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Simple Summary: Endometrial cancer is the leading female reproductive tract cancer in developed
countries. Discovering new biomarkers is critical for understanding the etiology this cancer and
identifying women with a higher risk of this cancer from the general population. Several blood
protein biomarkers have been linked to endometrial cancer in previous studies, but these studies
have assessed only a limited number of biomarkers usually among a small number of participants.
The current study aimed at identifying novel circulating protein biomarkers of endometrial cancer by
using the largest available dataset to date. Our finding suggested nine proteins to be associated with
endometrial cancer risk, and five of the identified associations showed suggestive associations with
risk of non-endometrioid EC, a much more lethal subtype. If validated by additional studies, our
findings may contribute to understanding the pathogenesis of endometrial tumor development and
facilitating the risk assessment of endometrial cancer.

Abstract: Endometrial cancer (EC) is the leading female reproductive tract malignancy in developed
countries. Currently, genome-wide association studies (GWAS) have identified 17 risk loci for EC.
To identify novel EC-associated proteins, we used previously reported protein quantitative trait
loci for 1434 plasma proteins as instruments to evaluate associations between genetically predicted
circulating protein concentrations and EC risk. We studied 12,906 cases and 108,979 controls of
European descent included in the Endometrial Cancer Association Consortium, the Epidemiology of
Endometrial Cancer Consortium, and the UK Biobank. We observed associations between genetically
predicted concentrations of nine proteins and EC risk at a false discovery rate of <0.05 (p-values range
from 1.14 × 10−10 to 3.04 × 10−4). Except for vascular cell adhesion protein 1, all other identified
proteins were independent from known EC risk variants identified in EC GWAS. The respective
odds ratios (95% confidence intervals) per one standard deviation increase in genetically predicted
circulating protein concentrations were 1.21 (1.13, 1.30) for DNA repair protein RAD51 homolog
4, 1.27 (1.14, 1.42) for desmoglein-2, 1.14 (1.07, 1.22) for MHC class I polypeptide-related sequence
B, 1.05 (1.02, 1.08) for histo-blood group ABO system transferase, 0.77 (0.68, 0.89) for intestinal-type
alkaline phosphatase, 0.82 (0.74, 0.91) for carbohydrate sulfotransferase 15, 1.07 (1.03, 1.11) for D-
glucuronyl C5-epimerase, and 1.07 (1.03, 1.10) for CD209 antigen. In conclusion, we identified nine
potential EC-associated proteins. If validated by additional studies, our findings may contribute to
understanding the pathogenesis of endometrial tumor development and identifying women at high
risk of EC along with other EC risk factors and biomarkers.

Keywords: genetic instrument; protein biomarker; endometrial cancer; risk

1. Introduction

Endometrial cancer (EC) is a leading gynecological malignancy in developed coun-
tries [1]. It is also one of the few cancer types with a rapidly increasing incidence and
mortality as the rate of obesity continues to grow worldwide [2]. Hence, it is reasonable
to predict that EC will become an important public health challenge in the coming years.
There is an urgent need to reduce the disease burden by enhancing the understanding of
the EC etiology and distinguishing high-risk women from the general population.

Traditionally, EC is classified into two main histological subtypes. Endometrioid
adenocarcinomas represent more than 70% of cases. Tumors of this type are usually low-
grade and diagnosed at an early stage. In contrast, the less common non-endometrioid
tumors are typically more aggressive and often diagnosed at an advanced stage. Although
the prognosis of EC remains generally good, it worsens dramatically when diagnosed at
an advanced stage, with a median survival time of less than 12 months [1,3]. To improve
the treatment efficacy and survival outcomes of this disease, it is critical to detect EC at
the earliest possible stage. The discovery of potential non-invasive biomarkers would
thus be especially important for identifying women with a high risk of EC [4,5]. Although
many protein candidates in blood or vagina samples have been reported as possible
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biomarkers, most of these studies have only assessed a limited number of candidates or
yielded inconsistent results [4,6,7]. For instance, several studies found associations of
serum level of cancer antigen 15-3 and serum amyloid A with an increased risk of EC,
while others showed inverse or null associations [8–14]. These studies using a conventional
epidemiological design are potentially subject to selection biases, residual confounding,
or reverse causality. Furthermore, they were often limited by a small sample size and a
limited number of protein candidates available for evaluation.

