
cancers

Review

ctDNA-Based Liquid Biopsy of Cerebrospinal Fluid in
Brain Cancer

Laura Escudero 1 , Francisco Martínez-Ricarte 2,3 and Joan Seoane 1,3,4,5,*

����������
�������

Citation: Escudero, L.;

Martínez-Ricarte, F.; Seoane, J.

ctDNA-Based Liquid Biopsy of

Cerebrospinal Fluid in Brain Cancer.

Cancers 2021, 13, 1989. https://

doi.org/10.3390/cancers13091989

Academic Editor: Marica Eoli

Received: 22 March 2021

Accepted: 19 April 2021

Published: 21 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
lescudero@vhio.net

2 Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
frmartinez@vhebron.net

3 Universitat Autotònoma de Barcelona (UAB), 08193 Bellaterra, Spain
4 CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Instituto de Salud Carlos III,

28029 Madrid, Spain
5 ICREA (Institució Catalana de Recerca i Estudis Avançats), 08010 Barcelona, Spain
* Correspondence: jseoane@vhio.net

Simple Summary: The optimal treatment and management of patients with brain cancer depend on
the molecular characteristics of their tumour. Since the tumour changes with time, it is, therefore,
essential to characterise the tumour of each patient at the exact time of selecting the most suitable
therapeutic strategy. However, obtaining a tumour biopsy for its characterisation is a risky and
invasive procedure and, sometimes, not even feasible, leading to a lack of information about the
tumour. These challenges can be overcome by using a liquid biopsy of cerebrospinal fluid. Brain
cancer cells release DNA into the cerebrospinal fluid, and the analysis of the cell-free circulating
tumour DNA can reveal the genetic profile of brain cancer in a relatively noninvasive manner. In
this review, we revise the recent results in this field that show how circulating tumour DNA in
cerebrospinal fluid can provide diagnostic and prognostic information, identify potential therapeutic
targets, monitor the tumour response or resistance to treatment, and help to identify tumour relapse.

Abstract: The correct characterisation of central nervous system (CNS) malignancies is crucial for
accurate diagnosis and prognosis and also the identification of actionable genomic alterations that
can guide the therapeutic strategy. Surgical biopsies are performed to characterise the tumour;
however, these procedures are invasive and are not always feasible for all patients. Moreover, they
only provide a static snapshot and can miss tumour heterogeneity. Currently, monitoring of CNS
cancer is performed by conventional imaging techniques and, in some cases, cytology analysis of
the cerebrospinal fluid (CSF); however, these techniques have limited sensitivity. To overcome these
limitations, a liquid biopsy of the CSF can be used to obtain information about the tumour in a
less invasive manner. The CSF is a source of cell-free circulating tumour DNA (ctDNA), and the
analysis of this biomarker can characterise and monitor brain cancer. Recent studies have shown that
ctDNA is more abundant in the CSF than plasma for CNS malignancies and that it can be sequenced
to reveal tumour heterogeneity and provide diagnostic and prognostic information. Furthermore,
analysis of longitudinal samples can aid patient monitoring by detecting residual disease or even
tracking tumour evolution at relapse and, therefore, tailoring the therapeutic strategy. In this review,
we provide an overview of the potential clinical applications of the analysis of CSF ctDNA and the
challenges that need to be overcome in order to translate research findings into a tool for clinical
practice.
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1. Introduction

Central nervous system (CNS) malignancies affect both children and adults worldwide
and are responsible for substantial morbidity and mortality. An epidemiological study of
CNS cancer between 1990 and 2016 revealed that the age-standardised incidence rate has
increased by 17.3% globally, with 330,000 incident cases and 227,000 deaths globally in
2016 [1].

CNS cancer consists of primary tumours and intracranial metastases. Most CNS
tumours (>90%) occur in the brain, with the remaining located in the meninges, spinal cord
and nerves. Depending on the anatomical region and the tumour type, the neurological
signs and symptoms will vary and may include headaches, seizures, loss of vision, paralysis,
speech disturbance, and motor deficits [2].

