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Simple Summary: Small intestinal neuroendocrine tumors (SI-NETs) are slow growing tumors
expressing somatostatin receptors (SSTR), which are targeted in diagnostic and therapeutic methods.
A fairly new treatment that targets SSTR2 is peptide receptor radionuclide therapy (PRRT), which
prolongs survival for patients with metastasized NETs. However, the treatment is costly, and the
effect is variable. Therefore, finding predictors for treatment response is warranted. The aim of
this retrospective study was to immunohistochemically analyze the SSTR2 expression in SI-NETs,
using a previously constructed tissue microarray, and to investigate if a high SSTR2 expression was
correlated to overall survival (OS). Among 42 patients that had received PRRT, 10 had at least one
tumor with low SSTR2 expression. The patients were grouped according to the SSTR2 expression
(“High SSTR2” and “Low SSTR2”) in previously resected tumors. In contrast to the hypothesis of
the study, patients with low SSTR2 expression had significantly longer OS after PRRT, compared
with patients with high SSTR2 expression. Hence, the study suggests that low SSTR2 expression in
resected tumors should not exclude SI-NET patients from receiving PRRT.

Abstract: (1) Purpose: Small intestinal neuroendocrine tumors (SI-NETs) often present with distant
metastases at diagnosis. Peptide receptor radionuclide therapy (PRRT) with radiolabeled somato-
statin analogues is a systemic treatment that increases overall survival (OS) in SI-NET patients with
stage IV disease. However, the treatment response after PRRT, which targets somatostatin receptor
2 (SSTR2), is variable and predictive factors have not been established. This exploratory study
aims to evaluate if SSTR2 expression in SI-NETs could be used to predict OS after PRRT treatment.
(2) Methods: Using a previously constructed Tissue Micro Array (TMA) we identified tissue samples
from 42 patients that had received PRRT treatment during 2006–2017 at Sahlgrenska University
hospital. Immunohistochemical expression of SSTR2, Ki-67 and neuroendocrine markers synapto-
physin and Chromogranin A (CgA) were assessed. A retrospective estimation of 177Lu-DOTATATE
uptake in 33 patients was performed. Data regarding OS and non-surgical treatment after PRRT were
collected. Another subgroup of 34 patients with paired samples from 3 tumor sites (primary tumor,
lymph node and liver metastases) was identified in the TMA. The SSTR2 expression was assessed in
corresponding tissue samples (n = 102). (3) Results: The patients were grouped into Low SSTR2 or
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High SSTR2 groups based upon on levels of SSTR2 expression. There was no significant difference in
177Lu-DOTATATE uptake between the groups. The patients in the Low SSTR2 group had significantly
longer OS after PRRT than the patients in the High SSTR2 group (p = 0.049). PRRT treated patients
with low SSTR2 expression received less additional treatment compared with patients with high
SSTR2 expression. SSTR2 expression did not vary between tumor sites but correlated within patients.
(4) Conclusion: The results from the present study suggest that retrospective evaluation of SSTR2
expression in resected tumors cannot be used to predict OS after PRRT.

Keywords: small intestinal neuroendocrine tumor (SI-NET); peptide receptor radionuclide therapy
(PRRT); somatostatin receptor expression; overall survival

1. Introduction

Neuroendocrine tumors (NETs), originating from enterochromaffin cells in small
intestinal mucosa (SI-NETs), are the most common small intestinal neoplasms with a
reported incidence of 1–5/100,000 [1–3].

Patients with SI-NETs are often diagnosed with synchronous regional or distant metas-
tases (WHO stage III-IV) [4]. The only potentially curative treatment is radical surgical
resection. Although a large proportion of SI-NET patients with stage III-IV disease cannot
receive curative treatment, they often undergo surgery of the primary tumor and mesen-
terial lymph nodes to avoid or resolve a bowel obstruction. Patients with disseminated
disease still have a long expected overall survival (OS). The 5 year-OS for patients with stage
III disease is more than 90%, and for stage IV disease it is 60–80%, which possibly reflects
the generally low proliferative rate in SI-NETs [1,5,6]. As a consequence, a large number of
SI-NET patients will over time receive several treatments beyond surgical resection.

