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Ginsenoside Rh1 Induces MCF-7 Cell Apoptosis and
Autophagic Cell Death through ROS-Mediated Akt Signaling
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Simple Summary: Breast cancer (BC) is the most common cause of cancer-related deaths among
women worldwide, and its incidence has been increasing. However, current therapeutic approaches,
such as chemotherapy, radiation, and hormonal therapy, have become increasingly ineffective because
of their severe adverse effects and multidrug resistance. Therefore, the discovery of new potential
candidates for BC therapy is essential. Here, we investigated whether ginsenoside Rh1 exhibits
anticancer effects on BC. We found that this ginsenoside effectively inhibited the growth of BC cells
in both cell cultures and mice. Therefore, ginsenoside Rh1 is a promising candidate for BC treatment.

Abstract: Breast cancer (BC) is the leading cause of cancer-related deaths among women worldwide.
Ginsenosides exhibit anticancer activity against various cancer cells. However, the effects of gin-
senoside Rh1 on BC and the underlying mechanisms remain unknown. Here, we investigated the
anticancer effects of Rh1 on human BC MCF-7 and HCC1428 cells and the underlying signaling
pathways. The anticancer effects of Rh1 in vitro were evaluated using sulforhodamine B (SRB),
3-(4, 5-dimethylthiazole-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), clonogenic assay, propidium
iodide (PI)/Hoechst staining, Western blotting, flow cytometry, and immunofluorescence analysis.
The in vivo effects of Rh1 were determined using a xenograft model via hematoxylin and eosin and
the immunohistochemistry staining of tumor tissues. We found that Rh1 exerted cytotoxicity in
the cells by increasing cell apoptosis, autophagy, and cell cycle arrest. These effects were further
enhanced by a phosphatidylinositol 3-kinase (PI3K) inhibitor but were rescued by the inhibition of
reactive oxygen species (ROS). Moreover, enhanced ROS generation by Rh1 inhibited the activation of
the PI3K/Akt pathway. Consistently, Rh1 treatment significantly reduced tumor growth in vivo and
increased the ROS production and protein expression of LC3B and cleaved caspase-3 but decreased
the phosphorylation of Akt and retinoblastoma (Rb) in tumor tissues. Taken together, Rh1 exerted a
potential anticancer effect on BC cells by inducing cell cycle arrest, apoptosis, and autophagy via
inhibition of the ROS-mediated PI3K/Akt pathway.

Keywords: Akt; apoptosis; autophagy; ginsenoside Rh1; reactive oxygen species

1. Introduction

Cancer is a major global health issue that has been increasing dramatically. Among
the different types of cancer, breast cancer (BC) is commonly associated with cancer-related
deaths in women [1]. Chemotherapy, radiation, hormonal therapy, and surgery have
been used as therapies for BC. However, because of severe adverse effects and multidrug
resistance, these therapeutic approaches have become increasingly ineffective [2]. Therefore,
discovering new potential candidates for BC therapy is essential, and natural compounds
have been attracting great attention owing to their promising anticancer properties [3].

Reactive oxygen species (ROS), which are oxygen-containing reactive molecules,
include superoxide anions, hydroxyl radicals, singlet oxygen, and hydrogen peroxide.
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The excessive production of ROS can promote several types of cell death, such as apop-
tosis, autophagy, ferroptosis, and necrosis [4]. Emerging data have demonstrated that
elevated ROS production leads to cytotoxicity in cancer cells via different mechanisms,
including cell cycle arrest, apoptosis, and autophagy promotion [4–8]. The deficiency of
programmed cell death increases the life expectancy of neoplastic cells, which promotes
cancer progression [9]. Apoptosis, a type of programmed cell death, is a common target of
anticancer drugs [9,10]. Apoptosis is promoted via both intrinsic and extrinsic pathways [9].
These pathways lead to the activation of caspases, cysteine proteases that cleave different
substrates, and, subsequently, cause cell death. Notably, numerous ginsenosides exert
anticancer effects through different mechanisms, such as the induction of apoptosis and
autophagy, by increasing ROS generation [5–7].

Uncontrolled cell proliferation in cancer is attributed to the dysregulation of cell
cycle progression; therefore, cell cycle regulation is considered a potential target in cancer
therapy [11]. There are four distinct phases of the cell cycle, including the G0/G1, S, G2,
and M phases. Cyclin-dependent kinases (CDKs) play a critical role in the control of cell
cycle progression. Recently, several CDK4/6 inhibitors, such as Palbociclib, ribociclib,
and abemacicliz, have been accepted by the Food and Drug Administration (FDA) for
the treatment of hormone receptor-positive and human epidermal growth factor receptor
2 (HER2)-negative BC [12]. Activated CDK4 and CDK6 promote cell cycle progression
from the G0/G1 to S phase [11]. The activity of these CDKs is positively regulated by
interactions with D-type cyclins (D1, D2, and D3) and negatively regulated by the binding
to CDK inhibitors. In addition, cyclin D-CDK4/6 complexes drive cell cycle progression by
sequestering p21CIP1 and p27KIP1, as well as by phosphorylating various targets, especially
the retinoblastoma (Rb) tumor-suppressor protein [11]. p21CIP1 and p27KIP1 are two CDK
inhibitors that bind to and prevent the activation of cyclin E-CDK2 kinase [11].

Moreover, later studies revealed that autophagy can act as a tumor suppressor and,
therefore, can be a target for cancer therapy [13]. The autophagy process consists of five
phases: initiation, nucleation, maturation, fusion, and degradation, and is regulated by var-
ious factors [14]. mTORC1 is a repressor of autophagic responses, and mTORC1 inhibition
results in an increase in autophagy [14]. In addition, autophagy-related (ATG) proteins and
their core complexes, such as Unc-51-like autophagy activating the kinase core complex,
autophagy-specific class III phosphatidylinositol 3-kinase (PI3K) complex, ATG12, and
LC3 ubiquitin-like conjugation systems, are associated with autophagy progression [13].
Excessive autophagy can lead to type II programmed cell death through the degradation
of the mitochondria and molecules critical for cell survival [13].

The PI3K/Akt/mTOR signaling pathway is frequently stimulated in various human
cancers, contributing to the regulation of various processes of cancer development, such as
metabolism, proliferation, apoptosis, chemoresistance, and genomic instability [15,16]. The
PI3K/Akt signaling pathway is known to play a crucial role in controlling the autophagy
process [13]. On the other hand, this pathway contributes to the regulation of cell survival
and enhanced protection of BC cells from apoptosis during tumorigenesis [17]. It has been
demonstrated that PI3K inhibition leads to a decrease in cell growth and an increase in
cell death in cancer cells [18]. Therefore, PI3K/Akt inhibition has been suggested as an
important anticancer strategy [18].