CNS tumours are diagnosed using neuroimaging techniques such as magnetic reso-
nance imaging (MRI) or computed tomography; however, to obtain pathological informa-
tion and molecular diagnosis, tumour biopsies are required. The treatment strategy for
primary CNS tumours consists of either obtaining a biopsy or performing a surgical resec-
tion, combined, when appropriate, with postoperative radiotherapy and chemotherapy [3].

CNS tumour prognosis is diverse since there are distinct entities with different
histopathological characteristics and molecular profiles. Therefore, characterising the
tumour specimen is essential for accurate diagnosis and prognosis, as well as to identify
potential therapeutic targets. To improve disease control, primary brain tumours or single
nodule brain metastases are resected. However, obtaining tumour biopsies is not always
possible due to their location, particularly when CNS tumours occur in vital regions such
as the basal ganglia or the brain stem. In addition, patients with disseminated disease may
not be eligible for such procedures [4–6].

In cases where tumour resection or obtaining a biopsy is possible, the sample obtained
may not be representative of tumour heterogeneity [7–9], and, therefore, multiple sampling
may be required to confirm the pathological diagnosis in some cases. Moreover, the analysis
of the sample obtained only provides a static snapshot from the time of resection. It is
important to monitor the patient’s response to treatment during the course of the disease,
particularly to distinguish true disease progression from a pseudoprogression induced
by treatment. Sometimes a new or enlarging area of contrast enhancement is observed,
but it is not easy to assess whether it is the result of tumour growth or an inflammatory
response [10]. This can be challenging when using conventional imaging techniques.

Tumours evolve over time, particularly under the selective pressure of therapy, which
can result in the expansion of pre-existing resistant clones or the acquisition of de novo
resistant alterations [7]. Thus, the genomic characteristics at relapse may differ from the
genomic landscape at first occurrence. In some cases, treatment decisions at relapse are just
based on the characteristics of the primary tissue obtained [11,12]. The known evolution of
tumours and the absence of longitudinal tumour sampling may, therefore, lead to imprecise
diagnosis and clinical management.

For these reasons, there is an urgent need to develop less invasive methods to identify
and validate tumour biomarkers that provide real-time information to aid in diagnosing
and monitoring CNS malignancies. Overall, this will help to adjust the therapeutic strategy
and guide treatment decisions based on the current tumour profile and its burden.

An alternative to a tumour biopsy is a liquid biopsy (Figure 1). Liquid biopsies
are emerging as noninvasive tools that can provide longitudinal information about the
tumour genomic landscape and facilitate patient monitoring. It consists of the analysis of
biomarkers, including circulating tumour cells, exosomes and circulating tumour nucleic
acids that are present in bodily fluids such as blood, cerebrospinal fluid (CSF), urine and
saliva [13,14].
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(cfDNA) that is shed by cancer cells, presumably undergoing apoptosis or necrosis, is 

known as ctDNA and carries genomic alterations that can be detected using PCR-based 

or next-generation sequencing (NGS)-based methods [14–17]. 

Increased concentrations of cfDNA have been detected in pathological conditions 
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For patients with an extracranial disease, plasma ctDNA has been detected across 

different cancer types. However, blood may not be a suitable source from patients with 
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ctDNA was detectable in the plasma of >75% of patients with advanced cancers, such as 
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Figure 1. Solid vs. liquid biopsies. Schematic representation of the tumour biopsy and CSF samples
obtained from a patient with a CNS malignancy. Advantages and limitations for each methodology
are indicated. Definition of acronyms: standard of care (SOC), cerebrospinal fluid (CSF), circulating
tumour DNA (cfDNA) and central nervous system (CNS).

In this review, we will discuss the potential applications of circulating tumour DNA
(ctDNA) in CSF as a biomarker for CNS malignancies, the challenges that we need to
overcome, and future perspectives for its implementation in the clinical setting.

