.7 13 35.1 23 27.1

t4 0 0.0 8 21.6 1 1.2

na 0 0.0 0 0.0 0 0.0

gleason score

<7 7 25.9 6 16.2 12 14.1

7 13 48.2 19 51.4 65 76.5

>7 7 25.9 0 0.0 8 9.4

na 0 0.0 12 32.4 0 0.0

therapy

Radical prostatectomy 27 100 37 100 85 100

Dataset from the UTA cohort [20] were obtained from 46 prostate tumour samples,
including 28 untreated PCa samples from radical prostatectomy and 12 benign prostate
hyperplasia control samples (obtained by radical prostatectomy, cystoprostatectomy or
transurethral resection). RNA-seq data from treatment naive PCa samples that passed
mapping quality control, provided with information on progression free time (n = 27), were
used in this study, along with the 12 benign samples.

The EMC dataset was obtained from 92 radical prostatectomy specimens (51 PCa with
41 adjacent benign prostate tissue) [21,22]. The tumour content was confirmed histologically.
Only prostate tumour samples with the information on progression free time (n = 37) and
all the benign control samples were used in the present study.
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The ICGC dataset consists of 125 PCa specimens (and 8 matched benign control
tissue) from 100 radical prostatectomy specimens [23]. Six tumour samples from the same
prostatectomy specimens were sampled multiple times (from 3 to 6 biological replicates
per patient) and were averaged at gene count level per patient, given the similarity in
expression profiles. Samples from patients that did not receive neo-adjuvant therapy
(n = 85) and all the benign samples (n = 8) were used in the present study.

2.2. Regulons Identification and Filtering

The PCa gene-regulatory network was generated using the R package ‘RTN’ [24]
version v2.4.6, based on FPKM values (Fragments Per Kilobase of transcript per Million
mapped reads) of the UGLA orthograft dataset and a list of 2065 transcription factors that
were given as input (manually curated from MsigDb [25]). Out of the 2065 transcription
factors, statistically significant associations with one or more target genes were found for
1643 regulators. The normalised counts matrix was then filtered by genes with FPKM equal
or higher than one in at least one sample and standardised within the zero-to-one range.
The function ‘tna.shadow’ from the R package ‘Viper’ [26] version 1.14.0 has been used to
account for the ‘shadow’ effect (the chance of obtaining false positive result) during the
enrichment of a GRN, if a non-active regulator shares a significant proportion of its targets
with a bona fide active transcription factor, providing a final set of 1308 regulons.

2.3. Gene Regulatory Network Metrics

The graph structure was analysed using the R package ‘igraph’ v1.2.5, exploiting the
functions ‘degree’, ‘betweenness’, ‘constraint’ and ‘closeness’ to retrieve metrics at the
‘nodes’ level, providing complementary information about the importance of individual
nodes within the network: (1) The ‘degree’ (or ‘in-degree’) of a node in a GRN is the number
of transcriptional regulators involved in the control of the expression of a specific target
gene. For different GRNs, the number of regulatory genes implicated for individual target
genes varies, depending on complexity of the network; (2) ‘Betweenness’ is defined as the
number of shortest paths passing through the node and can be interpreted as a measure
of the influence of the node of interest over the global flow of information; (3) Burt’s
‘constraint’ is a measure of the redundancy of the information received by the node and
can be interpreted as its ability to converge different signals; (4) ‘Closeness’ quantifies the
node’s participation within a network. Finally, the Jaccard Index, a statistical measure
defined as the ratio of the intersection and the union of two sets, was applied to highlight
network nodes sharing a meaningful proportion of targets. The threshold of 0.1 was chosen
to prioritise the nodes to be shown in Figure 2. A threshold of Jaccard Index/Co-efficient
set at 0.1 highlights pairs of regulons with intersection (sharing) of ≥10% of the target
genes when considered across the full set of target genes for the respective regulons.
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Figure 2. (A) Gene regulatory networks identified in preclinical human prostate cancer orthografts. The regulatory network
of regulons (nodes of all colours) is presented with the edges linking pair of regulons sharing part of their targets. The
commonality between pairs of regulons was calculated through the Jaccard index. Pairs with Jaccard Index ≥0.1 are shown.
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The colour of the nodes refers to the colour scale (range 1–0) represents the p-value of the enriched regulons associated
with relapse free survival in the clinical (UTA and EMC) cohorts by cox regression analysis. Regulons in grey represent
insignificant networks and therefore not included in further analysis. (B) The gene regulatory network topology cantered
on the JMJD6 regulon. Red edges represent positive regulations while blue edges inhibitory relationships. (A,B) The names
of regulators are annotated with HUGO gene symbol in black. The colour scale (range 1–0) represents the p-value of the
enriched regulons associated with disease free survival.