Ginsenosides are the major bioactive compounds of the root of Panax ginseng Meyer,
which display a variety of pharmacological activities, such as anti-inflammatory, anticancer,
antidiabetic, etc. [5,19,20]. Ginsenosides are divided into three types based on aglycone
moieties: protopanaxadiol-type ginsenosides, protopanaxatriol-type ginsenosides, and
oleanolic acid-type ginsenosides [5]. Among them, ginsenoside Rh1 (Rh1) has been identi-
fied as a protopanaxatriol-type ginsenoside, which possesses anticancer activities in several
cancer cell lines, such as human lung carcinoma, human cervix uterine adenocarcinoma,
colorectal cancer cells, and malignant glioma cells [19,21,22]. Rh1 has been found to signifi-
cantly induce cytotoxicity in human lung cancer cells from 100 µM [23], inhibit colorectal
cancer cell proliferation from 50 µM [21], and suppress malignant glioma cell invasion
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at 300 µM [22]. However, the anticancer effect of Rh1 on BC cells and the underlying
mechanisms remain to be elucidated. In this study, we investigated the anticancer effects
of Rh1 on MCF-7 and HCC1428 BC cells and their potential mechanisms.

2. Results
2.1. Rh1 Showed Anticancer Effects on BC Cells

To investigate the anticancer effects of Rh1 on BC, MCF-7, HCC1428, and BT474 cells
were treated with different concentrations of Rh1 (25, 50, 100, and 150 µM) for 72 h, and
a sulforhodamine B (SRB) assay was then performed to analyze the cell viability. Four-
parameter logistic regression was also assessed to determine the half-maximal inhibitory
concentration (IC50) values. The IC50 values of Rh1 in MCF-7, HCC1428, and BT474 cells
were 90.28 µM, 147.4 µM, and >150 µM, respectively. The highest inhibitory effect of Rh1 on
the cell viability was observed in the MCF-7 cells (Figure 1A). Next, to confirm the effects
of Rh1 on the cell viability with morphological changes, MCF-7 cells were stained with the
red fluorescent dye propidium iodide (PI) and counterstained with Hoechst 33342 nucleic
acid stain for nuclei indication. PI-stained dead cell nuclei was significantly induced by Rh1
treatment; particularly, 50-µM Rh1-induced dead cell nuclei populations were similar to
10-µM 4-hydroxytamoxifen (4-OHT) treatment (Figure 1B,C). Furthermore, the inhibitory
effect of Rh1 was confirmed using a clonogenic assay. Colony formation was significantly
decreased by treatment with Rh1 from a concentration of 10 µM; in particular, Rh1 almost
suppressed the cell reproductive viability at a concentration of 100 µM (Figure 1D,E).
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Figure 1. Anticancer effect of Rh1 on breast cancer (BC) cells. (A) MCF-7, HCC1428, and BT474 cells were treated with Rh1
(0, 25, 50, 100 and 150 µM) for 72 h. Cell viability was evaluated using the SRB assay. (B,C) MCF-7 cells were treated with
Rh1 (10, 25, and 50 µM) or 4-OHT (10 µM) for 24 h. 4-OHT was used as a positive control. After the double staining with
PI and Hoechst, the cells were observed under a fluorescent microscope, and the numbers of dead cells were quantified;
a total of 5 fields per sample were counted. The cells stained with PI (red fluorescence) were indicated as dead cells. Images
are shown at ×200 magnification. (D,E) Colony formation was assayed on a 6-well plate for 10 days, and then, the cells
were fixed with 4% formaldehyde and stained with 0.5% crystal violet. Representative images, which are shown at ×1
magnification (E), and quantified bar graph (F) indicate the colony formation of MCF-7 cells. (A,C,E) Data are expressed as
the mean ± SD (n = 3), * p < 0.05, ** p < 0.01, and *** p < 0.001 as compared with the control. 4-OHT: 4-hydroxytamoxifen,
SRB: sulforhodamine B, PI: propidium iodide, and IC50: half-maximal inhibitory concentration.
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2.2. Rh1 Induced Cell Apoptosis and Cell Cycle Arrest in BC Cells

Next, we investigated whether Rh1 mediates the apoptotic pathway in BC cells. MCF-
7 cells were pretreated with 10-µM Z-VAD-FMK, a caspase inhibitor, before treatment
with Rh1 for 24 h and were subjected to the SRB assay. Rh1-decreased cell viability was
partially recovered by Z-VAD-FMK, indicating that Rh1-induced cell death is related
to apoptosis (Figure S3). Next, Rh1 treatment strongly increased the expression of the
apoptosis-related protein, cleaved PARP, from 5 µM in MCF-7 cells (Figure 2A) and in
HCC1428 cells (Figure S1A). In addition, the 50-µM Rh1-treated group showed increased
cleaved caspase-3 expression, similar to the 10-µM 4-OHT-treated group (Figure 2B,C).
4-OHT was used as a positive control for cleaved caspase-3 enhancement.
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Figure 2. Rh1 induced cell apoptosis and cell cycle arrest in MCF-7 cells. (A) The cells were treated with Rh1 (0, 5, and 25 µM)
for 24 h. Whole-cell lysates were then used to analyze the protein expression as indicated. α-tubulin was used as a loading
control. (B,C) The cells were treated with Rh1 (0, 25, and 50 µM) or 4-OHT (10 µM) for 24 h. An immunofluorescence analysis
was performed after fixing and immunostaining. Images are shown at ×200 magnification (B). Scale bar indicates 30µm.
Quantified graph showed the relative fluorescent intensity of cleaved caspase-3 using Image J software (C). (D) MCF-7 cells
were treated with Rh1 at different concentrations for 24h. After the treatment, the cells were harvested for the cell cycle
distribution analysis using flow cytometry. (E) The cells were treated with Rh1 (0, 5, and 25 µM) for 24 h. Total cell lysates
were analyzed by Western blotting using the indicated antibodies. (F,G) The cells were treated with Rh1 (0, 5, and 25 µM)
for 24 h. Total cell lysates were analyzed by Western blotting using the indicated antibodies (F). The relative quantification of
the protein levels was analyzed by Image J software (G). (A,C,D,G) Data are expressed as the mean ± SD (n = 5), * p < 0.05,
** p < 0.01, and *** p < 0.001 as compared with the control. 4-OHT: 4-hydroxytamoxifen, CDK: cyclin-dependent kinase, and
GAPDH: glyceraldehyde 3-phosphate dehydrogenase.

