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Simple Summary: The early detection of primary resistance to anti-PD1 immunotherapies remains a
major challenge in the management of metastatic melanoma. In a previous study, we suggested that
early monitoring of circulating tumor DNA (ctDNA) using well-defined evaluation criteria allows
the identification of primary resistance to anti-PD1 immunotherapies as early as the second week of
treatment. We used the same criteria to analyze first-month ctDNA kinetics in a validation cohort.
We confirmed that an initial “biological progression” (i.e., a significant increase in ctDNA levels)
was an early predictor of a complete lack of clinical benefit under anti-PD1, both in the validation
cohort and by pooling the validation and derivation cohorts. Moreover, ctDNA detection at first-line
treatment initiation was an independent prognostic factor for overall survival and progression-free
survival. The results confirm that early quantitative ctDNA monitoring can detect primary resistance
of metastatic melanoma to anti-PD1 immunotherapies.

Abstract: The ability of early (first weeks of treatment) ctDNA kinetics to identify primary resistance
to anti-PD1 immunotherapies was evaluated with a validation cohort of 49 patients treated with
anti-PD1 for metastatic BRAF or NRAS-mutated melanoma, alone and pooled with the 53 patients
from a previously described derivation cohort. BRAF or NRAS mutations were quantified on plasma
DNA by digital PCR at baseline and after two or four weeks of treatment. ctDNA kinetics were
interpreted according to pre-established biological response criteria. A biological progression (bP,
i.e., a significant increase in ctDNA levels) at week two or week four was associated with a lack of
benefit from anti-PD1 (4-month PFS = 0%; 1-year OS = 13%; n = 12/102). Patients without initial
bP had significantly better PFS and OS (4-month PFS = 78%; 1-year OS = 73%; n = 26/102), as
did patients whose ctDNA kinetics were not evaluable, due to low/undetectable baseline ctDNA
(4-month PFS = 80%; 1-year OS = 81%; n = 64/102). ctDNA detection at first-line anti-PD1 initiation
was an independent prognostic factor for OS and PFS in multivariate analysis. Overall, early ctDNA
quantitative monitoring may allow the detection of primary resistances of metastatic melanoma to
anti-PD1 immunotherapies.

Keywords: immunotherapy; anti-PD1; cell-free DNA; circulating tumor DNA; melanoma; metastatic
melanoma; digital PCR; follow-up; monitoring; criteria
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1. Introduction

Anti-Programmed-Death receptor 1 (anti-PD1) antibodies, alone or in combination
with anti-CTLA-4 antibodies, have become a standard treatment for patients with ad-
vanced melanoma, increasing both progression-free survival (PFS) and overall survival
(OS) in metastatic melanoma patients compared to chemotherapy and CTLA-4 inhibitors
alone [1–5]. Nevertheless, approximately 60% of patients do not respond, and their identi-
fication remains a major challenge [1–3].

This issue has generated significant interest in the development of tumor biomarkers
for monitoring the therapeutic response of metastatic cutaneous melanoma to checkpoint
inhibitor immunotherapies. Circulating tumor DNA (ctDNA) is quantitatively associated
with tumor burden [6], and several studies have shown that (i) a high baseline ctDNA
is associated with poor OS in melanoma patients, independent of treatment, LDH, and
tumor stage [7–11]; and (ii) quantitative changes in ctDNA are correlated with melanoma
response to targeted therapies [12–16] and immunotherapies [13,16–22], with a decrease in
ctDNA observed during therapeutic response and an increase in ctDNA associated with
progressive disease.

A major limitation to the use of ctDNA monitoring is the lack of standardized evalua-
tion criteria to interpret its kinetics in order to reliably identify primary resistance and allow
for therapeutic changes. Some studies have assessed the detectability of ctDNA during
follow-up [10,11,14,23,24]; however, the notion of detectability depends on the sensitivity
of the technique used and overlooks quantitative changes in cDNA above the detection
limit of the method. ctDNA quantitative monitoring may be more relevant [25,26], but it is
necessary to define the levels of variation at which ctDNA changes have clinical significance.