2.4. Regulons Enrichment

The list of differentially expressed genes (DEG;≥log2 fold changes and false discovery
rate, FDR, ≤0.05) for each sample was determined using the respective benign control
samples within each of the clinical UTA, EMC and ICGC cohorts. p-values were adjusted
using the function ‘p.adjust()’ from the R stat package v4.0.3, by setting the ‘method’
parameter to ‘fdr’. The DEG gene set for each cohort was analysed using the gene regulatory
network that was identified in the preclinical orthografts. The derived list of positive and
negative gene-gene interactions was then used as input to the function ‘nbea’ from the
package ‘EnrichmentBrowser’ [27] version v2.12.1, applying the ‘GGEA’ (gene graph
enrichment analysis) method with default parameters. A threshold of FDR ≤0.05 has been
adopted to identify the enriched regulons.

2.5. Statistical Analyses

Biochemical recurrence was defined as serum prostate-specific antigen (PSA) levels
≥2 ng/mL above nadir PSA (the lowest PSA level after treatment) and signifies clinical
evidence of relapsed cancer. Relapse free survival (defined by absence of biochemical
recurrence) was used to evaluate the prognostic utility of regulon signatures of interest in
the UTA, EMC and ICGC clinical cohorts. The performance of our candidate JMJD6 regu-
lon signature as a prognostic marker was compared to three published signatures [28–30].
The performance of our candidate JMJD6 regulon signature as a prognostic marker was
compared to three published signatures (using the formulas used in the original publica-
tions [28–30]: (1) For the TMCC11 signature, the per-sample average of the normalised
counts of the genes belonging to the signature was used to stratify the patient cohort into
two groups according to values above or below the 67th percentile. (2) For the HYPOXIA-28
signature, the normalised counts were multiplied by the coefficient associated to each gene
of the signature and all the products were added together to generate a sample-specific
overall score, and the patient cohort was stratified into two groups according to the median
of its distribution. (3) For the BROMO-10 signature, the function ‘gsva’ from GSVA v1.38.2
was used to analyse data from the normalised counts to calculate a signature enrichment
score per sample.

Patients were labelled according to the enrichment status of JMJD6, as predicted by
GGEA, into active or inactive status groups. Hazard ratios (HR) for all the analysis were
obtained by Cox proportional-hazard model regressions, using the ‘coxph’ function from
the R package ‘survival’ version 3.1-8. Moreover, for multivariate analysis, Gleason score
and the TNM (Tumour/Node/Metastasis) classification were added to the model formula
in the form: ‘Endpoint ~ JMJD6regulon_activity + second_variable’. Kaplan–Meier curves
were obtained using the ‘ggsurvplot’ function from the R package ‘survminer’ v0.4.8. The
analysis was performed in R v4.03.

3. Results

3.1. Gene Regulatory Network Inferred from Preclinical Prostate Orthograft Models

The expression profiles of 2064 manually curated transcription factors and co-
factors [25] (Table S1) were correlated with the differentially expressed genes in 18 prostate
orthografts derived from human PCa cells, namely CWR22Res, 22Rv1, LNCaP, LNCaP-AI
and VCaP (n = 3, except for VCaP). VCaP derived orthografts were grown in both hormone
proficient and castrated mice (n = 3 each). 1308 regulons with a median of 20 genes per reg-
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ulon (range 2–121) were identified (Table S2). Interestingly, a large fraction of transcription
factors (n = 607; 46.4%), shared at least one target gene (Figure 2A).