In addition, to identify whether Rh1-decreased cell viability is involved in cell cycle
arrest, a flow cytometry analysis was used to detect the cell cycle distribution in MCF-7 cells
treated with Rh1. Compared to the control, cells incubated with Rh1 (25 and 50 µM) for
24 h showed an increase in G0/1-phase accumulation (Figure 2D). Consistently, treatment
with Rh1 reduced the expression of cell cycle-related proteins, including cyclin D1, cyclin
D3, CDK2, CDK4, and CDK6 (Figure 2E). Additionally, Rh1 led to a significant reduction
in phosphorylated Rb protein levels and a remarkable increase in the protein expression
of p27 in MCF-7 cells (Figure 2F,G) and HCC1428 cells (Figure S1B). Taken together, these
data suggest that Rh1 possesses anticancer effects in MCF-7 cells by promoting cell cycle
arrest and the apoptotic pathway.
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2.3. Anticancer Effects of Rh1 Are Associated with the Akt Signaling Pathway and
ROS Modulation

ROS play an important role in inducing cytotoxicity in cancer cells [4]. Herein, ROS
levels in Rh1-treated MCF-7 cells were examined, and the data showed that Rh1 triggered
ROS generation in MCF-7 cells in a dose-dependent manner (Figure 3A). There are a variety
of sources of ROS, such as NADPH oxidases (NOX), mitochondrial electron transport chain,
nitric oxide synthases, cytochrome P450 reductase, and xanthine oxidase. Among them,
NOX are the main source to generate ROS, and NOX isoforms have been found to be
involved in apoptosis, autophagy, and cell cycle regulation in breast cancer cells [24,25].
To investigate whether Rh1-produced ROS are involved in NOX activity, MCF-7 cells
were pretreated with the ROS scavenger, N-acetylcysteine (NAC), the nonspecific NOX
inhibitor, diphenyleneiodonium (DPI), or the specific NOX2 inhibitor, apocynin (APO).
After treatment with 50-µM Rh1 for 24 h, intracellular ROS production was measured
using the DCF-CA assay. The results showed that Rh1-increased ROS production was
rescued by NAC, DPI, and APO. The percentage of ROS decreased by DPI or NAC was
similar, but APO partially reversed the effect of Rh1 (Figure 3B). The MCF-7 cell viability
was further confirmed using these inhibitors, and Rh1-induced cell death was significantly
restored by NAC, DPI, and APO at a ratio consistent with the ROS production data in
Figure 3B (Figure 3C). This suggests that NOX activities play a key role in Rh1-induced
ROS production.
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Figure 3. The anticancer effect of Rh1 is associated with the PI3K/Akt pathway and ROS production. (A) MCF-7 cells were
treated with Rh1 (25 to 100 µM) for 24 h. ROS production was determined using the DCF-DA assay. (B,C) MCF-7 cells
were pretreated with NAC (20 mM), APO (500 µM), or DPI (250 nM) for 1 h, followed by the treatment with Rh1 (50 µM)
for 24 h. ROS production was determined using the DCF-DA assay (B). Cell viability was measured by the SRB assay (C).
(D,E) MCF-7 cells were treated with Rh1 at various concentrations for 30 min. The whole-cell lysates were then used to
analyze the kinase activity of ERK1/2 and Akt by Western blotting (D). The relative quantification of the protein levels
was analyzed using Image J software (E). (F,G) MCF-7 cells were pretreated with NAC (20 mM) for 3 h, followed by the
treatment with Rh1 (25 and 50 µM) for 30 min or 24 h. Total cell lysates were subjected to Western blotting. The relative
quantification of the protein levels in the experiment with a 24-h treatment of Rh1 was analyzed using Image J software (G).
(H) The cells were pretreated with 5-µM LY294002 for 3 h, followed by the treatment with Rh1 for 24 h. Total cell lysates
were subjected to Western blotting. (A–C,E,G) Data are expressed as the mean ± SD (n = 5), * p < 0.05, ** p < 0.01, and
*** p < 0.001 as compared with the control and # p < 0.05, ## p < 0.01, and ### p < 0.001 as compared with the Rh1-treated
samples. NAC: N-acetylcysteine, LY294002: PI3K inhibitor, APO: apocynin, and DPI: diphenyleneiodonium.
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Additionally, the PI3K and MAPK pathways play critical roles in promoting the
proliferation of cancer cells [16]. To clarify the mechanisms responsible for the inhibitory
effect of Rh1 on MCF-7 and HCC1428 cell viability, PI3 kinase and MAP kinase activity were
analyzed after exposure to Rh1 for 30 min. Compared to the control sample, Rh1-treated
cells remarkably decreased the phosphorylation of Akt but not ERK1/2 (Figure 3D,E, and
Figure S2). Involvement of the PI3K/Akt pathway in the antitumor effect of Rh1 in MCF-7
cells was confirmed using a PI3K inhibitor, LY294002 (5 µM), and we found that LY294002
further decreased the phosphorylation of Akt and mTOR compared to the treatment with
Rh1 (Figure 3H).

Next, we investigated whether ROS would regulate the PI3K pathways. NAC pre-
incubation remarkably rescued the suppression of Akt and mTOR phosphorylation induced
by Rh1 (Figure 3F,G). These data indicate that the anticancer effect of Rh1 is involved in the
PI3K pathway and is regulated by ROS.

2.4. Cell Cycle Arrest and Apoptosis Induced by Rh1 Is Associated with the ROS-Mediated
Akt Pathway

To determine whether Rh1-induced cell apoptosis and cell cycle arrest would mediate
the role of ROS, MCF-7 cells were pre-incubated with 20-mM NAC before exposure to Rh1
for 24 h. An immunofluorescence analysis revealed that Rh1 (25 and 50 µM) significantly
inhibited the phosphorylation of Rb in MCF-7 cells, whereas a pretreatment with 20-mM
NAC recovered this effect (Figure 4A,B). Consistently, the Rh1-induced upregulation of
p27 expression and downregulation of Rb phosphorylation were rescued by the presence
of NAC (Figure 4C). In addition, ROS inhibition reduced the elevated protein expression of
cleaved PARP caused by Rh1 (Figure 4C). Furthermore, the role of the PI3K pathway in
Rh1-produced cell apoptosis and cell cycle arrest in MCF-7 cells was confirmed by using
LY294002. The cells were pretreated with 5-µM LY294002 for 3 h and then exposed to
Rh1 for 24 h. As seen in Figure 4D, inhibition of the PI3K pathway by LY294002 further
increased the protein expression of cleaved PARP and p27 and further decreased the
phosphorylation of p-Rb compared to the sample treated with Rh1 alone. Taken together,
these data indicate that Rh1-induced cell apoptosis and cell cycle arrest are associated with
the PI3K pathway and ROS modulation.