Considering that a change in ctDNA can be clinically significant only if it exceeds
the imprecision of the assay, we previously defined quantitative biological response and
progression criteria for the interpretation of digital PCR-measured ctDNA kinetics (see
Material and Methods, Table 1) [20]. Digital PCR (dPCR) is an absolute ctDNA quantifi-
cation method that evaluates the precision of quantification at each measurement. Using
this feature, we defined the biological response (bR) as a statistically significant decrease in
plasma ctDNA compared to its baseline level considering the accuracy of dPCR. Similarly,
biological progression (bP) was defined as a statistically significant increase in ctDNA
compared to its nadir. In this derivation study, the absence of bR as early as week two was
associated with an absence of benefit of anti-PD1 immunotherapy (ORR = 0%; 4-month
PFS = 0%).

Table 1. Biological evaluation criteria.

Evaluation Criteria Definition

biological Response (bR)

Statistically significant decrease in ctDNA
concentration compared to baseline, considering the
accuracy of the measurement at both points
(one-sided Z-test, α = 2.5%)

biological Progression (bP)

Statistically significant increase in ctDNA
concentration compared to nadir, considering the
accuracy of the measurement at both points
(one-sided Z-test, α = 2.5%)

biological Stability (bS)

- No bR and bP criteria
- Baseline ctDNA at a sufficiently high

concentration to identify a bR if ctDNA
became undetectable during follow-up

Non-evaluable biological response (NE)

- No bP criteria
- Undetectable baseline ctDNA, or at a

concentration too low to identify a bR if ctDNA
became undetectable during follow-up
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This validation study was undertaken to confirm that early ctDNA kinetics, interpreted
using well-defined evaluation criteria, could predict responses to anti-PD1 immunother-
apy alone or in combination with anti-CTLA-4 in an independent prospective cohort of
metastatic melanoma patients.

2. Materials and methods
2.1. Study Design

Patients who started anti-PD1 immunotherapy treatment for a BRAF or NRAS-
mutated stage IV or unresectable stage III metastatic cutaneous melanoma were included
in the derivation cohort between January 2014 and March 2017, and in the validation cohort
between March 2017 and January 2019. Treatment and response assessment has been
previously described [20]. EDTA plasma samples were collected for each patient before the
initiation of treatment and at the 2nd week of treatment, or at the 4th week of treatment if
no sample was collected at week 2. ctDNA was extracted and quantified in BRAF or NRAS-
mutated copies/mL of plasma by dPCR, using the methodology previously described [20].
If the mutation was undetectable, the concentration of ctDNA was considered to be below
the detection limit of dPCR (i.e., 4 mutated copies/mL of plasma with our extraction and
analysis conditions).

Quantification accuracy was assessed for each measurement. Briefly, dPCR partitions
the sample into several thousand microcompartments and isolates each copy of the gene of
interest in an individual microcompartment. After allele-specific end-point TaqMan PCR,
the number of mutated copies is extrapolated from the proportion of mutation-positive
microcompartments, using Poisson’s law. The repeatability of the measurement can be
estimated from the standard error of this proportion.

2.2. Interpretation of ctDNA Kinetics

Digital PCR can estimate the accuracy of its quantification for each measurement.
Thanks to this feature, ctDNA concentrations between two monitoring points can be
compared using a simple statistical test (comparison of the proportion of dPCR mutation-
positive microcompartments, one-sided Z-test; if the mutation was undetectable at one
monitoring point, the proportion was considered to be below 1/total number of microcom-
partments). ctDNA kinetics between baseline and the first follow-up point were evaluated
according to our previously established criteria [20] (Table 1).

2.3. Statistical Analysis

Patient characteristics were compared using Fisher and Mann–Whitney non-parametric
tests. Survival probabilities were estimated using the Kaplan–Meier method and compared
using the log-rank test. A Cox proportional hazards model was used to assess the prog-
nostic value of baseline ctDNA detection across the whole cohort and within subgroups.
Firth’s penalized likelihood was used for subgroup analysis, to allow for survival analysis
despite low number of events (progression or death) in some subgroups. Clinical and
biological variables associated with survival in the subgroup analysis were included in a
multivariate analysis. Statistical analyses of this study were performed using the XLSTAT
and R software programs.

3. Results
3.1. Validation Cohort

The validation study included 49 patients with stage IV or unresectable stage III BRAF
or NRAS-mutated metastatic cutaneous melanoma. Patient characteristics at treatment ini-
tiation are presented in Table 2: 44 patients were treated with nivolumab alone and 5 were
treated with a nivolumab-ipilimumab combination. BRAF codon 600 mutations were found
in 16 patients: 5 were treated with first-line nivolumab, 10 were treated with nivolumab af-
ter a targeted therapy, and 1 patient was treated with a nivolumab-ipilimumab combination
after a targeted therapy. NRAS mutations were found in 33 patients: 23 were treated with
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first-line nivolumab alone and 4 were treated with a first-line nivolumab-ipilimumab com-
bination, 3 were treated with nivolumab after treatment with ipilimumab, and 3 patients
resumed treatment with nivolumab after a relapse following the discontinuation of an
initial anti-PD1 immunotherapy.