Genes controlled by multiple transcription factors at the transcriptional level may
suggest a functional requirement in controlling the expression of these target genes, thus
signifying the likelihood of their biological importance. We searched for genes (as part
of individual GRNs) predicted to be regulated by the highest number of transcriptional
factors (Table S3). Up to 10 transcription factors per target gene were observed within
the networks identified. Four target genes were associated with the highest number of
transcription factors (n = 10), and interestingly all of these four genes have previously
been implicated in PCa: BUD31 encodes for a bona-fide AR-coactivator that enhances
AR transactivation in prostate cells [31]; PLOD3 is involved in tissue remodelling and
plays a role in multiple tumour types including PCa [32]; SDR42E1 is implicated in early
prostate organogenesis as well as carcinogenesis [33] and XAGE1A belongs to the cancer
testis antigens family and its expression profile is linked to the aggressiveness of PCa [34].
Hence, a GRN-based analysis of prostate orthografts generated a network of candidate
transcriptional regulators and their target genes that can be evaluated in clinical tumours.

3.2. Analysis of Differentially Expressed Genes (DEG) in Clinical PCa Patient Cohorts

Through comparison of each clinical tumour with the combined benign controls
within the respective clinical cohorts, lists of differentially expressed genes (on a per
sample basis) were generated on a per-sample basis initially in the UTA clinical cohort
as part of a discovery analysis. The list of PCa associated genes (log2 fold changes and
p-values) was then be used to identify the GRNs of interest, highlighting potential active
regulons in individual tumours. In the UTA cohort (n = 27 PCa), we found a median of
2406 upregulated (range 1098–6419) and 282 downregulated (range 44–1173) genes per
sample. In the EMC cohort as a validation dataset (n = 37 PCa), we observed a median
of 2439 upregulated (range 827–7395) and 126 downregulated (range 1–925) genes for
individual tumour samples.

We ranked the differentially expressed genes by the average frequency of alteration
(up- or down- regulation) within the respective patient cohorts (Figure S1). Of note, many
of the frequently altered genes have been implicated in PCa, including HPN [35], CLDN8
(an androgen regulated gene that promotes PCa cell proliferation and migration) [36],
and ONECUT2 (a known master regulator in PCa that suppresses the androgen axis) [37].
Hence, analysis of differentially expressed genes in the UTA and EMC cohorts highlighted
candidate genes associated with PCa.

3.3. Gene Graph Enrichment Analysis

Data from transcription factor associated GRN identified in the preclinical prostate
orthografts and individual gene sets from differentially expressed gene analysis on a per
sample basis were integrated in a gene graph enrichment analysis (GGEA) to determine
the activity status of the regulons (transcriptional regulators and their respective target
genes) in the clinical tumours. The concordance of the positive and negative ‘transcription
factor-target gene’ relationships was calculated for each sample within the UTA and EMC
patient cohorts. GGEA [38] applies an enrichment approach to study the interactome
surrounding the coregulators of interest to find supporting evidence of transcription factor
activity. Differentially expressed genes in individual tumours within the two cohorts were
mapped onto the candidate GRNs highlighted in the orthograft models.

To corroborate enriched gene networks shared among independent cohorts, we ranked
the regulons by the respective frequency of activation in the UTA and EMC patient datasets
(Figure S2). Consistently, among the ten most frequently active transcription factors
(regulators) in these two datasets, we found three known genes implicated in PCa pro-
gression: BACH1 promotes invasion and migration of PCa cells by altering metastasis
related genes [39]; CITED2 (Cbp/P300 Interacting Transactivator With Glu/Asp Rich
Carboxy-Terminal Domain 2) has recently been proposed as a therapeutic target to tackle
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PCa metastasis [40]; and DNMT1 promotes PCa metastasis through the regulation of
epithelial-mesenchymal transition and cancer stem cells [41]. Collectively, regulatory pat-
terns identified in our preclinical orthograft PCa models successfully highlighted genes of
potential clinical relevance.