To identify novel protein biomarkers for EC, here, we used protein quantitative trait
loci (pQTL) from a recently published genome-wide association study (GWAS) as genetic
instruments to investigate the associations between genetically predicted protein concentra-
tions and EC risk. Due to the independent assortment of alleles transmitted from parents
to offspring during gamete formation, such a design can potentially address several limi-
tations of conventional epidemiological studies [15]. We leveraged comprehensive data
of 12,906 EC cases and 108,979 controls of European ancestry generated in the Endome-
trial Cancer Association Consortium (ECAC), the Epidemiology of Endometrial Cancer
Consortium (E2C2), and the UK Biobank.

2. Methods

After an extensive literature search and rigorous evaluation, we identified a compre-
hensive study analyzing associations between genetic variants and blood-based protein
concentrations and used pQTLs identified in this study as the instruments for our analy-
ses [16]. By analyzing data on 3562 healthy European descendants with adjustment for age,
sex, duration between blood draw and processing, and the first three principal components
(PCs), this study identified 764 genomic loci that were associated (p < 1.5 × 10−11) with
expression levels of 1478 proteins, involving a total of 1927 associations [16]. Instrumen-
tal variables were created based on these pQTLs to examine the associations between
genetically predicted protein concentrations and EC risk. When there were more than
one variant located at the same chromosome associated with a single protein, we only
retained single nucleotide polymorphisms (SNPs) that were independent of each other, as
defined by R2 < 0.1 (based on 1000 Genomes Project Phase 3 version 5 data focusing on
European populations).

To understand the associations between genetically predicted protein levels and EC
risk, we used summary statistics from the largest GWAS meta-analysis previously con-
ducted to evaluate the association between genetic variants and the risk of developing
EC [17]. In brief, 12,906 EC cases and 108 979 controls of European descent from 17 studies
as part of the ECAC, E2C2, and the UK Biobank were included. Stratified analyses were also
performed by histologic subtype including endometrioid (n = 8758) and non-endometrioid
carcinomas (n = 1230). These participants were genotyped via various platforms. Among
them, 4710 EC cases were genotyped using the OncoArray chip, and were country-matched
to 19,438 controls who were genotyped in the same way from the Breast Cancer Associ-
ation Consortium [17]. The 2381 cases and 13,675 controls from the iCOGs studies were
genotyped using the Illumina Infinium iSelect array. Regarding participants from E2C2,
the 2271 cases and 2219 controls in the United States were genotyped using the Illumina
Human OmniExpress array, and 424 cases and 558 controls from Poland were genotyped
using the Illumina Human 660W array. Data from the UK biobank, including 636 EC
cases and 62 853 controls, were genotyped using the Affymetrix UK BiLEVE Axiom array
and Affymetrix UK Biobank Axiom array. The 288 cases and 1440 controls identified
from the Women’s Health Initiative were genotyped using five different arrays (Illumina
Human Omni1-Quad v1-0 B; Illumina 610; Human OmniExpressExome-8v1-1-A; Axiom
Genome-Wide Human CEU; Human OmniExpress-8v1_B). Information on genotyping and
imputation methods for the samples from other published GWAS studies can be found in
the original GWAS paper [17]. Risk estimates for the SNP-EC associations estimated in each
study with adjustment for PCs were meta-analyzed by inverse variance weighted (IVW)
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fixed-effects methods [18]. All participating studies were approved by their appropriate
ethics committees with written and informed consent from all participants.