Table 2. Patient characteristics in the validation cohort.

Total Undetectable
Baseline ctDNA

Detectable
Baseline ctDNA p

n 49 30 19 -

Age
m (Q1–Q3)

63.6
(54.1–74.8)

65.3
(54.0–77.1)

60.9
(57.1–70.0) 0.662

Tumor thickness
m (Q1–Q3)

3.3
(1.4–3.8)

2.9
(1.3–3.3)

3.8
(1.5–6.0) 0.573

Number of metastases
m (Q1–Q3)

3.0
(2.0–3.0)

2.7
(2.0–3.0)

3.6
(2.0–4.0) 0.066

Baseline LDH
IU/L; m (Q1–Q3)

378.3
(195.9–387.7)

221.2
(195.9–227.9)

548.5
(275.3–468.3) 0.026

Gender
M 16 6 (37%) 10 (63%)

0.028F 33 24 (73%) 9 (27%)

Stage III 22 18 (82%) 4 (18%)
0.009IV 27 12 (44%) 15 (56%)

Ulceration
Yes 20 9 (45%) 11 (55%)

0.128No 19 13 (68%) 6 (32%)

Presence of lymph node
metastasis

Yes 32 17 (53%) 15 (47%)
0.135No 17 13 (76%) 4 (24%)

Presence of cutaneous metastasis
Yes 28 20 (71%) 8 (29%)

0.139No 21 10 (48%) 11 (52%)

Presence of pulmonary metastasis Yes 11 6 (55%) 5 (45%)
0.729No 38 24 (63%) 14 (37%)

Presence of cerebral metastasis
Yes 10 5 (50%) 5 (50%)

0.480No 39 25 (64%) 14 (36%)

Presence of abdominal metastasis
Yes 14 3 (21%) 11 (79%)

0.001No 35 27 (77%) 8 (23%)

Presence of bone metastasis
Yes 9 2 (22%) 7 (78%)

0.019No 40 28 (70%) 12 (30%)

Mutated gene NRAS 33 a 20 (61%) 13 (39%)
1.00BRAF 16 b 10 (63%) 6 (37%)

Baseline LDH
>426 IU/L (2 × ULN) 4 0 4 (100%)

0.027≤426 IU/L (2 × ULN) 21 13 (62%) 8 (38%)
Undetermined 24 17 (71%) 7 (29%)

Treatment
Nivolumab monotherapy 44 29 (66%) 15 (34%)

0.067Nivolumab + Ipilimumab 5 1 (20%) 4 (80%)

Therapeutic line First line 32 19 (59%) 13 (41%)
0.767≥second line 17 11 (65%) 6 (35%)

a p.Q61R (c.182A > G), n = 16; p.Q61K (c.181C > A), n = 12; p.Q61L (c.182A > T), n = 4; p.Q61H (c.183A > T), n = 1. b p.V600E (c.1799T > A),
n = 14; p.V600K (c.1798_1799delinsAA), n = 2. ULN: upper limit of normal.

The median follow-up duration was 15.0 months (min–max = 0.7–30.3 months). Thirty
patients (61%) were alive at the time of analysis, and 26 patients (53%) still had a response
to anti-PD1 immunotherapy; 4-month PFS, 1-year PFS, and 1-year OS were 75%, 49%, and
79%, respectively.
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ctDNA was detectable at baseline in 19 patients (40%). The detection of baseline
ctDNA was associated with stage, gender, the presence of abdominal or bone metastases,
and LDH activity (Table 2).

3.2. Early ctDNA Monitoring in Validation Cohort

For the 49 patients in the validation cohort, ctDNA concentration was quantified early
at week 2, or at week 4 when no sample was collected at week 2 (n = 32 and 17 respectively;
median = 14.0 days; Q1–Q3 = 13.8–28.0 days).