3.4. Prognostic Utility of Regulon Activity Status in Radical Prostatectomy Clinical Cohorts

To evaluate the prognostic utility of the inferred regulons, we investigated the po-
tential association between the enriched/not enriched status of regulons and the time to
cancer relapse (signified by biochemical recurrence) following radical prostatectomy. We
performed univariate CoxPH regression analysis in the UTA dataset in the first instance to
identify enriched regulons associated with cancer recurrence (Table S4). Eleven statistically
significant candidate regulons highlighted, with JMJD6 as the top-ranking enriched regu-
lon (p = 0.002; Table 2A, Figure 2B, Table S5). Analysing the EMC cohort as a validation
dataset, fourteen enriched regulons were identified. Consistent with findings from the
UTA cohort, JMJD6 was also identified as the top-ranking enriched regulon (p = 0.003;
Table 2B, Figure 2B, Table S5). Besides JMJD6, the SUFU regulon was enriched in both
UTA and EMC cohorts. Analysing all available prostate cancer datasets in the cBio-portal
(n = 22), altered JMJD6 gene was detected in multiple cohorts, with the highest incidence of
genetic abnormalities (up to 8%) detected in metastatic tumours (Figure S3). We reasoned
that analysis of the JMJD6 regulon as a network, rather than at a single gene level, would
provide additional insight into its functional impact. Univariate regression analysis further
revealed that the active JMJD6 regulon was associated with early biochemical recurrence in
both UTA (discovery) and EMC cohorts (Table 3A). We further examined the status of the
JMJD6 regulon as a prognostic signature in the ICGC cohort for additional independent val-
idation. Enrichment of the JMJD6 regulon significantly correlated with time to biochemical
recurrence in the ICGC cohort in univariate analysis (p = 0.00648). Kaplan-Meier analysis
for biochemical free survival further confirmed reduced biochemical free survival in the
presence of active status for the JMJD6 regulon in patients within the UTA, EMC and ICGC
cohorts (Figure 3).

Table 2. Univariate cox regression analysis for regulons enrichment. Top ten genes are listed for the
(A) UTA and (B) EMC cohorts.

(A)

Ensembl ID Hugo Symbol p Value

ENSG00000070495 JMJD6 0.002

ENSG00000196132 MYT1 0.006

ENSG00000100410 PHF5A 0.02

ENSG00000065057 NTHL1 0.02

ENSG00000159210 SNF8 0.02

ENSG00000171222 SCAND1 0.02

ENSG00000123091 RNF11 0.02

ENSG00000120798 NR2C1 0.02

ENSG00000107882 SUFU 0.03

ENSG00000146083 RNF44 0.04

(B)

Ensembl ID Hugo Symbol pValue

ENSG00000070495 JMJD6 0.003

ENSG00000095002 MSH2 0.006

ENSG00000107882 SUFU 0.007
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Table 2. Cont.

ENSG00000136826 KLF4 0.01

ENSG00000119969 HELLS 0.01

ENSG00000151929 BAG3 0.02

ENSG00000105607 GCDH 0.02

ENSG00000092607 TBX15 0.02

ENSG00000188486 H2AFX 0.02

ENSG00000180596 HIST1H2BC 0.03

Figure 3. Cont.
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Figure 3. Disease free survival analysis of the JMJD6 regulon signature in clinical prostatectomy patient cohorts. The
survival probability curves for patients in the UTA (A), EMC (B) and IGCG (C) cohorts were prepared with patients stratified
according to the presence or absence of the enriched JMJD6 regulon in red and turquoise, respectively.

To benchmark the JMJD6 regulon as a prognostic marker for progressive/recurrent
PCa, three reported independent signatures were selected for comparison: two androgen
receptor related signatures (namely TMEFF2 regulated cell cycle related gene signature [11]
and the bromodomain related 10-genes signature [12]) as well as a 28-gene hypoxia signa-
ture [13]. The three signatures are referred to as TMCC11, BROMO-10 and HYPOXIA-28
respectively hereafter. Compared to JMJD6 being prognostic in all three cohorts, TMCC11
was prognostic in the UTA and ICGC cohorts but not the EMC cohort, while BROMO-10
and HYPOXIA-28 significantly predicted recurrence in only one of the three cohorts, UTA
and ICGC, respectively (Table 3A). Multivariate analyses of the three signatures (and of the
JMJD6 regulon status) were performed if the respective univariate analysis were significant.
In multivariate analysis, the JMJD6 regulon status significantly predicted disease recurrence
in UTA and EMC, but not ICGC (Table 3B). Among the three published signatures, none
significantly prognosticate for cancer recurrence in multivariate analysis.