Based on the summary estimates from the pQTL study and the EC GWAS meta-
analysis mentioned above, we assessed the associations between genetically predicted
circulating protein concentrations and EC risk by using the IVW method [19,20]. Briefly,
the estimated beta coefficient and corresponding standard error (SE) of the association
between each protein and EC risk were calculated using the formula of ∑ iβi,GX ∗ βi,GY ∗

σ−2
i,GY/

(
∑ iβ

2
i,GX ∗ σ−2

i,GY

)
and 1/

(
∑ iβ

2
i,GX ∗ σ−2

i,GY

)0.5
, respectively, where βi,GX represents

the beta coefficient for the association between each SNP and protein level adopted from
the pQTL study; βi,GY and σi,GY represent the estimated beta coefficient and SE of the
association between each individual SNP and EC risk in the latest GWAS [20]. Odds
ratios (ORs) and confidence intervals (CIs) were further calculated by exponentiating the
beta coefficients. Analyses were also carried out separately for endometrioid and non-
endometrioid carcinomas, considering the possible etiological heterogeneity. Statistical
significance was determined by a Benjamini–Hochberg false discovery rate (FDR) of <0.05.
For proteins showing an association, conditional and joint multiple-SNP analysis (COJO)
conditional analysis was used to examine the robustness of the identified association after
conditioning on known GWAS-identified EC risk variants. The ingenuity pathway analysis
(IPA) was conducted to visualize the canonical pathways, relevant diseases, biological
functions, and networks enriched by genes encoding the proteins associated with EC risk
in our pQTL analysis [21].

3. Results

We assessed the associations between genetically predicted circulating levels of
1434 proteins and EC risk using pQTLs as instrument variables. Among the examined pro-
teins, nine showed associations with EC risk at a FDR of <0.05, and five satisfied Bonferroni
criterion (0.05/1434). Positive associations were observed for six of the identified proteins,
including DNA repair protein RAD51 homolog 4 (RA51D), desmoglein-2, MHC class I
polypeptide-related sequence B (MICB), histo-blood group ABO system transferase (BGAT),
D-glucuronyl C5-epimerase (GLCE) and CD209 antigen (DC-SIGN), with ORs ranging
from 1.05 to 1.27 (Table 1). We observed negative associations for three proteins: vascular
cell adhesion protein 1 (VCAM-1), intestinal-type alkaline phosphatase, and carbohydrate
sulfotransferase 15 (ST4S6), with ORs ranging from 0.60 to 0.82 (Table 1). The instruments
used for VCAM-1, MICB, BGAT, intestinal-type alkaline phosphatase, and ST4S6 only had
one SNP; whereas two SNPs were used as the instrument to predict the circulating level of
RA51D, desmoglein-2, GLCE, and DC-SIGN. Except for VCAM-1 in which the instrument
variant (rs3184504) was previously reported as an EC risk SNP, the observed associations
for all other identified proteins were independent from known EC risk SNPs from the
published GWAS [17]. COJO conditional analysis showed that associations between those
eight predicted proteins and EC risk generally remained the same after conditioning on
known EC risk variants identified in previous GWAS (Table 1).

Subgroup analyses by histologic subtype of EC suggested that most of the identified
associations in the combined analysis remained the same for either endometrioid or non-
endometrioid histotype, although many of the associations failed to reach multi-testing-
adjusted statistical significance due to reduced sample sizes. Of the nine proteins identified
in our main analysis, the uncorrected p-value ranged from 3.16 × 10−2 (DC-SIGN) to
5.78 × 10−9 (VCAM-1) for their associations with endometrioid EC risk. Regarding the
rare and aggressive non-endometrioid EC, the uncorrected p-values were less than 0.02 for
VCAM-1, BGAT, alkaline phosphatase intestine, ST4S6 and DC-SIGN. The directions of the
associations between these five proteins and EC risk were consistent across the combined
and subgroup analyses (Table 2).
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Table 1. Associations between genetically predicted protein concentrations and endometrial cancer risk.