2. Circulating Cell-Free DNA and Circulating Tumour DNA

Cells release DNA that then circulate in bodily fluids. The fraction of cell-free DNA
(cfDNA) that is shed by cancer cells, presumably undergoing apoptosis or necrosis, is
known as ctDNA and carries genomic alterations that can be detected using PCR-based or
next-generation sequencing (NGS)-based methods [14–17].

Increased concentrations of cfDNA have been detected in pathological conditions like
trauma, infection and cancer, or even other physiological conditions like exercise [18].

For patients with an extracranial disease, plasma ctDNA has been detected across
different cancer types. However, blood may not be a suitable source from patients with
CNS malignancies since ctDNA levels were infrequently detected in plasma [19,20]. ctDNA
was detectable in the plasma of >75% of patients with advanced cancers, such as bladder,
colorectal, gastroesophageal, ovarian, pancreatic, breast, melanoma, hepatocellular, and
head and neck cancers, in contrast with <10% of glioma patients (2/27) [19].

The proportion of ctDNA in the blood is small and varies depending on tumour
characteristics, including type, grade and burden [16,19]. In contrast, the total amount of
ctDNA in CSF is increased, making it an ideal biofluid to characterise and monitor CNS
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cancer [20,21]. Interestingly, the levels of ctDNA in CSF may be influenced by tumour
burden, tumour progression and anatomical location of the tumour, with regard to the
proximity to CSF reservoirs [21–23].

3. Cerebrospinal Fluid as a Source of ctDNA

CSF is a clear bodily fluid secreted by the choroid plexus that is present in the sub-
arachnoid space of the brain, the spinal cord and the central canal [24].

CSF is in direct contact with the brain parenchyma, and several studies have shown
that CSF is a reliable source of cell-free ctDNA, providing advantages over plasma or serum
for the analysis of CNS tumours [20,21].

Several studies have reported the ability to detect ctDNA in CSF of patients with
CNS malignancies. Gene mutations and molecular alterations have been detected in the
CSF DNA of CNS cancer patients [25–30], followed by genomic landscape characteri-
sation of CSF ctDNA with the development of high throughput sequencing technolo-
gies [20–23,31–36].

CSF samples can be accessed through a lumbar puncture or obtained from the ventri-
cles under certain circumstances. Patients with posterior fossa tumours tend to present
with hydrocephalus, a condition in which the CSF accumulates within the cerebral ventri-
cles and/or subarachnoid spaces [37–39]. A lumbar puncture is contraindicated in these
patients, given the risk of brain herniation; therefore, CSF is obtained from the ventricles
during procedures that are performed to alleviate intracranial pressure and drain the excess
of CSF [38,40–42].

As part of the CNS staging criteria for certain brain tumours, a diagnostic lumbar
puncture is routinely performed as standard of care for CSF cytology evaluation of CNS
lymphoma, CNS metastasis, and medulloblastoma [43–46]. In these cases, the CSF samples
collected as standard of care can be further used to characterise the ctDNA and provide
information about the tumour [20,34,47].

4. Clinical Applications of the CSF ctDNA for CNS Malignancies

CNS tumours are a heterogeneous group of malignancies [48]. In most cases, tumour
resection is required to reduce tumour burden and mass effect [49]. However, liquid
biopsies can be used to complement histopathological diagnosis and are essential for those
patients with inoperable tumours.

The monitoring of CNS malignancies is currently performed by imaging techniques;
however, these are not sensitive for microscopic disease [50]. A complementary liquid
biopsy of CSF could, therefore, be performed to aid clinical assessment by determining
the response to treatment, differentiating pseudoprogression from true progression and
tracking levels of residual disease. In addition, the genomic characterisation of CSF ctDNA
can facilitate the identification of actionable genomic alterations that confer sensitivity
or resistance to clinically available drugs and the detection of mechanisms of resistance
at relapse.

