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Simple Summary: High-grade serous ovarian cancer (HGSC) caused more than 13,000 deaths
annually in the United States. A critically important component that influences the HGSC patient
survival is the tumor microenvironment. However, how different cells interact to influence HGSC
patients’ survival remains largely unknown. To investigate this, we developed a pipeline that
combines imaging mass cytometry (IMC), location-specific transcriptomics, and deep learning
to identify the distribution of various stromal, tumor and immune cells as well as their spatial
relationship. Our pipeline automatically and accurately segments cells and extracts salient cellular
features to identify biomarkers, and multiple nearest-neighbor interactions among different cells that
coordinate to influence overall survival rates in HGSC patients. In addition, we integrated IMC data
with microdissected tumor and stromal transcriptomes to identify novel signaling networks. These
results may lead to the discovery of novel survival rate-modulating mechanisms in HGSC patients.

Abstract: Stromal and immune cells in the tumor microenvironment (TME) have been shown to
directly affect high-grade serous ovarian cancer (HGSC) malignant phenotypes, however, how these
cells interact to influence HGSC patients’ survival remains largely unknown. To investigate the
cell-cell communication in such a complex TME, we developed a SpatioImageOmics (SIO) pipeline
that combines imaging mass cytometry (IMC), location-specific transcriptomics, and deep learning
to identify the distribution of various stromal, tumor and immune cells as well as their spatial
relationship in TME. The SIO pipeline automatically and accurately segments cells and extracts
salient cellular features to identify biomarkers, and multiple nearest-neighbor interactions among
tumor, immune, and stromal cells that coordinate to influence overall survival rates in HGSC patients.
In addition, SIO integrates IMC data with microdissected tumor and stromal transcriptomes from
the same patients to identify novel signaling networks, which would lead to the discovery of novel
survival rate-modulating mechanisms in HGSC patients.
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1. Introduction

Advanced high-grade serous ovarian cancer (HGSC) is the most lethal gynecologic
malignancy, causing more than 13,000 deaths annually in the United States [1]. HGSC
is notable for initial sensitivity (75% response rate) to platinum and taxane neoadjuvant
chemotherapy or chemotherapy following debulking surgery [2,3]. However, most tumors
(>75–80%) recur within 12 to 24 months after treatment, and many patients die of pro-
gressively chemotherapy-resistant disease [4–6]. A critically important component that
influences the patient survival is the tumor microenvironment [7,8], which is primarily
composed of fibroblasts, extracellular matrix proteins, endothelial cells, lymphocytic infil-
trates, and cancer cells. The tumor microenvironment has been shown to directly affect
cancer cell growth, migration, invasion, chemoresistance, cell-cell interactions, and matrix
remodeling [9,10]. However, spatially resolved, single-cell analysis that can identify tumor
and stromal cell phenotypes, characterize their heterogeneity and cell-cell interactions, and
biomarkers for predicting survival of HGSC patients, are lacking.

Several approaches have been used to perform spatial analysis of the tumor microen-
vironment. Distance analysis associated cell-cell spatial distance with clinical outcomes in
different types of cancer (breast [11], gastric [12]). Spatial statistics that used L-function
or K-function to detect deviation from spatial homogeneity has been employed to study
architectural patterns of cells [13,14]. Neighborhood analysis that generated cell social
interaction network and clustered images based on significant cell-cell interactions was
applied to analyze highly multiplexed mass cytometry images [15]. Spatial community
analysis identified cell communities on the basis of physical proximity and associated
densities of cell communities with clinical outcome of breast cancer [16]. Nevertheless,
all these methods do not support automated extraction of spatial features, specifically
cell-cell interactions, that can have prognostic values as captured by highly multiplexed
tumor images.