Protein Protein Full Name
Protein-

Encoding
Gene

Region for
Protein

Encoding
Gene

Instrument
Variants

Type of
pQTL OR a

Lower
Bound

95% CI a

Upper
Bound

95% CI a
p-Value FDR

p-Value b

p-Value after
Condition-
ing on Risk
Variants c

VCAM-1 Vascular cell
adhesion protein 1 VCAM1 1p21.2 rs3184504 trans 0.60 0.51 0.70 1.14 × 10−10 1.53 × 10−7 NA

RA51D DNA repair protein
RAD51 homolog 4 RAD51D 17q12 rs6838228;

rs45446698
trans;
trans 1.21 1.13 1.30 2.46 × 10−8 1.66 × 10−5 2.46 × 10−8

Desmoglein-2 Desmoglein-2 DSG2 18q12.1 rs687621;
rs2704050

trans;
cis 1.27 1.14 1.42 2.18 × 10−5 0.01 2.18 × 10−5

MICB

MHC class I
polypeptide-

related sequence
B

MICB 6p21.33 rs3134900 cis 1.14 1.07 1.22 3.30 × 10−5 0.01 2.41 × 10−5

BGAT
Histo-blood group

ABO system
transferase

ABO 9q34.2 rs505922 cis 1.05 1.02 1.08 8.50 × 10−5 0.02 8.51 × 10−5

Alkaline
phosphatase

intestine

Intestinal-type
alkaline

phosphatase
ALPI 2q37.1 rs550057 trans 0.77 0.68 0.89 1.84 × 10−4 3.54 × 10−2 1.84 × 10−4

ST4S6 Carbohydrate
sulfotransferase 15 CHST15 10q26.13 rs550057 trans 0.82 0.74 0.91 1.84 × 10−4 3.54 × 10−2 1.84 × 10−4

GLCE D-glucuronyl
C5-epimerase GLCE 15q23 rs2519093;

rs11854180
trans;

cis 1.07 1.03 1.11 2.14 × 10−4 3.61 × 10−2 2.14 × 10−4

DC-SIGN CD209 antigen CD209 19p13.2 rs505922;
rs145827860

trans;
cis 1.07 1.03 1.10 3.04 × 10−4 4.56 × 10−2 3.04 × 10−4

a OR (odds ratio) and CI (confidence interval) per one standard deviation increase in genetically predicted protein levels. b FDR p-value: false discovery rate (FDR) adjusted p-value; associations with an
FDR p < 0.05 considered statistically significant. c Adjusted GWAS-identified EC risk variants include: rs113998067, rs148261157, rs1679014, rs10835920, rs9668337, rs3184504, rs10850382, rs1129506, rs882380,
rs1740828, rs2747716, rs35286446, rs4733613, rs139584729, rs7981863, rs2498796, rs937213, rs17601876, rs11263761.



Cancers 2021, 13, 2088 6 of 11

Table 2. Associations between genetically predicted protein concentrations and endometrial cancer risk by subtypes of
endometrial cancer (endometrioid and non-endometrioid).

Protein

Endometrioid
(8758 Cases/46 126 Controls)

Non-Endometrioid
(1230 Cases/35 447 Controls)

OR a Lower Bound
95% CI a

Upper Bound
95% CI a p-Value OR a Lower Bound

95% CI a
Upper Bound

95% CI a p-Value

VCAM-1 0.58 0.48 0.69 5.78 × 10−9 0.58 0.37 0.91 1.89 × 10−2

RA51D 1.19 1.10 1.30 1.87 × 10−5 NA b NA b NA b NA b

Desmoglein-2 1.21 1.06 1.38 4.09 × 10−3 1.35 0.98 1.85 6.84 × 10−2

MICB 1.15 1.07 1.24 2.96 × 10−4 1.04 0.86 1.24 0.70
BGAT 1.04 1.01 1.07 1.11 × 10−2 1.09 1.01 1.16 1.82 × 10−2

Alkaline
phosphatase

intestine
0.84 0.71 0.98 2.46 × 10−2 0.61 0.42 0.90 1.14 × 10−2

ST4S6 0.87 0.77 0.98 2.46 × 10−2 0.68 0.51 0.92 1.14 × 10−2

GLCE 1.07 1.02 1.12 2.14 × 10−3 0.99 0.89 1.09 0.78
DC-SIGN 1.05 1.00 1.09 3.16 × 10−2 1.13 1.02 1.25 1.68 × 10−2

a OR (odds ratio) and CI (confidence interval) per one standard deviation increase in genetically predicted protein levels. b NAs were due
to the unavailability of the GWAS result for the instrument SNP rs45446698.