At the first follow-up point, a bP was observed in 4 patients, a bS in 5 patients, and
a bR in 8 patients. Thirty-two patients (n = 32) had a non-evaluable biological response,
including 30 patients whose baseline ctDNA was undetectable (none showed a signifi-
cant increase in ctDNA at the first follow-up point) and 2 patients whose basal ctDNA
concentration was too low to identify a bR, despite an undetectable ctDNA at the first
follow-up point.

An initial bP was associated with a 4-month PFS = 0% (median PFS = 52.5 days;
Figure 1). The detection of a bR at the first follow-up point was associated with a 4-month
PFS = 88% and a 1-year PFS = 58% (median PFS not reached). bS defined an intermediate
group, with a 4-month PFS = 80% and a 1-year PFS = 40% (median PFS = 268 days).
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Figure 1. Kaplan–Meier estimate of the PFS in the validation cohort, based on the biological response
assessment at the first follow-up point.

Patients with an initial bP had a significantly lower PFS than bR patients (HR = 13.61;
95%CI = [2.35–140.91]; p = 0.003; Figure 1) and bS patients (HR = 5.90; 95%CI = [1.04–60.86];
p = 0.045). The difference in PFS between bR and bS patients was not significant.

These results were comparable to those observed at the first follow-up point in our
first derivation study: an initial bP during follow-up was associated with a lack of response
to anti-PD1 immunotherapies. Given their comparability, the two cohorts were pooled for
subsequent analyses.

3.3. Pooled Analysis

The derivation and validation cohorts together included 102 patients with BRAF or
NRAS-mutated stage IV or unresectable stage III metastatic cutaneous melanoma. Baseline
ctDNA was detectable for 44 patients (43%) and was associated with stage, gender, number
of metastases, the presence of abdominal or bone metastases, and baseline LDH activity
(Table 3). More women had a less advanced disease than men (stage IIIc: 42.1% vs. 20.0%;



Cancers 2021, 13, 1826 6 of 12

p = 0.020). They presented fewer metastatic sites (mean: 3.5 vs. 4.4, respectively; p = 0.019),
lymph node metastases (presence of lymph node metastases: 68.4% vs. 91.1%; p = 0.007),
and bone metastases (12.3% vs. 28.9%; p = 0.046) than men.

Table 3. Patient characteristics in pooled analysis.

Total Undetectable
Baseline ctDNA

Detectable
Baseline ctDNA p

n (nderivation + nvalidation) 102 (49 + 53) 58 44 -

Age
m (Q1–Q3)

63
(54–74.6)

62.9
(52.4–75.4)

63.1
(58.3–73.5) 0.545

Tumor thickness
m (Q1–Q3)

3.2
(1.5–3.9)

2.9
(1.4–3.5)

3.6
(1.6–5.0) 0.284

Number of metastases
m (Q1–Q3)

3.9
(2.0–5.0)

3.7
(2.0–4.0)

4.2
(2.0–5.3) 0.011

Baseline LDH
IU/L; m (Q1–Q3)

293.2
(167.7–290.2)

194.8
(160.1–223.1)

397.3
(184.5–456.6) 0.008

Gender
M 45 18 (40%) 27 (60%)

0.003F 57 40 (70%) 17 (30%)

Stage III 33 25 (76%) 8 (24%)
0.010IV 69 33 (48%) 36 (52%)

Ulceration
Yes 35 17 (49%) 18 (51%)

0.345No 40 26 (65%) 14 (35%)

Presence of lymph node metastasis Yes 80 42 (53%) 38 (48%)
0.144No 22 16 (73%) 6 (27%)

Presence of cutaneous metastasis
Yes 59 33 (56%) 26 (44%)

0.842No 43 25 (58%) 18 (42%)

Presence of pulmonary metastasis Yes 32 15 (47%) 17 (53%)
0.199No 70 43 (61%) 27 (39%)

Presence of cerebral metastasis
Yes 22 13 (59%) 9 (41%)

1.00No 80 45 (56%) 35 (44%)

Presence of abdominal metastasis
Yes 34 13 (38%) 21 (62%)

0.011No 68 45 (66%) 23 (34%)

Presence of bone metastasis
Yes 20 8 (36%) 14 (64%)

0.011No 82 52 (63%) 30 (37%)

Mutated gene NRAS 62 a 36 (58%) 26 (42%)
0.839BRAF 40 b 22 (55%) 18 (45%)

Baseline LDH
>426 IU/L (2 × ULN) 9 0 9 (100%)

0.001≤426 IU/L (2 × ULN) 61 36 (59%) 25 (41%)
Undetermined 32 22 (69%) 10 (31%)