Imaging mass cytometry (IMC) is an imaging-based mass cytometry (CyTOF) that
couples immunohistochemical and immunocytochemical methods with high-resolution
laser ablation [17] to allow the imaging of more than 30 proteins and protein modifications
simultaneously at subcellular resolution. This enables researchers to uncover the hetero-
geneity of cellular phenotypes and cell-cell interactions (phenograph [18]; histocat [15]).
Cell segmentation is the first key step of IMC analysis. However, IMC images of biological
tissues, particularly those of solid tumors, are extremely challenging for conventional cell
segmentation methods, such as the watershed algorithm [17] and pixel-based classifica-
tion [15], owing to great variations in image intensities and cell shapes, overlapping cells,
dense cell clusters, blurred edge information, missing object borders, and low signal-to-
noise ratios. In addition, the highly multiplexed IMC data generate rich information of cell
phenotypes, spatial organization, and heterogeneity. However, methods to quantify and
integrate various types of data in order to identify reliable prognostic biomarkers remain
largely unexplored.

Mask Region-based Convolutional Neural Network (Mask-R-CNN or MRCNN), is an
advanced deep learning method that adopts a two-stage procedure, with a Region Proposal
Network (RPN) in the first stage and a parallel prediction of the class, the box offset and
a binary mask for each ROI in the second stage [19]. MRCNN was initially designed for
object detection and instance segmentation of natural images [19]. It outperformed all
existing single-model entries on every task in the recent Microsoft Common Objects in
Context (COCO) challenge, one of the most authoritative competitions in object detection
and segmentation [20]. MRCNN was also adapted to perform nuclei segmentation in
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histologic microscopic images [21]. However, whether MRCNN could be employed in the
IMC cell segmentation has not been investigated yet.

In our study, we built a machine learning enabled SIO pipeline that integrates, pro-
cesses, models, and analyzes highly multiplexed, subcellular IMC data and transcriptomic
data generated from well-annotated and treatment-naïve HGSC samples. We adapted
MRCNN for IMC cell segmentation and used logistic regression to identify salient prog-
nostic spatial features of cell-cell interactions for predicting patient survival rates by using
spatial information provided by IMC. We combined the quantitated IMC images with
cancer and stromal gene expression data of microdissected tissue specimens from the same
HGSC patients to detect genes that are significantly correlated with prognostic features. We
filtered tumor or stroma/fibroblastic specific genes with single-cell RNA seq data [22] and
postulated new mechanisms by which these genes contribute to the prognostic features of
cancer survival prediction.

2. Materials and Methods
2.1. Patient Samples

A total of 41 paraffin-embedded tumor tissue samples obtained from patients with
advanced stage (stage IIIB-IV) high-grade serous ovarian cancer (HGSC) were used in the
study. Tissue samples were obtained from the ovarian cancer repositories at The University
of Texas MD Anderson Cancer Center in Houston, Texas and Gangnam Severance Hospital,
Yonsei University College of Medicine in Seoul, South Korea. They were collected from
previously untreated patients undergoing primary cytoreductive surgery for ovarian cancer.
After surgery, patients received platinum-based combination chemotherapy. Optimal
surgical cytoreduction was defined by a residual tumor no more than 1 cm in diameter.
The overall survival duration was measured from the date of diagnosis to the date of death
or censored at the date of the last follow-up examination. Long-term survivors were those
with an overall survival time ≥ 60 months while short-term survivors were those with
an overall survival time ≤ 20 months. Clinical data, including age, cytoreduction status
(optimal vs. suboptimal), and overall survival, were obtained from the records of the
patients with HGSC. All samples and clinical data were collected with the approval of the
Institutional Review Boards of MD Anderson and Gangnam Severance Hospital.

2.2. Preparation and Staining

Tissue slides were deparaffinized in xylene followed by rehydration in a graded
alcohol series. Antigen retrieval was performed with citrate buffer (pH 6) at 95 ◦C in
a decloaking chamber (Biocare Medical, Pacheco, CA, USA) for 25 min. Slides were
then blocked with 3% bovine serum albumin in phosphate-buffered saline for 30 min
and incubated for 2 h at room temperature with 21 metal-tagged antibodies (Table S2).
Following incubation, tissue slides were washed with phosphate-buffered saline and
incubated with 0.5 µM Cell-ID Intercalator-Ir (Fluidigm, South San Francisco, CA, USA)
for the detection of nuclear DNA. Slides were then rinsed in phosphate-buffered saline
and air-dried.