SI-NETs generally express the somatostatin receptor subtype 2 (SSTR2) [7]. Treatment
with somatostatin analogues (SSA) reduces hormone secretion and has an antitumoral
effect [8,9]. SSTR2 expression is also used clinically for molecular imaging, by scintigraphy
(111In-octreotide) or the more recently developed SSTR PET/CT (68Ga-DOTATOC/TATE-
PET). The SSTR2 expression can further be exploited therapeutically by targeting NETs with
radiolabeled SSA (177Lu-DOTATATE or 177Lu-DOTATOC), i.e., peptide receptor mediated
radionuclide therapy (PRRT) [10].

PRRT in combination with SSA has recently been evaluated in a randomized clinical
trial, in which PRRT and SSA increased time to progression and OS compared to SSA
alone [11]. However, even though patients are selected for PRRT by evaluation of SSA
uptake with SSTR imaging, the objective response of PRRT is still highly variable [12]
and, especially for SI-NETs, difficult to assess due to the slow tumor progression rate [13].
Predictors of long-term outcome after PRRT are lacking. Radiological treatment response
after PRRT has been proposed as a prognostic marker for prolonged survival in a cohort
of diverse NETs; however, if there is a similar correlation for SI-NETs as a group, it still
remains unclear [14]. There are promising results from studies on new blood biomarkers
as predictors for RECIST response, but it has not yet been clarified if these could serve as
predictive tools for long-term results after PRRT [15].

SSTR2 expression can be assessed with immunohistochemistry (IHC) in tumor sam-
ples. The method is semi-quantitative and can only be used to quantify relative expression
among samples. In a clinical setting, all SI-NET metastases are not biopsied prior to PRRT
and therefore it is not possible to quantify the SSTR2 expression in all PRRT treated lesions.
It has not previously been determined if SSTR2 protein expression in lesions treated with
PRRT influences long-term outcome.

This pilot study was designed to explore the overall hypothesis that SSTR2 expression
in resected tissue could be used to predict OS after subsequent PRRT. This hypothesis is
based on the following assumptions: (i) SSTR2 expression in SI-NET correlates among a
patient’s lesions, i.e., the presence of one tumor with a low SSTR2 expression indicates
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that other lesions also could have a low SSTR2 expression. (ii) Low SSTR2 expression in
resected tissue could affect subsequent SSA uptake and thereby (iii) affect efficacy of later
PRRT treatment and influence OS.

In order to test these assumptions, we identified a cohort of PRRT treated patients
with samples present on a tissue micro array (TMA) which enables a relative quantification
of SSTR2 expression among this patient cohort.

2. Materials and Methods
2.1. Tumour Tissue Samples

A TMA block was assembled as previously described [16]. Briefly, all patients who
underwent surgery for SI-NET at Sahlgrenska University Hospital from 1986 to 2013
were included in a TMA. Formalin-fixed and paraffin-embedded tumor tissue from this
cohort was retrieved from the Department of Clinical Pathology and Genetics, Sahlgrenska
University Hospital, Gothenburg, Sweden. The diagnosis was confirmed by reviewing
hematoxylin and eosin-stained sections and IHC stainings. Sufficient tumor material for
construction of the tissue microarray was available from 412 patients. A total of 8 recipient
blocks were constructed, derived from 846 tumors. The quality of the constructed TMA
was evaluated on hematoxylin and eosin-stained sections.

2.2. Immunohistochemistry and Scoring

Sections from the TMA blocks were placed on coated glass slides and were subjected
to antigen retrieval using EnVision FLEX Target Retrieval Solution (high pH) in a Dako
PT-Link. IHC staining was performed in a Dako Autostainer Link using EnVision FLEX
according to the manufacturer’s instructions (DakoCytomation, Glostrup Denmark).

The following primary antibodies were used: anti-SSTR2a (clone UMB1; cat no.
134,152 Abcam, Cambridge, UK), anti-chromogranin A (MAB319; Chemicon/Merck, Mas-
sachusetts, USA), anti-synaptophysin (SY38, M0776; Dako, Glostrup Denmark) and anti-
Ki67 (clone MIB-1; cat no M7240; Dako, Glostrup Denmark); positive and negative controls
were included in each run. The fraction of Ki67 positive cells was assessed by manually
counting 500–2000 tumor cells per sample in full section slides corresponding to the TMA
core biopsy [17].