Treatment
Nivolumab monotherapy 93 55 (59%) 38 (41%)

0.169Nivolumab + Ipilimumab 9 30 (83%) 6 (17%)

Therapeutic line First line 58 33 (57%) 25 (43%)
1.000≥second line 44 25 (57%) 19 (43%)

a p.Q61R (c.182A > G), n = 33; p.Q61K (c.181C > A), n = 22; p.Q61L (c.182A > T), n = 5; p.Q61H (c.183A > T), n = 1. b p.V600E (c.1799T > A),
n = 35; p.V600K (c.1798_1799delinsAA), n = 5. ULN: upper limit of normal.

In this pooled analysis, the median follow-up duration was 10.8 months (min–max =
0.7–42.0 months). Sixty-six patients (n = 66; 65%) were alive at the endpoint of each cohort,
and 57 patients (56%) were still responding to anti-PD1 immunotherapy; 4-month PFS,
1-year PFS, and 1-year OS were 72%, 48%, and 71%, respectively.
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3.4. Early ctDNA Monitoring in Pooled Analysis

At the first follow-up point, of the 102 patients in the pooled analysis, a bP was ob-
served in 12 patients, a bS in 8 patients, and a bR in 18 patients. Due to low or undetectable
baseline ctDNA, the biological response was non-evaluable (NE) for 64 patients.

Similar to the validation cohort, bP at the first follow-up point was associated with
4-month PFS = 0% (median PFS = 84 days; Figure 2A). The detection of an initial bR was
associated with a 4-month PFS = 83% and a 1-year PFS = 62% (median PFS not reached).
Patients with an initial bR had a significantly longer PFS (HR = 12.7; IC95% = [3.8–53.3];
p < 0.0001; Figure 2A) and OS (HR = 7.5; IC95% = [2.6–24.1]; p = 0.0002; Figure 2B) than
bP patients. bS patients defined an intermediate group with a 4-month PFS = 63% and a
1-year PFS = 42% (median PFS = 268 days).
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Figure 2. Kaplan-Meier estimate of the PFS (A) and OS (B) in pooled analysis, based on the biological response assessment
at the first follow-up point.

3.5. Prognostic Value of Baseline ctDNA Detection

Baseline ctDNA detection was associated with a poor OS in univariate analysis
(HR = 2.62; 95%CI = [1.33–5.18]; p = 0.006). There was no significant association between
baseline ctDNA detection and PFS (HR = 1.73; 95%CI = [0.96–3.11]; p = 0.067).

Considering the therapeutic line, ctDNA detection at the initiation of first-line im-
munotherapy was clearly associated with both PFS (HR = 3.70; 95%CI = [1.54–8.93];
p = 0.004; Supplementary Figure S1A) and OS (HR = 7.14; 95%CI = [2.36–21.67]; p = 0.001;
Supplementary Figure S1B), while there was no association between baseline ctDNA
detection and PFS or OS at subsequent treatment lines (Supplementary Figure S1C–D).

Fifty-eight patients (n = 58) were treated with first-line immunotherapy (see Supple-
mentary Table S1 for patient characteristics). In a multivariate analysis, ctDNA detection
at the initiation of first-line immunotherapy was still associated with poor OS, after ad-
justment for stage, mutated gene, treatment, LDH subgroup (> or ≤2 × upper limit of
normal), and the number and nature of metastases (HR = 10.52; 95%CI = [1.83–60.55];
p = 0.008; Supplementary Figure S2). The prognostic value of baseline ctDNA detection
also remained significant in multivariate analysis, considering LDH as a continuous vari-
able (HR = 8.92; 95%CI = [1.10–72.32]; p = 0.040).

Baseline ctDNA detection before first-line immunotherapy was associated with poor
PFS after adjustment for age, gender, stage, mutated gene, treatment, LDH subgroup



Cancers 2021, 13, 1826 8 of 12

(> or ≤2 × upper limit of normal), tumor thickness and ulceration, and the number and
nature of metastases (HR = 5.52; 95%CI = [1.22–24.90]; p = 0.026; Supplementary Figure S3).
The association between PFS and baseline ctDNA detection, however, did not remain
significant in multivariate analysis, considering LDH as a continuous variable (HR = 4.83;
95%CI = [0.56–41.48]; p = 0.151).