2.5. Rh1 Stimulates Autophagy in BC Cells

To determine whether the anticancer effect of Rh1 could be related to autophagy
induction, MCF-7 cells were pretreated with 10-µM 3-methyladenine (3-MA), an autophagy
inhibitor, before treatment with Rh1 for 24 h. Cell viability was then analyzed through
the SRB assay. The data showed that Rh1-decreased cell viability was partially reversed
by 3-MA, indicating that Rh1-induced cell death is related to autophagy (Figure S3).
Next, the expression of autophagy-related proteins was examined in Rh1-treated cells.
The Western blot analysis showed that Rh1 treatment increased the expression of Atg12 and
LC3A/B-II compared to that in the control groups in MCF-7 cells (Figure 5A,B). Notably, to
demonstrate the effects of the compound on the autophagic flux, a dual green fluorescent
protein (GFP)/red fluorescent protein (RFP)-LC3 autophagy flux sensor system was used.
This system is based on the expression of the GFP-LC3-RFP-LC3∆G fusion protein, which
consists of GFP fused to wild-type LC3 and RFP fused to the LC3 Gly120 mutant [26].
This fusion protein is intracellularly cleaved by ATG4 proteases into equimolar ratios.
GFP-LC3 is localized in autophagosomes and is partly degraded in autolysosomes due to
the induction of autophagy. Meanwhile, the mutated RFP-LC3∆G cannot be conjugated to
autophagosomes, which is not affected by autophagy, thus serving as an internal control
(Figure 5C) [26]. There was an overall decrease in the relative ratio of GFP/RFP in GFP-
LC3-RFP-LC3∆G reporter-expressing MCF-7 cells treated with Rh1, as compared to the
untreated cells (Figure 5D). This indicates an enhancement of autophagy flux in cells
exposed to Rh1. In addition, the increased expression of LC3A/B in MCF-7 cells treated
with Rh1 was confirmed by an immunofluorescence analysis (Figure 5E,F).
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Figure 5. Rh1 induces autophagy in MCF-7 cells. (A,B) The cells were treated with Rh1 for 24 h. Total cell lysates were
then analyzed using Western blotting (A). The relative quantification of protein levels was analyzed using Image J software
(B). (C) The scheme presents the principle of the dual GFP/RFP-LC3 autophagy flux sensor system. (D) MCF-7 cells were
transduced with pMRX-IP-GFP-LC3-RFP-LC3∆G retroviral vectors for 30 h and then treated with Rh1 (25 µM) for 14 h. The
cells were then observed under a laser scanning confocal spectral microscope. Images are shown at ×200 magnification.
Scale bar indicates 30µm. The relative GFP/RFP ratio is represented as the mean ± SD (n = 5). *** p < 0.001 as compared
with the control. (E,F) The cells were treated with Rh1 (25 and 50 µM) or 4-OHT (10 µM) for 24 h. An immunofluorescence
analysis was performed after fixing and immunostaining. Images (E) are shown at ×200 magnification. Scale bar indicates
30µm. The relative fluorescence intensity of LC3A/B (F) are represented as the mean ± SD (n = 5), * p < 0.05 and ** p < 0.01
as compared with the control. (G,H) The cells were pretreated with 20-mM NAC (G) or 5-µM LY294002 (H) for 3 h, followed
by the treatment with Rh1 for 24 h. Total cell lysates were subjected to Western blotting. 4-OHT: 4-hydroxytamoxifen, NAC:
N-acetylcysteine, LY294002: PI3K inhibitor, GFP: green fluorescent protein, and RFP: red fluorescent protein.
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Since we found that the inhibition of Akt phosphorylation induced by Rh1 involved
ROS production, the effect of Rh1 on the expression of autophagy-related proteins was
further examined in the presence of NAC. Figure 5G shows that Atg12 and LC3A/B-II
expression elevated by Rh1 were rescued by NAC, suggesting that autophagy induction
by Rh1 is also associated with ROS production. Additionally, the role of the PI3K/Akt
pathway in autophagy induction in Rh1-treated MCF-7 cells was elucidated. The cells
were pretreated with 5-µM LY294002 before treatment with Rh1 and subjected to Western
blotting. Figure 5H shows that inhibition of the PI3K pathway by LY294002 enhanced
the effect of Rh1 on the expression of Atg12 and LC3A/B-II. Altogether, these findings
documented the ability to induce the autophagy of Rh1 in MCF-7 cells, which is correlated
with the inhibition of the PI3K/Akt pathway and ROS generation.

2.6. Rh1 Showed a Competitive Effect with an Estrogenic Agent on BC Cells

Rh1 has been reported to exhibit weak estrogenic activity in BC cells [27]. Consistently,
we found that Rh1 increased estrogen receptor alpha (ERα) protein expression in both
MCF-7 and HCC1428 cells (Figure 6A). Therefore, we investigated whether this ginsenoside
could exert a competitive effect in the presence of an estrogenic agent. Since the binding
between estrogen and plasma membrane-associated ERα rapidly activates the PI3K/Akt
pathway in BC cells [28], we first examined the effect of Rh1 on Akt activation induced by
diethylstilbestrol (DES), a synthetic form of estrogen, in MCF-7 and HCC1428 cells. The cells
were treated with 10-nM DES in the presence or absence of various concentrations of Rh1 for
30 min. 4-OHT was used as a positive control for the competitive effect on ERα activation.
The increase in Akt phosphorylation induced by DES was completely inhibited by the
presence of Rh1, and it further decreased compared to that in the control (Figure 6B,C).
Notably, after 24 h of exposure, DES significantly augmented the viability of MCF-7 cells
and HCC1428 cells, whereas Rh1 dramatically suppressed these effects (Figure 6D,E).
Consistent with the effect of Rh1 on the cell cycle and autophagy regulation in previous
experiments, the presence of Rh1 completely reversed the increased Rb phosphorylation
and the decreased LC3A/B-II protein expression caused by DES (Figure 6F). Taken together,
these data suggest that Rh1 exerts a competitive effect to inhibit BC cell proliferation in
response to estrogenic agents.