Stained TMA slides were scanned using Leica SCN 4000 at ×40 magnification. The
scoring system was based on the immunoreactive scoring (IRS) method, as previously
described by Specht et al. [18]. In short, a score for staining intensity between 0–3 was
determined using all 846 tumors. A scoring (1–4) of positively stained cells was also
performed according to the following: 1 ≤ 10% positive cells, 2 = 10–50% positive cells,
3 = 51–80% positive cells and 4 ≥ 80% positive cells. These two scores were multiplied for a
combined score of 0–12, which was then divided into separate groups (score 0–1 = group 0,
score 2–3 = group 1, score 4–8 = group 2 and score 9–12 = group 3).

When we applied this method in our samples, we found a consistently homogenous
expression pattern with over 80% stained cells in all our samples with the exception of
4 negative samples (i.e., score 0). Therefore, staining intensity was the primary determinant
for our final score (0–3). It should be noted that the observed homogenous staining intensity
is a possible effect of using a TMA that consists of small samples from a larger paraffin
embedded sample (Supplementary Figure S1). Thus, intra-tumor heterogeneity regarding
SSTR2 expression could not be assessed. Regarding subcellular staining pattern, there was
a strong membranous staining pattern and a slightly weaker cytoplasmatic staining. In
general, the intensity of the membranous staining and the cytoplasmatic staining within a
sample appeared to be strongly correlated. Consequently, samples with the most intense
membranous staining also had the most intense cytoplasmatic staining and as a result,
a higher score (2 or 3) in overall intensity. The SSTR2 expression in the entire TMA was
initially scored by a board-certified pathologist (O.N.) Samples corresponding to patients
included in the present study were reassessed by two blinded observers (E.E. and A.-K.E.).
Two cases differed in the SSTR2 score between the 3 observers and for these cases the score
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that 2 out of the 3 observers agreed upon was chosen. Synaptophysin and Chromogranin
A (CgA) were scored by a single observer (E.E.).

2.3. Patients and Clinical Characteristics

Among the specimens on the TMA block we identified samples from 44 patients
treated with PRRT during the years 2006–2017 at Sahlgrenska University Hospital. Flowchart,
indications and exclusion criteria for PRRT are presented in Figure 1.
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Clinical characteristics of patients are presented in Table 1. For comparisons related
to SSTR2 expression, the patients were grouped according to SSTR2 score in previously
resected tumor tissue. We argued that the presence of at least one tumor lesion with
low SSTR2 expression implied a risk of having more lesions with low SSTR2 expression.
Therefore, patients with at least one (1) tumor sample with scores 0 or 1 were assigned to
the “Low SSTR2” group and the remaining patients (all samples scored 2–3) were assigned
to the “High SSTR2” group. This stratification resulted in 10 patients in the Low SSTR2
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group and 32 patients in the High SSTR2 group. Clinical data regarding OS and other
treatments were obtained. Two PRRT treated patients died before they could complete the
intended PRRT treatment and were therefore excluded from the survival analysis. When
Ki-67 was determined for a patient represented by more than one sample, the highest Ki-67
was used.

Table 1. Clinical characteristics of PRRT treated patients.

All Patients High SSTR2 a Low SSTR2 b

Patients (n) 42 32 10
Age at PRRT treatment, mean (range) 66 (45–78) 68 (48–77) 65 (45–78) p = ns

Male/female (n) 19/23 15/17 4/6 p = ns
Number of PRRT treatments, mean (range) 3.8 (2–6) 3.8 (2–6) 3.7 (2–6) p = ns

Ki-67%, median (range) 1.82 1.98 (0.25–15.2) 1.47 (0.62–3.1) p = 0.10
Months between surgery and PRRT, median 60 62 53 p = 0.94

a SSTR2 score 2 or 3 in all lesions; b SSTR2 score 0 or 1 in ≥1 lesion.