3.6. Biological Follow-Up Model

Overall, the majority of patients (64/102; 63%) had a non-evaluable biological response
(NE; i.e., no bP and a low or undetectable baseline ctDNA). These patients had a good
prognosis in OS and few of them showed primary resistance to immunotherapy (4-month
PFS = 80%; 1-year OS = 81%; Figure 3).
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response assessment at the first follow-up point.

Among patients with an evaluable biological response, the 26 patients with an initial
bR or bS at the first follow-up point also had a favorable OS and a low primary resistance
rate to immunotherapy (4-month PFS = 78%; 1-year OS = 73%; Figure 3). These patients
did not significantly differ from NE patients in terms of PFS or OS.

On the other hand, the 12 patients with an initial bP at the first follow-up point
showed a total lack of benefit from immunotherapy and a poor prognosis in OS (ORR = 0%;
4-month PFS = 0%; 1-year OS = 13%; Figure 3). These bP patients had a significantly
lower PFS than bR or bS patients (HR = 9.2; 95%CI = [2.9–28.6]; p = 0.0001) or NE patients
(HR = 10.2; 95%CI = [4.1–25.3]; p < 0.0001). Similarly, bP patients had a significantly lower
OS than bR or bS patients (HR = 3.7; 95%CI = [1.5–9.1]; p = 0.005) or NE patients (HR = 7.8;
95%CI = [3.4–18.2]; p < 0.0001).

These 12 patients with an initial bP represented 46% of patients who had a progressive
disease during the first 4 months of treatment, and bP preceded the radiological detection of
clinical progression by an average of 55.8 days (median = 49 days; min–max = 13–98 days).

4. Discussion

This study confirms that a biological progression (i.e., a significant increase in ctDNA
concentration compared to its nadir, considering the inaccuracy of the measurement) at week
2 or week 4 of an anti-PD1 immunotherapy, alone or in combination with an anti-CTLA-4,
allows the early and highly specific detection of patients with primary resistance to treatment.
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The early detection of primary resistance to anti-PD1 immunotherapies may represent
a major advance in the management of metastatic cutaneous melanoma. Indeed, there is
currently no sufficiently reliable predictive biomarker of the efficacy of immunotherapies to
guide the therapeutic strategy. PD-L1 tumor expression failed to show sufficient specificity
to exclude a possible therapeutic response associated with anti-PD1 immunotherapies,
with ORRs ranging from 13% to 41% in PD-L1-negative patients treated with nivolumab
alone, and even 55% in PD-L1-negative patients treated with the nivolumab-ipilimumab
combination [27]. The distribution and density of lymphocytes infiltrating the tumor
showed better specificity in predicting the efficacy of anti-PD1 immunotherapies, with
two studies reporting negative predictive values of 100% [28,29]. The clinical utility of this
biomarker, however, remains severely limited by its inter- and intra-tumor heterogeneity
and may require repeated invasive biopsies. Failing prior selection of patients likely to
respond to anti-PD1 immunotherapies, the use of ctDNA as a biomarker for minimally
invasive monitoring could enable the early detection of non-responders in the initial phase
of treatment. Additionally, we showed in this study that patients with initial bP had a poor
prognosis in OS, and the clinical benefit associated with rapid therapeutic adaptation could
be major in them.

The evaluation criteria for interpreting longitudinal variations in ctDNA remain
unclear. For instance, Lee et al. proposed qualitative criteria based on ctDNA detectability
in dPCR: patients with a detectable ctDNA up to the 12th week of treatment had a worse
ORR and PFS compared to patients whose ctDNA was initially undetectable or became
undetectable before week 12 (3-month ORR = 6% vs. 74%; 3-month PFS = 28% vs. 83%,
respectively) [19]. These qualitative criteria could not, however, exclude a possible benefit
associated with anti-PD1 immunotherapies, and the 12-week delay required to identify
non-responders limited their clinical relevance. Assessing quantitative variations in ctDNA
without defining their significance could also lead to misinterpretations. For instance, in
the results recently reported by Váraljai et al. [22], an increase in ctDNA levels at week
12 (regardless of significance) did not exclude a possible efficacy from immunotherapies
(5-month PFS = 30%; 1-year PFS = 15%).