The distinct clinical applications of the analysis of CSF ctDNA are discussed below for
patients with distinct types of CNS cancer.

4.1. Diffuse Gliomas
4.1.1. A Diagnostic and Prognostic Tool

Among diffuse gliomas, glioblastoma (GBM) is the most common malignant brain
tumour in adults, with a 2-year survival of 18% and 5-year overall survival (OS) of 4% [51].
Providing an accurate molecular profile for diagnosis and prognosis is essential and can be
achieved with a CSF liquid biopsy. The analysis of the mutational status of IDH1, IDH2,
ATRX, TP53, TERT, H3F3A and HIST1H3B in CSF ctDNA facilitates the molecular diag-
nosis of diffuse gliomas and provides prognostic information in a relatively noninvasive
manner [22]. In addition, TERT promoter mutations have been detected in the CSF ctDNA
of GBM patients, and shorter OS of patients with high variant allele frequency (VAF) has
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been observed. The results from this pilot study suggested that VAF levels of the TERT
promoter mutation could be a predictor of poor survival [52]. In more recent studies, CSF
was obtained from lumbar punctures in glioma patients, and ctDNA was detected and
was associated with disease burden, tumour progression, and adverse outcomes [20,23].
Moreover, most patients with detectable ctDNA had a negative cytopathologic analysis,
and ctDNA was not detected in plasma [20,23].

Diffuse midline glioma (DMG) is a tumour entity characterised by a K27M mutation
in either H3F3A or HIST1H3B/C; it is usually located in the brain stem, thalamus and spinal
cord [48]. Within H3 K27M-mutant DMG, diffuse intrinsic pontine glioma (DIPG) is a
rapidly growing tumour in the brain stem that typically arises in young children and is
associated with poor survival [53]. The anatomical location of these tumours, the brainstem,
makes them difficult and dangerous to biopsy. Importantly, H3 K27M mutations can be
detected in the CSF ctDNA, facilitating diagnosis and opening the possibility of avoiding
diagnostic surgical biopsies [22,54,55].

The molecular characterisation and understanding of DIPG biology have been im-
proved from specimens obtained from rare diagnostic biopsies and postmortem tissue
donations [56–59]. Indeed, the lack of surgical specimens can be overcome by the analysis
of CSF ctDNA to aid in the management of patients with DIPG and contribute to the
molecular study of this disease to accelerate research. An NGS panel of 68 genes commonly
mutated in brainstem tumours was used to study a cohort of 57 patients with brainstem
tumours, including 23 patients with DIPG. Mutations were detected in the CSF ctDNA of
82.5% of patients, and the presence of H3F3A/HIST1H3B mutations was correlated with
poor OS while the IDH1 mutation predicted better OS [54]. Moreover, longitudinal analysis
of CSF samples offers the possibility of monitoring and allows the tumour evolution of this
dismal disease to be studied.

4.1.2. Monitoring and Therapeutic Strategies

The number of actionable genomic alterations for patients with primary brain tumours
is limited. The most relevant biomarker for glioma is MGMT promoter methylation status.
MGMT promoter methylation causes the loss of MGMT expression, and since it is involved
in DNA repair by reversing DNA alkylation, MGMT promoter methylation renders cells
more susceptible to temozolomide and is associated with longer survival [60–63]. MGMT
promoter methylation was detected using methylation-specific PCR from genomic DNA
extracted from the CSF of glioma patients, with higher sensitivity than from serum [64].

A potential biomarker for GBM is epidermal growth factor receptor (EGFR). EGFR
amplification and EGFRvIII mutation have been detected in RNA within extracellular
vesicles circulating in CSF [65]. This could be of high interest as a biomarker to predict
response to future EGFRvIII-targeted therapies in GBMs.

Longitudinal analysis of CSF ctDNA from glioma patients showed the evolution of
the cancer genome through the mutational changes detected [23].