2.4. Activity Concentration in Tumors

In PRRT treated patients, an estimation of the uptake of radionuclide (177Lu) was
done by measuring the activity concentration in the tumors (Figure 2). In SPECT/CT
images acquired 24 h after the first PRRT treatment, reconstructions were done with the
recently developed Monte Carlo based ordered subset expectation maximization algorithm
SARec [19]. Tumors were identified by visual inspection and the three tumors containing
the highest maximum voxel values in each patient were chosen for assessment. Activity
concentration calculation was done by dividing the maximum voxel value with SPECT
sensitivity and mass of the tissue represented by the voxel.
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Figure 2. The activity concentration was calculated by using data from SPECT/CT imaging 24 h after the first PRRT
treatment. Figure shows representative imaging in trans-axial, sagittal and coronal planes. The tumor lesion with the
highest uptake is indicated.

2.5. Statistical Analysis

For all statistical analysis of data generated from IHC scoring, non-parametric tests
were used. For comparisons between 2 groups the Mann–Whitney U test was used. For
comparisons between 3 or more groups the Kruskal–Wallis test was used. Spearman
rank correlation was performed for correlation analyses. For survival curve comparisons
the Mantel–Cox log-rank test was used. A level of significance was set to p < 0.05 in
all tests. Statistical analyses and graphic design were performed in Prism 9 for MacOS
(GraphPad software).

3. Results
3.1. SSTR2 Scoring and Distribution of SSTR2 Expression Among Samples

Representative images of SSTR2 expression score and distribution of SSTR2 score
among lesions are presented in Figure 3. In 95 samples from the 44 PRRT treated patients,
16 samples (16.8%) had no or low STTR2 expression (score 0 or 1). The majority of samples
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(n = 79) had medium or high SSTR2 expression (score 2 or 3). To assess the stability of
antigen preservation over time we performed a correlation analysis between time of surgery
and SSTR2 score for all samples on the TMA (Supplementary Figures S1 and S2). There
was no significant correlation, which argued against age of samples as a factor determining
SSTR2 score.
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Figure 3. (a) Representative images of SSTR2 scoring 0–3. Size bar = 100 µm. Insert shows magnification. (b) Distribution of
SSTR2 score in tumor samples (n = 95) from PRRT treated patients.

In order to determine SSTR2 expression in tumors in different sites in a patient we
identified 34 patients who had samples from both a primary tumor, lymph node metastasis
and liver metastasis on the TMA. Samples from these patients were only used to compare
SSTR2 expression levels and were not correlated with clinical data. The SSTR2 expression
levels did not vary significantly between primary, lymph node or liver metastases (average
score primary tumor 2.18 vs. average score lymph node metastases 2.03 vs. average score
liver metastases 2.24, p = 0.52) (Supplementary Figure S3).

We then aimed to determine if the SSTR2 score correlated among lesions within a
single patient. Three groups of primary tumors (score 1–3, no primary tumor had score 0)
were established and SSTR2 expression in matched metastases was assessed (Figure 4).
The SSTR2 score correlated in all tumor samples within a patient, when sorted according
to SSTR2 score in the primary tumor. Thus, the SSTR2 expression in tumor samples did not
significantly change in metastases.

3.2. SSTR2 Expression Does Not Correlate with Synaptophysin or CgA Expression

We also assessed if SSTR2 expression was associated with the IHC expression of estab-
lished SI-NET markers synaptophysin and CgA. A subset of samples (n = 49) from PRRT
treated patients were divided into groups based on SSTR2 expression, and synaptophysin
and CgA expression for each sample was assessed. IHC expression of synaptophysin and
CgA was consistent among samples, regardless of SSTR2 expression (Figure 5).
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Figure 4. SSTR2 score in primary tumor compared with corresponding metastases. Samples from
both primary tumor, lymph node and liver metastases from 34 patients were analyzed (3 samples
each from 34 patients, in total 102 samples). When samples from metastases were sorted according to
the SSTR2 score in the corresponding primary tumor, a consistency in SSTR2 score between primary
tumors and metastases was observed. The figure illustrates a “box and whiskers” plot: boxes show
25th to 75th percentile and whiskers indicate range. Spearman rank correlation.
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Figure 5. Synaptophysin (syn) and Chromogranin A (CgA) staining intensity compared with SSTR2
expression in a subset of samples (n = 49). Staining intensity was consistent among samples regardless
of SSTR2 expression level. Dots and bars indicate medians and ranges, respectively. Spearman
rank correlation.