2.7. Rh1 Exerted Antitumor Activities in a Xenograft Model

To further confirm the anticancer effect of Rh1 in vivo, xenograft tumors were es-
tablished by transplanting MCF-7 cells into the flanks of nude mice. The xenograft mice
were treated with Rh1 (2 and 5 mg/kg) or 5-fluorouracil (5-FU; 30 mg/kg) every three
days for 16 days. As a result, the drug treatment led to a significant decrease in tumor
size (Figure 7A–C) and attenuated cell growth, as indicated by the decrease in cell popula-
tion, which was recorded via hematoxylin and eosin (H&E) staining of the tumor sections
(Figure 7D, upper panel). Additionally, as seen through immunohistochemical staining,
there was a decrease in the levels of phosphorylated Rb protein expression but increased
levels of LC3B and cleaved caspase-3 in the tumors of Rh1-treated and 5-FU-treated mice, as
compared with the vehicle-treated group (Figure 7D,E). Consistently, the dihydroethidium
(DHE) assay showed a remarkable increase in ROS production in the tumors of treated
mice (Figure 7F, two upper panels, and Figure 7G). Furthermore, Akt phosphorylation in
the tumors of Rh1-treated mice was dose-dependently decreased, as shown by immunoflu-
orescence staining (Figure 7F, two lower panels, and Figure 7G). These results indicate
that Rh1 possesses potential antitumor properties in BC in vivo and further confirmed the
in vitro results, in which Rh1 induced autophagy, apoptosis, and cell cycle arrest through
ROS-mediated Akt inhibition.
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Figure 7. Rh1 exerted antitumor activities in a xenograft model. (A) Estimated tumor volumes were measured every three days
after the implantation using caliper measurements and calculated with the following formula: volume = 0.5× (length×width2).
(B,C) Sixteen days after the administration of Rh1 (2 and 5 mg/kg), 5-FU (30 mg/kg), or DMSO, the xenograft tumors were
collected; the average ± SD tumor volume (B) and tumor weight (C) were analyzed. *** p < 0.001 compared with the control
sample. The images showed the tumors generated by different groups (C). (D) Hematoxylin and eosin staining (upper panel) and
an immunohistochemistry analysis of p-Rb, LC3B, and cleaved caspase-3. Scale bar indicates 100 µm. (E) Quantified bar graph
indicates p-Rb, LC3B, and cleaved caspase-3 expression in tumor tissues. (F) Dihydroethidium (DHE) staining (two upper panels)
and immunofluorescence staining of Akt phosphorylation (two lower panels) in tumor tissues. (G) Quantified bar graph indicates
the relative fluorescence levels of DHE and Akt phosphorylation expression in tumor tissues. (A–C,E,G) Data are expressed as the
mean± SD (n = 5), ** p < 0.01 and *** p < 0.001 as compared with the control. 5-FU: 5-fluorouracil and DMSO: dimethyl sulfoxide.
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3. Discussion

Natural bioactive compounds are potential sources to develop drugs for the treatment
of various diseases. In particular, a number of ginsenosides have been documented to
exhibit various pharmacological effects, including anticancer activities [5,6,29,30]. Among
them, Rh1 has been reported to have an ability to suppress several cancer cell lines, such
as leukemia P388 cells, lung cancer A549 cells, and cervical cancer HeLa cells [19]. The
effective dose of Rh1 differed among the cell lines. For instance, the IC50 value of Rh1
in P388 cells was 37 µM [31]. Meanwhile, Rh1 inhibited approximately 30% of the cell
viability of A549 cells at 100 µM [23] and suppressed approximately 25% of the cell viability
of HeLa cells at 40 µM [32]. However, whether this compound can inhibit BC has not yet
been reported. We found that Rh1 exerted anticancer effects on MCF-7 and HCC1428 cells
through various mechanisms, including the induction of apoptosis and autophagy and the
regulation of cell cycle progression.

The inhibition of cell survival and proliferation through apoptotic pathways is a
promising therapeutic strategy for cancer therapy [9]. In the current study, we found
that Rh1 increased apoptosis, as demonstrated by PI/Hoechst double staining, Western
blotting, and an immunofluorescence analysis with confocal microscopy. In fact, through
Hoechst staining, Rh1 was found to dramatically increase the number of apoptotic cells
with condensed and fragmented nuclei (Figure 1B). In addition, the protein levels of
cleaved PARP and cleaved caspase-3 were significantly increased by the treatment with Rh1
(Figure 2A–C). Besides the induction of apoptosis, the modulation of cell cycle progression
is another mechanism that controls cell proliferation in cancer therapy. In our study, Rh1
induced p27 protein expression, whereas it reduced proteins related to the G1 phase, such
as Rb phosphorylation, cyclin D1, cyclin D3, CDK2, CDK4, and CDK6, to prevent the shift
of the cell cycle from the G1 to S phase (Figure 2D–G).

In previous studies, Rh1 has been reported to exert an inhibitory effect on the mi-
gration and invasion of several cancer cells, such as monocytic leukemia cells, human
hepatocellular carcinoma cells, and colorectal cancer cells, mainly through the inactivation
of the MAPK pathway [21,30]. Interestingly, in our study, the PI3K/Akt pathway, but not
the MAPK pathway, was found to be the key pathway associated with the antitumor activ-
ity of Rh1 in BC cells. The PI3K signaling pathway is commonly activated in cancer cells
and is a potent target for cancer therapy [18]. Furthermore, the PI3K/Akt/mTOR pathway
has been known to be pivotal in autophagy regulation [14]. In our study, the treatment with
Rh1 increased the expression of Atg12 and LC3A/B-II in a dose-dependent manner, as well
as enhanced the autophagy flux in MCF-7 cells (Figure 5). Additionally, Rh1 significantly
decreased the phosphorylation of Akt and mTOR in MCF-7 cells (Figure 3D,H). Notably,
the inhibition of Akt kinase activity using LY294002 further enhanced the expression of
Atg12 and LC3A/B-II protein expression compared to the corresponding control (Figure
5H). Therefore, in agreement with the previous studies, our study showed that Rh1-induced
autophagy is regulated by the PI3K/Akt/mTOR pathway. In addition to autophagy, in
our study, the effect of Rh1 on cell cycle arrest and apoptosis was also demonstrated
to be involved in the PI3K/Akt pathway. Indeed, the inhibition of this pathway using
LY294002 further enhanced the effect of Rh1 on molecules related to cell cycle arrest (p-Rb
and p27) and apoptosis (cleaved PARP) (Figure 4D). This phenomenon is also consistent
with various findings, in which apoptosis, cell cycle arrest, and autophagy share common
regulatory pathways, including the PI3K/Akt signaling pathway [33–35]. Additionally,
it has been reported that cell cycle arrest mediates apoptosis in cancer cells by various
anticancer agents [36], and autophagy has the ability to increase apoptosis [37]. There-
fore, the PI3K/Akt pathway may be one of the pathways that links the three pathways in
Rh1-treated MCF-7 cells (apoptosis, cell cycle arrest, and autophagy).