The interpretation of ctDNA kinetics during monitoring is complex, however, as
ctDNA quantification in dPCR can be inaccurate, especially when the number of mutated
copies is low, with a coefficient of variation (CV) that can be close to 100% as the method
approaches its detection limit. Consequently, it seems essential to assess the significance of
ctDNA longitudinal variations in relation to measurement inaccuracy before they can be
given clinical meaning. The significance of ctDNA variations defining bR and bP, however,
cannot be defined by fixed variation thresholds (i.e., % change from a reference). Indeed, the
use of such fixed thresholds would require the accuracy of dPCR to be constant regardless
of ctDNA concentration, but the accuracy of dPCR is concentration-dependent: the lower
the concentration of mutated copies detected, the higher the CV of dPCR [30,31]. Thus, a
fixed variation threshold is likely to be lower than the CV at low ctDNA concentrations,
and a simple measurement inaccuracy would be interpreted as a bP or bR, while the
same threshold will be much higher than the CV at high concentrations and will limit the
detection of small ctDNA variations.

The accuracy of ctDNA quantification by dPCR can be assessed at each measurement.
With this feature, it is possible to determine whether a difference in ctDNA concentration
between two monitoring points is significant using a simple statistical test (comparison of
the proportion of dPCR mutation-positive microcompartments between the two points,
one-sided Z-test). Our method of interpretation was recently used by Wood-Bouwens
et al. in a small study of 6 patients with metastatic cancers (breast cancer, colorectal cancer,
cholangiocarcinoma, melanoma), with a good concordance with tumor evolution [32].

ctDNA monitoring requires knowledge of a specific somatic mutation, previously
identified in the tumor tissue, to quantify the fraction of circulating DNA of tumor ori-
gin. Cutaneous melanoma is a particularly suitable model since BRAF or NRAS hotspot
mutations are found in 60% to 70% of patients and are already routinely investigated for
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any metastatic cutaneous melanoma [33,34]. Nevertheless, in the absence of a previously
identified somatic mutation, ctDNA cannot be used for therapeutic monitoring, which is a
first limitation of this biomarker. Other genes frequently mutated in metastatic cutaneous
melanoma (KIT, TERT, etc.) could also be used to identify and quantify ctDNA in a larger
proportion of patients. The use of ctDNA assays capable of screening a large panel of genes,
however, seems necessary to be able to carry out biological monitoring of all patients, and
to extrapolate this biological monitoring model to other tumor types, for which mutation
hotspots are less frequent. To this end, ctDNA quantification by Next-Generation Sequenc-
ing (NGS) could be an interesting alternative, but mutated DNA quantification by NGS is
only relative (in % of mutated alleles), and therefore also subject to quantitative variations
of non-tumoral circulating DNA.

The need for a detectable baseline ctDNA to allow biological monitoring is a second
limitation of this biomarker, particularly in our study, since ctDNA was only detectable in
43% of patients in the derivation cohort and 40% of patients in the validation cohort, i.e., a
lower sensitivity than the data reported in the literature concerning dPCR methods (with
sensitivities of around 70% to 80% [10,18,22,35–38]). This limitation must, however, be
put into perspective: we also showed in this study that undetectable baseline ctDNA was
informative, since it was a good prognostic factor in OS and PFS at the initiation of first-line
immunotherapy, independently of other known prognostic factors for metastatic cutaneous
melanoma. These results are consistent with those observed by several authors [12–15].
We recently showed in another study that the lack of detection of ctDNA by qPCR Cobas
(Roche diagnostics) at the initiation of first-line treatment was an independent factor of
good prognosis, regardless of treatment (immunotherapy or targeted therapy) in BRAF or
NRAS-mutated melanoma patients [16].

Overall, ctDNA monitoring appears feasible, rapid, and minimally invasive. The anal-
ysis of ctDNA before the initiation of first-line treatment would allow the rapid detection
of BRAF or NRAS mutations for theranostic purposes and could clarify the prognosis of
the disease. Subsequently, for patients treated with anti-PD1 immunotherapy alone or
in combination with anti-CTLA-4, a second ctDNA analysis at week 2 or week 4 could
assess the biological response, provide early identification of some primary resistances
to immunotherapy, and allow rapid therapeutic adaptation. Prospective clinical trials
comparing radiological and biological monitoring of ctDNA with conventional follow-up
are needed to evaluate the clinical benefit associated with this monitoring model.

5. Conclusions

In conclusion, the early quantitative ctDNA monitoring can detect primary resistance
of metastatic melanoma to anti-PD1 immunotherapies. It now seems necessary to stan-
dardize analytical methods and interpretation criteria for ctDNA kinetics and to validate
its clinical value through prospective trials.
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