3.3. SSTR2 Expression and Proliferation Rate

To determine the association between SSTR2 and proliferation rate, Ki-67 was assessed
in 66 samples present on the TMA. These samples from PPRT treated patients (Lower box
in Figure 1) were then sorted according to SSTR2 expression. The samples included tissue
from a primary tumor, lymph node or liver metastases and the patients were represented
by 1–3 samples. All samples with high Ki-67 also had a high SSTR2 expression (score 2–3);
however, there was no statistically significant difference between the groups (p = 0.25)
(Figure 6a). The samples were then sorted according to the patient groups “High SSTR2”
(n = 32) and “Low SSTR2” (n = 10). For patients represented by more than one sample, the
highest Ki-67 was used. In the Low SSTR2 group, all patients but one had WHO grade 1
tumors (Ki-67 < 3%). In the High SSTR2 group more than one third of the patients (n = 11)
had WHO grade 2 tumors (Ki-67 3–20%). However, there was no statistically significant
difference between the groups (p = 0.10) (Figure 6b).
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Figure 6. Ki-67 and SSTR2 expression of a subgroup of samples (n = 66) in the TMA. Ki-67 was assessed in full section slides
corresponding to the TMA core biopsy. (a) Most samples (n = 53) had Ki-67 < 3% (WHO grade 1). All but one sample (SSTR2
score 0) with grade 2 tumors (Ki-67 3–20%) had consistently high SSTR2 expression (score 2–3). There was no significant
difference between the groups (p = 0.25; Kruskal–Wallis test); (b) When sorting the samples according to patient groups
High SSTR2 (n = 32) and Low SSTR2 (n = 10), almost all patients with grade 2 tumors also had high SSTR2 expressing
tumors. For patients with more than one sample, the highest Ki-67 was used. There was not a significant difference between
the groups (p = 0.10; Mann–Whitney U test). Bars show median and 95% CI. Red line shows 3% threshold between grade 1
and grade 2.

3.4. SSTR2 Expression and Activity Concentration

In PRRT treated patients, an estimation of the uptake of radionuclide was done by
measuring the activity concentration in 3 tumors per patient (in two patients only 2 tumors
were measured). Measurements were possible in 97 tumors from 33 patients. Results
showed a large variability between treated patients; however, there was a consistency
among the tumors within patients. The patients were grouped according to SSTR2 expres-
sion in the previously resected tumors from the TMA. This resulted in 79 tumors from
27 patients with high and 18 tumors from 6 patients with low SSTR2 expressing tumors, re-
spectively (Figure 7). There was no significant difference in activity concentration between
the groups (p = 0.99).

3.5. SSTR2 Expression and Long-Term Outcome

After the first PRRT, all 42 patients were followed for 69 months (mean; range 5–161
months). At the last follow-up, 15 patients were still alive (7 were in the Low SSTR2 group).
The mean follow-up time in the High and the Low SSTR2 groups was 57 and 81 months
after PRRT, respectively. Kaplan–Meier curves depicting OS based on SSTR2 expression in
these two patient cohorts showed a statistically significant difference between the groups
(p = 0.049) (Figure 8).

3.6. SSTR2 Expression and Treatment Patterns

In accordance with clinical practice, all patients received SSA in the form of short-
acting octreotide 100 µg × 4 peri-operatively. At initiation of PRRT treatment, patients
had progressive and/or symptomatic stage IV disease, hence at this timepoint all patients
except 5 had SSA treatment. However, we did not have records on how long they had
received SSA prior to PRRT. Most patients received long-acting formulas administered
once every 28 days: Lanreotide 60–120 mg (n = 21 patients) or Octreotide LAR 20–30 mg
(n = 8 patients). Eight patients used short-acting Octreotide 100–200 µg 1–3 times daily.