4.2. Brain and Leptomeningeal Metastases
4.2.1. CSF ctDNA Facilitates Diagnosis and Allows Tumour Genomic Characterisation

About 20–40% of patients with advanced-stage cancers of the lung, breast and melanoma
develop brain metastasis, and approximately 5–8% of these patients are diagnosed with
leptomeningeal metastasis. These are devastating diseases that carry a poor prognosis and
are often resistant to treatment [66–68].

In addition to brain metastasis present in the brain parenchyma, malignant cells
can seed the leptomeninges, causing leptomeningeal metastasis [67,69,70]. The diagnosis
of leptomeningeal metastasis is based on clinical symptoms, MRI scans, and cytology
analysis of CSF [71]. However, up to 20% of patients with positive clinical and radiographic
signs presented false-negative CSF cytology [72,73]. Several studies have shown that
ctDNA can be detected in the CSF of patients with negative cytology analysis [20,27,32,74].



Cancers 2021, 13, 1989 6 of 15

Cytology has limited sensitivity, and the analysis of ctDNA can complement the diagnosis
of leptomeningeal metastases.

Brain metastasis can present different genomic alterations compared to their pri-
mary extracranial tumour [12]. Several studies have shown that the analysis of CSF
ctDNA enables the characterisation of the genomic complexity of CNS metastases, in-
cluding intratumour heterogeneity, revealed with the identification of trunk and private
genomic alterations. Moreover, the genomic landscape of CNS metastasis, including the
brain lesion’s private alterations, was better represented from the ctDNA in the CSF than
plasma [20,32,75]. Analysis of CSF ctDNA from a cohort of 26 patients with leptomeningeal
metastases from non-small cell lung cancer (NSCLC) revealed their unique genetic profiles,
including mutations in several driver genes, copy number variations (CNVs) in MET,
ERBB2, KRAS, ALK, and MYC, and loss of heterozygosity in TP53 [76].

4.2.2. Patient Monitoring and Identification of Therapeutic Targets

There are several targeted therapies for brain metastases [77–86]. For EGFR-mutated
brain metastases from NSCLC, first-, second- and third- generation EGFR tyrosine kinase
inhibitors (TKIs) are available [87–90]. In addition, for NSCLC with ALK gene rearrange-
ment, CNS penetration and therapeutic potential were exhibited by second-generation ALK
inhibitors [84–86]. There are also targeted therapies for patients diagnosed with HER2+
breast cancer and melanoma patients, including BRAF and MEK inhibitors [82,83,91,92].
For the treatment of leptomeningeal metastases, targeted therapies for the aforementioned
actionable genomic alterations may also be effective [93].

The availability of targeted therapies highlights the importance of the identifica-
tion of actionable genomic alterations or resistance mutations in genes, including EGFR,
ALK, BRAF and HER2, which have been detected from CSF ctDNA in several stud-
ies [20,21,31,32,94–96]. For example, EGFR–TKI resistance mutation EGFR T790M has
been detected in the CSF ctDNA of lung cancer patients [94,97].

A study of 21 patients with brain metastasis from NSCLC compared the NGS results
obtained from different samples to reveal the mutation pattern of driver genes for each
patient. Mutations were detected in 95.2%, 66.7% and 39% of patients from CSF ctDNA,
plasma ctDNA, and plasma circulating tumour cells, respectively. The most mutated gene
was EGFR, followed by KIT, PIK3CA, TP53, SMAD4, ATM, SMARCB1, PTEN and FLT3 (all
>15%). For EGFR mutations, the detection rate was 57.1% (12/21) from CSF ctDNA, which,
interestingly, was higher for patients with leptomeningeal (81.8%; 9/11) compared with
brain parenchymal (30%; 3/10) metastases [98].

The analysis of CSF ctDNA can also contribute to monitoring response to treatment.
Metastasis in the CNS developed in a patient with HER2+ breast cancer. Analysis of
baseline CSF ctDNA revealed mutations in TP53 and PIK3CA and amplification in ERBB2
and cMYC. Following treatment with T-DM1, extracranial disease control was achieved,
and marker levels in plasma decreased. However, the levels increased in CSF ctDNA,
consistent with poor treatment benefit to the CNS [99].