Collectively, our analysis highlights the feasibility of integrating data from preclinical
human orthograft models of PCa with multiple clinical cohorts to generate information on
the regulon landscape in identifying potential prognostic signatures. For the first time, our
data identified the active status of the JMJD6 regulon in patients at risk of PCa recurrence.
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Table 3. Cox regression univariate (A) and multivariate (B) survival analysis. p-values (P), Hazard ratios (HR) and 95%
Confidence intervals (CI) are showed for each univariate regression. Multivariate analysis results, using Gleason score
and/or tumour stage as covariates, are shown only for the variables whose association with biochemical recurrence was
significant (p < 0.05) at univariate level. All significant p-values are highlighted in bold.

(A) Univariate Analysis

Clinical
Cohorts UTA EMC ICGC

Statistics HR 95% CI p HR 95% CI p HR 95% CI p

Clinicopathological variables

Gleason score 2.7 1.6–4.7 0.0004 1.9 0.2–16 0.5 2 1.4–3 0.0004

Tumor stage 1.7 1–2.96 0.05 1.3 1–1.6 0.02 2.5 1.7–3.8 <0.0001
Signatures

active JMJD6 regulon 6 1.9–18 0.002 5.8 1.8–18.6 0.003 4.2 1.5–12 0.006

TMCC11 4.5 1.1–17.8 0.03 1 0.3–3.7 1.0 4 1.6–10.5 0.004
BROMO-10 0.06 0.0069–0.52 0.01 1.2 0.3–4.2 0.8 2.6 0.7–9.3 0.2

HYPOXIA-28 2.1 0.7–6.24 0.2 1.1 0.4–3.5 0.8 3.4 1.3–9.2 0.01

(B) Multivariate analysis
UTA EMC ICGC

HR 95% CI P HR 95% CI P HR 95% CI P

JMJD6 regulon 6.5 1.3–32 0.02 4.4 1.3–14.6 0.01 1.2 0.3–4.8 0.7

Gleason score 1.6 0.8–3.1 0.2 1.2 0.6–2.4 0.6

Tumor stage 2.3 1.1–4.9 0.03 1.2 1–1.5 0.05 2.6 1.3–4.9 0.004
TMCC11 3.4 0.8–14.4 0.1 1.8 0.6–5.6 0.3

Gleason score 2.5 1.4–4.4 0.002 1.3 0.7–2.4 0.5

Tumor stage 1.58 0.8–3.2 0.2 2.2 1.1–4.4 0.02
BROMO-10 0.3 0.03–4.2 0.4

Gleason score 2.15 1.08–4.27 0.03

Tumor stage 1.5 0.8–2.8 0.2

HYPOXIA-28 2.1 0.7–6.1 0.2

Gleason score 1.3 0.7–2.4 0.4

Tumor stage 2.2 1.13–4.24 0.02

4. Discussion

We hypothesised that the study of genes positively and negatively regulated by one
or more transcription factors (collectively referred to as regulons) is a suitable approach to
capture the general mechanisms driving tumour progression in PCa [42]. For the first time,
we integrated datasets from preclinical human prostate orthografts and clinical cohorts
to investigate if specific regulons were associated with the outcome of patients with PCa.
By mapping transcriptomic gene graph enrichment-based signatures on to a network
of interacting gene regulators, we identify the JMJD6 regulon as a candidate prognostic
signature for biochemical recurrent PCa. Our data is consistent with a recent report on
GRN-based investigation in breast cancer [43]. Our data on JMJD6 in PCa is consistent
with involvement of JMJD6 in oral [44], breast [45], neuroblastomas [46], melanoma [47]
and ovarian [48] cancers.