After PRRT treatment, patients continued SSA, and were offered additional treatments
in case of tumor progression. Eight of the 32 patients (25%) with high SSTR2 expression
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received additional treatment after initial PRRT. None of the patients (0/10) with low
SSTR2 expression received additional treatment during follow-up (Table 2).
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Figure 7. Relative activity concentration at SPECT 24 h after PRRT was estimated in 97 tumors from
33 patients: 27 with high and 6 with low SSTR2 expressing tumors. In each patient 2–3 tumors were
measured, yielding 79 tumors in High SSTR2 and 18 tumors in Low SSTR2 groups, respectively. No
significant difference was seen between the groups (p = 0.99, Mann–Whitney U test). Bars show
median and inter-quartile range.
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Figure 8. Overall survival of PRRT treated patients grouped according to SSTR2 expression (Low
SSTR2, n = 10, High SSTR2, n = 32). Clinical characteristics of the patient groups are presented in
Table 1. Patients in Low SSTR2 group had significantly prolonged OS compared with patients in
High SSTR2 group. (p = 0.049; Mantel-Cox log-rank test).

Table 2. Additional treatment after PRRT. None of the patients with low SSTR2 expression received
further treatment except somatostatin analogues (SSA), after PRRT. HAE = hepatic artery embolization.

All Patients High SSTR2 a Low SSTR2 b

Number of patients 42 32 10
Additional PRRT and/or HAE and/or

external radiation 8 8 0

No additional treatment 34 24 10
a SSTR2 score 2 or 3 in all lesions; b SSTR2 score 0 or 1 in ≥1 lesion.

4. Discussion

This pilot study was designed to test the following assumptions: (i) SSTR2 expression
in SI-NETs correlates among a patient’s lesions, i.e., the presence of one tumor with a low
SSTR2 expression indicates that the patient could have other lesions with a low SSTR2
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expression. (ii) A low SSTR2 expression could affect SSA uptake and thereby (iii) affect
efficacy of PRRT treatment and influence OS.

In the present study, we found varying SSTR2 expression in tumor lesions from SI-NET
patients, which is concordant with other studies [20]. To address the assumption that SSTR2
correlates among a patient’s lesions, we identified paired samples from primary tumor,
lymph node and liver metastases from 34 patients represented on the TMA. The SSTR2
expression did not differ based on tumor location. Instead, when studying the intra-patient
variability, we found that lesions at different locations within a patient had significantly
similar SSTR2 expression. Although there was some variance regarding the correlation,
our interpretation is that IHC assessment of SSTR2 expression in resected tumors could be
representative for the remaining metastases, later targeted with PRRT therapy.

There are some methodological considerations to address. Several different methods
of scoring for evaluating SSTR2 immunohistochemically have been proposed. Körner et al.
compared SSTR2 expression, using the then newly developed UMB-1 antibody, with
SSTR autoradiography and found that IHC staining of >10% of tumor cells corresponded
to SSTR levels high enough for clinical applications [21]. The use of a scoring system
based on both staining intensity and percentage of stained cells has been advocated by
some authors [22,23], while others have emphasized the importance of the subcellular
localization [24]. Staining patterns can be influenced by a specific IHC methodology,
representing a challenge when comparing results from different studies. We adapted
the IRS score to quantify SSTR2 expression in our samples. In general, our samples
had a homogenous staining pattern and all cells within a section exhibited the same
staining pattern. We, therefore, chose to score the samples solely based upon staining
intensity. It can be noted that although we experienced a general concordance between
overall staining intensity and membranous staining, we did not specifically assess only
membranous staining and it is possible that this could have influenced the results. A
faint SSTR2 staining could be caused by suboptimal tissue fixation with impaired antigen
preservation. As the expression of synaptophysin and CgA was not associated with varying
SSTR2 expression, we concluded that the variation in SSTR2 expression was not caused by
impaired antigen preservation. Other important methodological considerations include
the use of a TMA, which represents a much smaller tissue sample than in commonly used
full slides (Supplementary Figure S1). Consequently, heterogeneity in the expression of
SSTR2 in individual samples could be missed.