Pathway analysis by IPA suggested enrichment in several oncogenic pathways for the
genes encoding the proteins identified in our study. The top canonical pathways involved
those of heparan sulfate biosynthesis at both late (p-value = 3.41 × 10−4) and early stages
(p-value = 4.12 × 10−4) as well as crosstalk between dendritic cells and natural killer cells
(p-value = 5.36 × 10−4) (Table 3).

Table 3. Canonical pathways, diseases, bio functions, and networks associated with the genes encoding identified endome-
trial cancer risk-associated proteins a.

Top Canonical Pathways Top Diseases
and Disorders

Molecular and
Cellular

Functions
Top Networks

p-Value Involved
Molecules

Heparan Sulfate
Biosynthesis (Late Stages); 3.41 × 10−4 CHST15, GLCE Infectious

diseases;
cancer;

cardiovascular
disease;

connective tissue
disorders;
hereditary
disorder.

Cell-to-cell
signaling and

interaction;
cellular movement;
cellular assembly
and organization;

carbohydrate
metabolism;

cell morphology.

Cell-to-cell
signaling and

interaction,
cancer,

connective tissue
disorders.

Heparan Sulfate
Biosynthesis; 4.12 × 10−4 CHST15, GLCE

Crosstalk between
Dendritic Cells and
Natural Killer Cells;

5.36 × 10−4 CD209, MICB

Dermatan Sulfate
Biosynthesis (Late Stages); 1.81 × 10−2 CHST15

Chondroitin Sulfate
Biosynthesis (Late Stages); 1.88 × 10−2 CHST15

a Genes involved in the pathway analysis include VCAM1, RAD51D, DSG2, MICB, ABO, ALPI, CHST15, GLCE, and CD209.

4. Discussion

To our knowledge, this is the first study to comprehensively examine the associations
between genetically predicted circulating protein concentrations and EC risk among Euro-
pean descendants using data from the largest GWAS conducted by international consortia.
Among the 1434 proteins investigated, we identified nine EC-associated proteins after
FDR correction, including eight independent from previously identified EC risk variants.
Similar findings were observed for endometrioid EC alone. Five of the proteins also
showed suggestive associations with the risk of non-endometrioid EC, a much more lethal
subtype [22]. If validated in additional studies, our findings add new knowledge to the
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etiology of endometrial tumorigenesis, and yield a list of candidate protein biomarkers for
EC risk assessment.

Previous studies have reported a number of blood-based EC protein biomarker candi-
dates such as DKK-1, DJ-1, HE4, CA125, GDF-15, SPAG9, YKL-40, IL-31 and IL-33 [4,6,23].
Unfortunately, there was no corresponding pQTL available as instruments for HE4, CA125,
SPAG9 and IL-33. For the other biomarker candidates, we did not observe associations in
the current study: DKK-1 (OR = 0.96, 95% CI: 0.87–1.07; p-value = 0.44), DJ-1 (OR = 0.94, 95%
CI: 0.87–1.03; p-value = 0.17), GDF-15 (OR = 0.98, 95% CI: 0.93–1.05; p-value = 0.59), YKL-40
(OR = 1.00, 95% CI: 0.97–1.03; p-value = 0.99) and IL-31 (OR = 0.95, 95% CI: 0.89–1.02;
p-value = 0.17). Explanations for our failure to replicate the associations for DKK-1, DJ-1,
GDF-15, YKL-40 and IL-31 might include either the weakness of their corresponding pQTLs
used as instruments in our study or false-positive findings due to common biases in con-
ventional observational studies. For example, obesity, the most important risk factor for
EC, is also suggested to be associated with measured levels of GDF-15 and YKL-40 [24–26].
Therefore, the reported associations of these proteins with EC risk in previous observational
studies could be confounded by obesity due to imperfect adjustment in their analyses [27].