Altogether, these results indicate that CSF is a more suitable fluid than plasma to
reveal the mutational profile of CNS metastases and can aid in diagnosis, tailored treatment
selection and monitoring.

4.3. CNS Lymphoma

Malignant B-cells can infiltrate the CNS and are associated with poor prognosis,
particularly at relapse [100]. Primary CNS lymphoma is defined by the absence of systemic
disease in contrast to secondary CNS lymphoma that presents infiltration into the CNS
with previous or concomitant systemic lymphoma [101,102].

ctDNA has only been detected in the plasma of a minority of patients with restricted
CNS lymphoma [103,104]. In contrast, several studies of patients with CNS lymphomas
detected ctDNA in CSF [47,105–109].
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Diagnosis and monitoring of CNS lymphoma are challenging, given the difficulties
of tumour biopsies and the lack of sensitivity of CSF standard analysis (cytology and
flow cytometry) and neuroimaging. The detection of the MYD88 L265P mutation strongly
suggests the diagnosis of primary CNS lymphoma, and this mutation has been detected in
the CSF ctDNA of patients with CNS lymphoma [47,106,108,109], showing that the analysis
of CSF ctDNA could complement the diagnosis.

An NGS-based analysis of the CSF cfDNA of 8 patients with CNS lymphoma, at
recurrence, detected tumour-derived genetic alterations and showed that the clearance of
ctDNA from CSF was associated with sustained tumour responses [105].

The comparison of CSF ctDNA with plasma ctDNA and CSF standard analysis (cy-
tology and flow cytometry) revealed that the analysis of CSF ctDNA better detected CNS
disease in patients with B-cell lymphoma [47]. Moreover, longitudinal analysis of CSF
ctDNA levels allowed the monitoring of response to treatment, the detection of residual
disease and predicted relapse. The dynamic changes observed in CSF ctDNA recapitulated
the evolution of the disease for patients with CNS lymphoma [47].

4.4. Medulloblastoma

CNS tumours are the leading cause of cancer-related mortality in children and ado-
lescents due to the aggressiveness of certain subtypes, including medulloblastoma and
high-grade gliomas such as DMG [110,111].

Medulloblastoma (MB), an embryonal tumour of the CNS, is the most aggressive brain
tumour in childhood that can also occur in adults, although this is less common [112]. MB
is a complex and evolving heterogeneous disease that can be divided into four molecular
consensus subgroups (WNT, SHH, Group 3 and Group 4), with further subtypes identi-
fied [113–117]. The lack of sufficient sample, intratumour heterogeneity or the presence
of disseminated disease make diagnosis and monitoring difficult [8,118–121]. However,
hydrocephalus is common amongst these patients, and CSF samples can be obtained prior
to tumour surgical resection or biopsy [40,42]. In addition, CSF samples are routinely col-
lected through a lumbar puncture for cytology analysis to assess metastatic dissemination
according to Chang’s M-staging system, in combination with brain and spinal MRIs [45].

The study of paediatric patients with MB showed that ctDNA was more abundant
in CSF (76.9%, 10/13 patients) than plasma (1/13 patients) for patients with negative CSF
cytology results. Moreover, exome sequencing of CSF ctDNA recapitulated the tumour
mutational burden and the genomic alterations, including MB common mutations (PTCH1,
TP53), CNVs (MYCN and GLI2 amplification) and arm-level chromosomal aberrations
(chromosome 17p loss), providing diagnostic and prognostic information [34]. Longitudinal
CSF samples were also collected, and ctDNA analysis detected residual disease, identified
intratumour and interlesion heterogeneity, and revealed a genomic transformation of the
tumour at relapse [34]. More recently, another study reported the detection of ctDNA in
CSF; however, shared genetic mutations between CSF and the tumour specimen were only
identified in 22% (2/9) of patients. The authors suggested that this could be explained by
the time-interval differences between tumour and CSF collection [122].