Furthermore, it has been well-established that ROS mediates apoptosis, autophagy,
and cell cycle arrest in various human cancer cell lines [4]. In this study, we found that Rh1
increased ROS production in MCF-7 cells. Interestingly, NAC remarkably reversed Rh1-
induced cell death, restored the decreased Akt phosphorylation, and phosphorylated Rb
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in Rh1-treated MCF-7 cells (Figure 3C,F and Figure 4C). Additionally, this ROS scavenger
reduced the elevated levels of cleaved PARP, Atg12, LC3A/B-II, and p27 induced by Rh1
in MCF-7 cells (Figures 4C and 5G). These results suggest that Rh1-induced apoptosis,
autophagy, and cell cycle arrest in MCF-7 cells are closely associated with ROS generation,
which may be an upstream factor that modulates the PI3K/Akt pathway. Furthermore,
DPI, a NOX inhibitor, recovered Rh1-induced ROS production and Rh1-decreased cell
viability in MCF-7 cells in the same proportion as NAC, indicating that Rh1-produced
ROS accumulation in MCF-7 cells is associated with NOX activity (Figure 3B,C). Besides,
DPI is a nonspecific NOX inhibitor, while APO mainly acts as a NOX2 inhibitor [38,39].
Therefore, the recovery effects of APO on the effect of Rh1 was lower than that of DPI
(Figure 3B,C). In addition, to inhibit NOX activity in MCF-7 cells, previous studies used
DPI at concentrations of 10 µM or 5 µM [25,40]. However, since we found that those
concentrations of DPI are relatively toxic for the cells after 25 h of treatment in our system,
the MTT assay was performed to investigate the doses of DPI. Subsequently, 250 nM of
DPI was used to inhibit NOX activity in our study, because this concentration did not
show any significant change in the viability of MCF-7 cells (Figure S4). Furthermore, it
has been reported that ROS accumulation promotes PTEN and activates AMPK, which is
associated with the inhibition of the PI3K/Akt pathway [41,42]. Additionally, the activation
of AMPK and PTEN is related to apoptosis and autophagy induction [41,43]. In our study,
ROS-mediated PI3K/Akt inhibition promoted apoptosis and autophagy. Altogether, PTEN
and AMPK activation may be the links between ROS and PI3K inhibition in Rh1-treated
MCF-7 cells.

Consistent with the in vitro data, the 5-mg/kg Rh1-treated group showed increased
ROS generation in tumor tissues, similar to the 30-mg/kg 5-FU-treated group. Addition-
ally, Rh1 inhibited Akt phosphorylation in tumor tissues in a dose-dependent manner
(Figure 7F). However, 5-FU slightly increased the phosphorylation of Akt in tumors, and
the anticancer mechanisms of 5-FU in MCF-7 cells may not be related to the inhibition of
the PI3K/Akt pathway. Several reports have revealed that Akt is activated in 5-FU-treated
MCF-7 cells [44,45].

ERα plays a key role in regulating the cell growth of ER-positive BC cells [28]. In addi-
tion to the promotion of growth and survival gene expression, the binding of estrogen to
ERα also leads to the activation of the PI3K/Akt signaling pathway [28]. In our study, Rh1
was shown to reverse the stimulation of cell growth induced by a synthetic estrogen, DES,
in both MCF-7 and HCC1428 cells (Figure 6D,E). Concomitantly, Rh1 exerted a recovery
effect on DES-induced Akt activation (Figure 6B). Consistently, the effect of DES on proteins
related to the cell cycle (p-Rb) and autophagy (LC3A/B) was also reversed by the presence
of Rh1 (Figure 6F). Altogether, in the presence of an estrogenic agent, Rh1 seems to com-
petitively bind to ERα, leading to the attenuation of estrogen stimulation. These results
may be attributed to the weak estrogenic property, as revealed in a previous study [27]
and confirmed in Figure 6A. Interestingly, Rh1 not only rescued the stimulation of DES
on cell growth and Akt activation but, also, further decreased the cell viability and Akt
phosphorylation as compared with the control. This may result from the inhibitory effect
of Rh1 via ROS-mediated Akt signaling, which may be independent from the competitive
effect on ERα binding.

Among the three ER-positive BC cell lines (MCF-7, HCC1428, and BT474), the BT474
cell line was insensitive to Rh1 (Figure 1A). This phenomenon may be attributed to the
differences in characteristics of the BC cell subtypes. MCF-7 and HCC1428 cells are HER2-
negative BC, while BT474 cells are HER2-positive BC [46]. HER2 overexpression has been
found to be associated with enhanced cell proliferation and resistance to therapies [47].
In this manner, Rh1 may be more effective in HER2-negative BC cells rather than in HER2-
postive BC cells. In addition, it has been reported that patients’ expressed wild-type
p53 tumors are more sensitive to chemotherapy than those with mutant p53 tumors [48].
HCC1428 cells are known as mutations in the tumor suppressor p53. Therefore, in our
study, HCC1428 cells were less sensitive to Rh1 than MCF-7 cells, possibly because of the



Cancers 2021, 13, 1892 12 of 18

difference in p53 status between MCF-7 and HCC1428 cells. Additionally, this suggests that
Rh1 may also target the tumor suppressor p53 in MCF-7 cells, which is worth investigating
in future studies.

Notably, it has been reported that inflammation can promote cancer progression and
facilitate tumorigenesis in all stages [49]. We previously reported that the Rh1 and Rg2
combination has anti-inflammatory effects and protective effects against liver injury and
kidney damage induced by lipopolysaccharides [20,50]. Another study showed that Rh1
plays a key role in immune regulation [19]. Therefore, the anti-inflammatory effect and the
role in the immune regulation of Rh1 possibly support and enhance the anticancer effect
of Rh1 when applied to cancer patients. In addition to its low toxicity in normal cells and
animal models [29,50–52], Rh1 can serve as a good candidate for BC therapy.