The JMJD6 regulon consists of 27 positive and 3 negative putative target genes
(Table S5), including RAD51, EZH2 and SORL1. RAD51 is predicted to be upregulated
by JMJD6 (Figure 2B). RAD51, a critical gene for the DNA repair process, is upregulated
in aggressive PCa [49], and is included as part of the panel in the U.S. Food and Drug
Administration approved Prolaris gene expression assay [50]. Similarly, EZH2 (Enhancer of
zeste homolog 2) is associated with PCa progression [51], and predicted to be upregulated
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by JMJD6 (Table S5). Lastly, the expression of SORL1, a known hypoxia regulated gene [29],
negatively correlates with JMJD6 expression.

We successfully identified regulons of interest from preclinical prostate orthografts
and then investigated the prognostic value of our top candidate JMJD6 regulon. Given the
small number of preclinical samples available as a starting point to infer the GRNs in PCa,
we were not able to robustly compare between hormone naïve and castration resistant
orthografts. Instead, we combined the available orthografts to model tumour heterogeneity
of clinical PCa. Importantly, some transcription factor-target genes relationships may
not be revealed because of the limited sample number, thus creating potential biases
with a subset of regulons appearing transcriptionally more important. Nonetheless, even
with this limitation, the JMJD6 regulon was identified as a key regulon enriched in two
independent clinical cohorts, namely UTA and EMC, as well as the published independent
ICGC clinical cohort. The ICGC cohort consists of relatively young patients (mean: 47,
range: 35–52 years), compared to UTA (mean: 60, range: 47–71 years); such case selection
bias may create confounding factors that contribute to the negative multivariate analysis
for the JMJD6 regulon in the ICGC cohort.

Although androgen receptor (AR) is essential for both prostate organogenesis and
carcinogenesis, to our surprise, AR was not identified as an enriched regulon in our analysis.
AR may be functionally important in both benign and malignant prostatic epithelium, with
distinct transcriptional profiles arising from functional re-programming. Even in CRPC,
AR remains activated through by-pass mechanisms despite suppressed canonical (classical)
androgen receptor pathway activities [52]. In addition, changes due to reprogramming of
the AR as a transcription factor may not be fully highlighted by analysis of regulons as
fixed transcription factor-target genes ‘units’. Furthermore, AR splice variants (including
AR-V7) are strongly implicated in CRPC. During the preparation of this report, a highly
relevant publication highlighted the relationship between catalytic function of JMJD6 and
the generation of AR-V7 mRNA in advanced prostate cancer [53]. Silencing of JMJD6
expression suppressed growth of LNCaP95 and 22Rv1 human CRPC cells, while combined
JMJD6 knockdown and anti-androgen treatment with enzalutamide produced substantially
more anti-proliferative effects than each of the two treatment alone. Collectively, their
data implicates JMJD6 to be important in PCa cell viability and proliferation, thus further
supporting our GRN-based findings.

The strategy of standardising the analysis, by adopting a panel of benign controls
within each dataset (benign prostatic hyperplasia for the UTA and ICGC cohorts; benign
tissue adjacent to the tumour for EMC cohort), allowed for the reduction of biases arising
from different protocols for sample handling, sequencing and data processing. Indeed,
by leveraging a panel of control samples within each cohort, it was possible to show
commonalities among the independent data sets without resorting to batch correction.

JMJD6 belongs to the Jumonji C (JMJC) domain-containing family of proteins. JMJD6
is thought to function mainly as a lysyl 5-hydroxylase, and not as a demethylase [54],
although enzymatically it has been shown to possess both catalytic activities. Its ability
to regulate the transcriptional activity of p53 through hydroxylation of a lysine in the p53
C-terminus is highly relevant in cancer biology. Upregulated JMJD6 expression is related
to tumour growth, tumour metastasis and high tumour pathological classification [55–57].
To build on our findings, the classical Waddington epigenetic landscape [58] model can
be applied to describe in more detail the mechanism of regulation for the target genes
within the JMJD6 regulon. Given its potential role in a number of tumour types, a novel
JMJD6 specific inhibitor SKLB325 has recently been developed [48]. Should future research
confirm JMJD6 as a driver gene for progressive PCa, formal evaluation of JMJD6 targeted
therapy will be warranted.
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5. Conclusions

We have characterised gene regulatory networks from preclinical prostate orthografts
and applied transcriptomic data from three clinical cohorts to identify the JMJD6 regulon
as a potential prognostic marker in PCa.
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