The instrument SNP for VCAM-1 protein, rs3184504, was previously identified as
an EC-risk variant and had a trans effect on the protein expression. SH2B3 is a likely
regulatory target at this risk region, as evidenced from our previous work using chromatin
capture methods in endometrial cell lines [28]. SH2B3 is known to downregulate VCAM-1,
which could perhaps be one of the potential mechanisms by which this association is
occurring [29]. However, given the pleiotropic nature of SH2B3, we cannot preclude
other possible mechanisms for the observed association (e.g., immune and inflammatory
signaling pathways) [30]. In the current study, we identified eight EC-associated proteins
that are independent of previously identified EC risk variants. Some of them have been
reported to play an essential role in endometrial tumorigenesis. Polymorphisms of the gene
encoding RA51D have been identified to be associated with EC risk in population-based
studies [31,32]. The RA51D is a core protein involved in the homologous recombination and
repair of double strand breaks in DNA molecules, which is viewed as the most detrimental
DNA damage that can trigger EC development [33]. With regard to protein BGAT, an
earlier study found that blood group-related antigens were expressed differently between
normal and neoplastic endometria [34]. However, observational studies investigating the
association between different ABO blood types and EC risk yielded inconsistent findings
in different populations [35–37]. Not much is known about the remaining proteins we
identified. Future studies are warranted to further elucidate the involvement of the proteins
we found in endometrial carcinogenesis.

The strengths of our study include the use of the largest GWAS in maximizing the
statistical power of our study. Additionally, our study design of using genetic instruments
could substantially reduce common biases embedded in traditional observational studies.
Nevertheless, we also have to acknowledge several limitations in the current study. First,
our findings may be influenced by potential pleiotropic effects. For instance, rs550057,
which served as the instrument SNP for both alkaline phosphatase intestine and ST4S6,
is also in some linkage disequilibrium with several instrument SNPs of other identified
proteins. Thus, whether the identified associations in our study were attributable to corre-
lations between protein concentrations needs further investigation. Similarly, rs45446698,
which was one of the instrument variants for protein RA51D, has been linked to urinary
metabolite levels in chronic kidney disease, offspring birth weight, heel bone mineral
density and height [38–41]. Nevertheless, none of these traits have shown a strong inde-
pendent relationship with EC risk. Second, given that the observed associations for the
identified proteins were only based on the genetically regulated components in our study,
the utility of their measured circulating protein concentrations for EC risk assessment
needs to be further verified and then validated. Third, relying on previously identified
pQTLs as instrument variables, we were only able to evaluate protein candidates with at
least one existing pQTL identified. Due to this limitation, we were not able to compare
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our findings to some of the previously reported EC protein biomarker candidates. We
anticipate that additional protein biomarkers will be uncovered with the identification of
new pQTLs in future studies, as well as in a study of using more thorough methods to
predict protein concentrations using a combination of multiple genetic variants, which is
expected to further increase study power. Moreover, we failed to replicate the associations
for several previously reported possible EC protein biomarkers, which might be explained
by either the weakness of the corresponding pQTLs used as instruments in our study or
distinct study designs between our study and the previous studies. In addition, given that
the associations identified in our study have moderate effect sizes and we were unable to
provide detailed functional validation at this moment, our findings may not have immedi-
ate potential for translating into clinical use based on the current results. On the other hand,
our findings should provide additional insights into the etiology of endometrial cancer.
The identified associations provide a basis for future investigation of directly measured
levels of the nine proteins in risk assessment of endometrial cancer. It is possible that
although the individual protein’s effect size is modest, when combined together, a much
larger effect can be achieved. Finally, our subgroup analyses by histologic subtype are
limited by small numbers of cases, especially for non-endometrioid carcinoma, and we
were not able to assess the associations for a more detailed classification of EC. Future
studies with improved statistical power are needed to better investigate the associations
for this more aggressive and specific type of EC.

5. Conclusions

In summary, in this large study using genetic variants as instruments, we identified
nine protein biomarkers with their genetically predicted circulating concentrations as-
sociated with EC risk. Our study provided a list of EC-associated protein biomarkers,
which, if validated in additional studies, will not only contribute to the understanding
of endometrial tumorigenesis but also facilitate risk assessment of EC combined with
other findings.
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