4. Materials and Methods
4.1. Materials

Rabbit anti-phospho-Akt ser473 (#9271), rabbit anti-Akt (#9272), rabbit anti-phospho-
ERK1/2(#4370), rabbit anti-ERK1/2 (#4695), rabbit anti-phospho-mTOR (#5536T), rabbit anti-
mTOR (#2983T), rabbit anti-PARP (#9532), rabbit anti-cleaved caspase-3 (Asp175) (# 9664),
anti-phospho-Rb (Ser807/811) (#8516), rabbit anti-Atg12 (#2010), rabbit anti-LC3A/B
(#4108), rabbit anti-LC3B (#3868), rabbit anti-p27 kip 1 (#3686), rabbit anti-Cyclin D1
(#2978), mouse anti-Cyclin D3 (#2936), and rabbit anti-CDK2 (#2546) antibodies were pur-
chased from Cell Signaling Technology, Inc. (Danvers, MA, USA). Mouse anti-p53 (#47698)
and Z-VAD-FMK (#3067) were purchased from Santa Cruz Biotechnology Inc. (Dallas, TX,
USA). Rabbit anti-GAPDH (#LF-PA0018) was purchased from AbFrontier (Seoul, Korea).
EndoFectin™ Max Transfection Reagent (EFM1004) was purchased from GeneCopoeia
(Rockville, MD, USA). Mouse anti-α-tubulin antibody, anti-mouse IgG (#T5393), crystal
violet (#C0775), 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA), sulforhodamine B
sodium salt (SRB, #S1402), trichloroacetic acid (TCA, #T6399), H&E, and Rh1 were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Mounting medium with DAPI was
purchased from Vector Laboratories, Inc. (#Z0215, Burlingame, CA, USA). Phosphate-
buffered saline (PBS; #EBA-1105) was purchased from Elpisbio (Daejeon, South Korea).
3-(4, 5-dimethylthiazole-2-yl)-2, 5-diphenyltetrazolium bromide (MTT; #M6494), propid-
ium iodide (PI; #P1304MP), and Hoechst 33342 (#H3570) were purchased from Invitrogen
(Carlsbad, CA, USA). Muse cell cycle reagent (#MCH100106) was purchased from Millipore
(Billerica, MA, USA). Bovine serum albumin (#160069) was obtained from ICN Biomedicals,
Inc. (Costa Mesa, CA, USA). Dulbecco’s modified Eagle’s medium (DMEM; #11963–092),
Roswell Park Memorial Institute Medium (RPMI; 11875093)-1640, and fetal bovine serum
(FBS; #10082147) were purchased from Gibco (Carlsbad, CA, USA). Diphenyleneiodonium
chloride (DPI; #0504), apocynin (APO; #4663), and 3-methyladenine (3-MA; #3977) were
purchased from Tocris Bioscience (Ellisville, MO, USA). pMRX-IP-GFP-LC3-RFP-LC3∆G
plasmid (Addgene plasmid #84572) was a gift from Noboru Mizushima.

4.2. Cell Culture

Human mammary carcinoma cell lines MCF-7 (AHTB-22TM) and HCC1428 (CRL-
2327™) were purchased from the American Type Culture Collection (ATCC, Manassas,
VA, USA). BT474 cells were purchased from the Korean Cell Line Bank (Seoul, Korea).
MCF-7 cells were maintained in DMEM containing 10% FBS and 100-U/mL penicillin and
streptomycin. HCC1428 cells were cultured in RPMI-1640 supplemented with 10% FBS
and 100-U/mL penicillin and streptomycin. BT474 cells were cultured in RPMI-1640 with
L-glutamine (300 mg/L); 25-mM HEPES; and 25-mM sodium bicarbonate supplemented
10% FBS and 100-U/mL penicillin and streptomycin. The cells were incubated at 37 ◦C
in a humidified atmosphere of 5% CO2 (HERAcell 150i, hermo Electron Corp., Waltham,
MA, USA).
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4.3. Sulforhodamine B (SRB) Assay

Cell proliferation was assessed by SRB assay according to the previous report [53].
Briefly, cells were seeded at a concentration of 1.9 × 104 cells/well in 96-well plates and
incubated with various concentrations of Rh1 for 72 h. After the treatment, cold 10%
(wt/vol) TCA was added to each well to reach the final TCA concentration of 3.3% (wt/vol)
and incubated at 4 ◦C for 1 h. The plates were then washed with slow-running tap water
and air-dried at room temperature (RT) before being stained with 0.057% SRB for 30 min at
RT. The plates were quickly rinsed four times with 1% acetic acid and air-dried at RT. The
dye was solubilized with a 10-mM Tris base solution (pH 10.5). Finally, absorbance was
measured at 510 nm on a microplate reader (Tecan, Männedorf, Switzerland).

4.4. MTT Assay

The cells were seeded in 96-well at a density of 1 × 104 cells per well. After 24 h of
incubation, the cells were performed with the indicated treatment. Cell viability was then
determined according to our previous report [50].

4.5. Western Blot

After the treatment, MCF-7 cells were washed with PBS, and total cell lysates were
prepared using 2× sodium dodecyl sulfate (SDS) lysis buffer, including 1-M Tris-HCl
(pH 7.4), 25% glycerol, 10% SDS, 5% 2-mercaptoethnol, and 1% bromophenol blue. The
protein extracts were then resolved by SDS-PAGE and the indicated proteins analyzed as
previously described [54]. Original Western Blot figures can be found from file S1.

4.6. Propidium Iodide (PI)/Hoechst 33342 Double Staining

MCF-7 cells were treated with different concentrations of Rh1 for 24 h. After the
treatment, the cells were washed with PBS before stained with PI (10 µM) at 37 ◦C for
10 min. The cells were then washed with PBS, stained with Hoechst 33342 (5 µg/mL)
for 10 min, and fixed in 4% formaldehyde for 10 min. After being washed with PBS, the
cells were mounted with Prolong Gold Antifade Reagent (#P36934, Molecular Probes,
Inc., Eugene, OR, USA). Subsequently, the images were taken, and a number of cells
were quantified using a laser scanning confocal spectral microscope (K1-Fluo, Nanoscope
systems, Daejeon, Korea), and a total of 6 fields per sample were counted. Hoechst 33342
(blue fluorescence) stained the nuclei of both live cells and dead cells, whereas PI (red
fluorescence) only stained the nuclei of dead cells. Therefore, the cells stained with PI were
indicated as dead cells.

4.7. Generation of pMRX-IP-GFP-LC3-RFP-LC3∆G-Expressing Cells and Measurement of the
Autophagic Flux

Platinum-E cells were transfected with pMRX-IP-GFP-LC3-RFP-LC3∆G plasmid by
using Endofectin reagent according to the manufacturer’s instructions. Retroviral super-
natant was harvested after 48 h of transfection.

For determination of the autophagic flux, MCF-7 cells were seeded on a cover glass
bottom plate (#30206, SPL, Pocheon-so, South Korea) overnight at 37 ◦C and 5% CO2. The
cells were transduced with pMRX-IP-GFP-LC3-RFP-LC3∆G retroviral vectors for 30 h
and then treated with Rh1 (25 µM) for 14 h. Subsequently, the cells were fixed with 4%
formaldehyde for 10 min and mounted with DAPI mounting solution. The cells were
then observed under a laser scanning confocal spectral microscope (K1-Fluo, Nanoscope
systems, Daejeon, South Korea).