MB also presents abnormal DNA methylation changes, with distinct epigenetic signa-
tures identified across MB subtypes that can be altered during tumour progression and
treatment [114,123]. The epigenetic analysis of CSF ctDNA from 4 MB patients (3 with
matching tumour samples) was attained. A positive correlation of tumour and CSF sam-
ples was identified, suggesting that CSF ctDNA could be used to monitor changes in
MB tumour DNA methylomes and hydroxymethylomes. In addition, DNA methylation
markers of diagnostic and prognostic value could be detected in the CSF ctDNA [124].
In summary, CSF ctDNA analysis could facilitate the clinical management of paediatric
patients with MB.
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5. Challenges and Limitations

Obtaining CSF samples is less invasive than surgery; however, in some cases, a lumbar
puncture is not feasible. Contraindications to performing a lumbar puncture include risk
for cerebral herniation, abnormal intracranial pressure and coagulation abnormalities [41].

The analysis of ctDNA could be used as a biomarker of residual disease. However,
it will be important to establish the dates of sample collection, particularly postsurgery,
since the abundance of trauma-induced cfDNA, up to 4 weeks from the surgical procedure,
could dilute the fraction of ctDNA and influence the results [125].

Another limitation is that ctDNA is not detected in all patients with CNS malignan-
cies. Detection of ctDNA may be influenced by tumour burden, tumour progression and
anatomical location [21–23]. Therefore, further research to determine the biological factors
involved and improve technological sensitivity will be required.

For patient monitoring through the analysis of specific mutations by sensitive tech-
niques such as droplet digital PCR (ddPCR), prior knowledge of the tumour genetic
profile is required, and new mutations (not present in the primary sample) can appear in
the relapse setting. In contrast, whole-exome sequencing (WES), shallow whole-genome
sequencing (WGS) or specific gene panels might provide more information to aid with
tumour characterisation and monitor residual disease. However, it is important to consider
sensitivity, turnaround time and cost-effectiveness.

In addition, imaging techniques may sometimes reflect either inflammatory processes
from treatment or neoplastic progression [10]. Further research is needed to investigate
whether the analysis of CSF ctDNA can help distinguish between true progression from
pseudoprogression.

To determine the impact of the results and translate them into a tool for clinical practise,
standardisation of protocols and larger studies with more patients will be required. The
implementation of well-designed and controlled clinical trials will be essential to validate
the use of CSF ctDNA as a liquid biopsy for the clinical management of patients.

6. Conclusions and Future Insights

CNS cancer is a dismal disease. It has elevated mortality and disabling effects on
patients and is a massive burden on global health care systems. However, early detection
and treatment can result in improved outcomes [1].

Several studies of the CSF ctDNA of patients with different types of primary and
metastatic CNS tumours have been performed and show promising results, highlighting
the potential of CSF ctDNA as a biomarker.

The challenges will be to translate these findings into clinically validated assays to im-
prove patient healthcare. Standardisation of protocols and further studies and clinical trials
will be necessary to translate the current results into a feasible tool for its implementation
in the clinical setting.

A liquid biopsy of CSF can characterise the tumour for diagnosis and provide prog-
nostic information, also complementing the information obtained from the tumour sample
if a biopsy or resection is feasible (Figure 1). During patient follow-up, it could be used to
monitor the response to treatment through the levels of ctDNA and the detection of mini-
mal residual disease. Importantly, it can facilitate early detection of relapse and identify
therapeutic targets or mechanisms of resistance in order to adjust the therapeutic strategy
at relapse (Figure 2).

Altogether, the analysis of CSF ctDNA remains a promising strategy to improve the
clinical management of patients with CNS malignancies, and further studies are required
to make liquid biopsies a standard clinical tool.
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