To address the assumption that a low SSTR2 expression could affect SSA uptake and
thereby affect the efficacy of PRRT and influence OS we identified 42 patients that had
received a complete PRRT treatment cycle during 2006–2017 at Sahlgrenska University
Hospital. These 42 patients had at least one sample present on the TMA allowing for
IHC analyses. Ten of forty-two patients had at least one tissue sample with a low SSTR2
expression, and these patients were grouped into a “Low SSTR2” expression group while all
remaining patients were assigned to the “High SSTR2” group. The SSA uptake, measured
by activity concentration after PRRT, was similar in all of a patients’ lesions and there was no
difference in activity concentration between the groups. We chose to assess activity uptake
in tumors by SPECT/CT in relation to the first PRRT treatment, as this investigation enables
direct evaluation and should correspond well with pre-treatment SSTR imaging [25]. Our
data do not show that a low SSTR2 expression predicts a lesser activity uptake, which is
concordant with some studies [23] but in contrast to others, where a correlation was found
between SSTR2 expression and activity uptake on SSTR imaging [20,26,27]. However,
the previous studies include NETs from various origins and both low- and high-grade
tumors, which might explain this discrepancy. The results indicate that the level of SSTR2
expression in surgically resected tumors cannot be used to predict radionuclide uptake
after PRRT.

The present study showed a significantly prolonged survival among patients with
low SSTR2 expressing tumors. This is in contrast to other studies, where high SSTR2
expression was associated with prolonged survival [23,28,29]. These contradictory findings
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could be due to patient selection bias or different types of NETs. Compared with the
studies above, the present study included only a minority of tumor samples with low
SSTR2 expression, possibly introducing a risk of skewed results. However, the reports
above include heterogenous patient cohorts and inform insufficiently about the treatments
given, making it unclear whether the results show SSTR2 as a prognostic marker for a
more indolent disease course or a predictive marker for the (undefined) therapies given.
A known independent predictor for OS is the proliferative marker Ki-67 [30,31]. In the
present study, Ki-67 was generally low in the tumor samples, which is expected in a SI-NET
population, and there was no difference between Ki-67 in the high and low SSTR2 groups.
Therefore, we concluded that the survival differences seen between the groups could not be
explained by Ki-67. It should be noted that there are other SSTR expressed in SI-NET that
could potentially influence PRRT outcome. In an article by Qian et al. [23], the expression
of SSTR subtypes was generally correlated among each other but only SSTR2 expression
was predictive of clinical outcome, which influenced our decision to only assess SSTR2 in
the present study.

The overall hypothesis of this study was that SSTR2 expression in resected tissue could
be used to predict OS after subsequent PRRT. The rationale behind the hypothesis was to
identify predictive factors for PRRT that could be easily implemented in a clinical setting.
However, the study has several limitations. The limited number of patients increases the
risk for type 2 errors. Furthermore, the tumor samples used were obtained some time
before PRRT, which is an important factor to consider when interpreting the results. The
median time between sample collection (i.e., surgery) and initial treatment was 60 months
(Supplementary Figure S4). During this time SSTR2 expression could have changed in
the remaining lesions. Therefore, the present results cannot determine if current SSTR2
expression affects activity uptake or efficacy of PRRT treatment; however, they suggest that
retrospective evaluation of SSTR2 should not influence the decision to offer a patient PRRT.

A strength of the study is the long follow-up, which given the natural course of SI-
NETs, is required for evaluating long-term outcome such as survival. Another strength
is the homogenous patient cohort, containing only SI-NETs grade 1 and 2, with a similar
treatment protocol and prognosis. In the literature, reports evaluating PRRT often include
cohorts with tumors of diverse origins and grades, making it more difficult to extrapolate
these results [20,26,27]. Furthermore, the use of a TMA facilitates IHC staining under
identical conditions for all samples, enabling relative quantification of protein expression
in the tumor samples [32].

5. Conclusions

In order to optimize individualized systemic therapy for SI-NETs there is a need for
predictive markers for PRRT. Altogether, the results from the present study suggest that
retrospective evaluation of SSTR2 expression cannot be used to predict response to PRRT.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13092035/s1, Figure S1: SSTR2 stained TMA blocks, Figure S2: Distribution of SSTR2
score according to date of surgery, Figure S3: Distribution of SSTR2 score according to tumor site,
Figure S4: Time between surgery and PRRT.
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