4.8. Immunofluorescence Assay

Immunofluorescence staining was performed as previously described [50]. Briefly,
MCF-7 cells were cultured on a cover glass bottom plate overnight at 37 ◦C and 5% CO2.
After the treatment, the cells were fixed with 4% formaldehyde for 10 min. The cells were
permeated with 0.2% Triton X-100 for 10 min at RT before being blocked with 3% bovine
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serum albumin for 30 min at RT. Next, the cells were incubated with primary antibody, as
indicated overnight at 4 ◦C, and then incubated with fluorescent secondary antibody for
1 h at RT. Subsequently, the fluorescent images were taken by a laser scanning confocal
spectral microscope.

4.9. Clonogenic Assay

A clonogenic assay was performed according to the previous protocols [55]. Briefly,
MCF-7 cells were seeded into 6-well plates at a density of 500 cells per well. After 2 h for
attachment, cells were treated with various concentrations of Rh1 for 10 days. At the end of
the treatment, the formed cell colonies were carefully washed with PBS and incubated with
2 mL of 4% formaldehyde and 0.5% crystal violet mixture for 30 min. Finally, the plates
were washed and air-dried at RT. The colony, which is defined to constitute at least 50 cells,
was manually counted.

4.10. Measurement of Intracellular ROS Levels

After the treatment, MCF-7 cells were loaded with 10-µM DCF-DA in PBS for 30 min at
37 ◦C. Afterwards, cells were washed and maintained in PBS. Fluorescence was monitored
using a microplate fluorometer (Tecan, Männedorf, Switzerland) using wavelengths of 485
and 530 nm for excitation and emission, respectively.

4.11. Flow Cytometry Analysis of Cell Cycle

At the end of the treatment, samples collected were centrifuged at 2000 rpm for 1 min
at 4 ◦C and washed with PBS. The obtained pellets were fixed in chilled 70% ethanol
and then kept at −20 ◦C for 6 h. After being fixed, cells were washed with PBS, and
the cell pellets were resuspended in 100µL of Muse cell cycle reagent and incubated for
30 min at RT in the dark. The cell cycle distribution was then assayed using a Muse
Cell Analyzer (Merck, Millipore, Billerica, MA, USA). Flow cytometry data were gated
to exclude doublets and debris. The exclusion of doublet and debris was assessed by
adjusting the height or width against the forward-scatter or side-scatter areas. Doublets
double the area and width values of single cells while the height is approximately the same.
Meanwhile, small debris has low scatter, whereas large debris area is greater than the range
of one or both parameters.

4.12. In Vivo MCF-7 Cell Xenograft Nude Mice Model

Xenograft models in nude mice were established on female BALB/c nu/nu mice,
which were obtained from Raonbio Co., Ltd. (Yongin-si, Gyeonggi-do, Korea). The mice
were acclimated for one week before the experiments and were fed with standard mice feed
under 23 ± 2 ◦C and 12:12-h dark-to-light conditions. All animal studies were performed
with approval from the Institutional Animal Care and Use Committee of Chungnam
National University, Daejeon, Korea (201912A-CNU-202).

To establish a xenograft model, MCF-7 cells (1.0 × 107 cells) in serum-free DMEM
were mixed with an equal ratio of Matrigel (#354248, Corning Inc., Corning, NY, USA) and
injected subcutaneously into the right flanks of BALB/c nude mice. The tumor volume and
body weight were recorded every three days after tumor injection. The mice were randomly
divided into 4 groups (n = 5). The mice in the control group were intraperitoneally injected
with 5% dimethyl sulfoxide in PBS. The mice in the positive group were injected with 5-FU
(30 mg/kg). The mice in the Rh1-treated groups were treated with 2 or 5 mg/kg of Rh1.
The drugs were intraperitoneally administered every three days for 16 days. At the end of
the test, the mice were sacrificed, and the tumors were harvested.
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4.13. Histological Analysis

The fixed tumors were embedded in paraffin and were sectioned to a thickness of 5 µm
using a rotary microtome. Each sectioned slide was stained with H&E. Digital images were
captured using a light microscope (Olympus IX71, Olympus Optical Co. Ltd, Tokyo, Japan).

4.14. Detection of Reactive Oxygen Species in Tumor Tissues through Dihydroethidium (DHE)
Staining

After deparaffinization and rehydration, the 5-µm-thick sections were stained with
10-µM DHE for 30 min. The slides were then washed with PBS and mounted with DAPI
mounting solution. The sections were analyzed with a laser scanning confocal spectral
microscope.

4.15. Immunohistochemistry Staining

The 5-µm-thick sections of the tissues were used. After deparaffinization and rehy-
dration, the tissue sections were incubated with 1% hydrogen peroxide for 10 min. Then,
5% bovine serum albumin solution was applied to prevent nonspecific staining. Next, the
sections were incubated with primary antibody at RT for 2 h. The biotinylated secondary
antibody, the avidin-biotin complex, and the 3,3’-diaminobenzidine chromogens were then
applied, respectively. Sections were counterstained with hematoxylin. After dehydration,
sections were analyzed using a light microscope (Olympus IX71, Olympus Optical Co. Ltd,
Tokyo, Japan).

4.16. Statistical Analysis

Statistical analysis was carried out using GraphPad Prism 5 (version 5.02; GraphPad
Software Inc., San Diego, CA, USA) and one-way analysis of variance (ANOVA), followed
by a Bonferroni multiple comparison. Comparisons between two groups were performed
by using Student’s unpaired t-test. p < 0.05 was considered to be significant. All data were
expressed as the mean ± SD.

5. Conclusions

In conclusion, our study, for the first time, demonstrated that Rh1 exerted potential
anticancer effects on ER-positive BC, MCF-7, and HCC1428 cells by activating cell apoptosis,
cell cycle arrest, and autophagy. Mechanistically, Rh1-mediated ROS generation induced
inhibition of the cancer cell survival signaling pathways, including PI3K/Akt/mTOR.
Importantly, Rh1 possessed a competitive effect in the presence of DES, a synthetic form of
estrogen, thereby inhibiting estrogen-stimulated cell proliferation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13081892/s1: Figure S1: Rh1 induced cell apoptosis and cell cycle arrest in HCC1428
cells. Figure S2: Effects of Rh1 on the PI3K/Akt and MAPK pathways in HCC1428 cells. Figure S3:
Anticancer effect of Rh1 in MCF-7 cells is involved in apoptosis and autophagy. Figure S4: Effect of
diphenyleneiodonium (DPI) on MCF-7 cell viability. File S1: Original Western Blot figures.
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