2.3. Imaging Mass Cytometry

Imaging mass cytometry (IMC) data were acquired by a Fluidigm Helios CyTOF
instrument equipped with a Hyperion System laser ablation module in the Flow Cytom-
etry and Cellular Imaging Facility at MD Anderson. A total of 41 images of 1 mm3 each
were acquired and used for the current study, including 20 images from short-term sur-
vivors (overall survival ≤ 20 months) and 21 images from long-term survivors (overall
survival ≥ 60 months). Each 1 mm2 region of interest on the tissue section was selected
based on the image from the corresponding hematoxylin and eosin stained serial tissue
section, which demonstrated representative of tumor regions surrounded by stomal cells.
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2.4. Microdissection and Microarray Analysis of Tissue Samples

RNA was extracted from microdissected frozen HGSC samples, which included
tumor epithelial components and stromal components from sixteen HGSC patients, from
whom IMC data were available. Extensive details of specimen handling, RNA extraction
and amplification, microarray hybridization, and quality-control procedures have been
described previously [23].

2.5. Data Preprocessing and Cell Segmentation

Data were converted to TIFF format by MCD viewer (Fluidigm). Channel spillover
was compensated using the nonnegative least square approach [24,25]. Watershed segmen-
tation was performed on the maximal projection of normalized images of H3 and nucleic
acid intercalator (191Ir and 193Ir). The best Watershed segmentation results were achieved
with prior median filtering (2 × 2 pixels) followed by Gaussian blurring (kernel width
of 2 pixels), and standard parameters for watersheds. These steps were performed by an
in-house developed Matlab script with the Matlab image processing toolbox. Mask-R-CNN
(MRCNN) segmentation was trained on the outputs of Watershed segmentation. Thirty-one
images were employed for training, with each image segmented into 16 small pieces to in-
crease the training speed (each small image had a size of ~250× 250 pixels, image resolution
1 µm/pixel). A total of 496 small images were used as the training set. We applied an MR-
CNN model with a feature pyramid network and a convolutional neural network ResNet-
101 backbone based on an implementation (https://github.com/matterport/Mask_RCNN)
by Matterport Inc. (Sunnyvale, CA, USA, released under an MIT License, accessed on:
3 May 2019) that employed the python open-source libraries Keras and Tensorflow. MR-
CNN has three outputs for each candidate object, a class label, a bounding-box offset, and
the object mask [19]. During training, MRCNN uses a multi-task loss on each sampled RoI
as L = Lcls + Lbox + Lmask where Lcls is classification loss, Lbox is bounding-box loss, and
Lmask is the average binary cross-entropy loss [19]. We initiated the model using weights
obtained from pretraining on the MSCOCO dataset [20]. We started with the learning rate
of 0.001 and trained with 50 epochs and decreased the learning rate to 0.0001 and trained
for 50 epochs. The training was performed using one NVIDIA V100 GPU (Amazon AWS
p3.2xlarge instance). To compare the results of Watershed and MRCNN segmentation, we
manually segmented ten testing images (~300 cells per image, each image had a size of
~250 µm × 250 µm) to be used as a reference segmentation. To quantify the performance
of different segmentation methods, we computed the Sørensen–Dice coefficient, 2|x

⋂
y|

|x|+|y| ,
between each cell in Watershed segmentation and its maximum overlapping cell in ref-
erence segmentation, and between each cell in MRCNN segmentation and its maximum
overlapping cell in reference segmentation. We compared the mean and standard deviation
of the Sørensen–Dice coefficient of all the cells in each sample between Watershed and
MRCNN segmentations.

2.6. Analysis Workflow

MRCNN segmentation, survival prediction, and correlation of cell density with gene
expression were implemented in python 3.5. Watershed segmentation, image analysis,
and the single-cell analysis algorithms were performed by Matlab R2016a. Phenograph
clusterings and heatmap figures for cell subtype annotation were generated by R 3.6.

2.7. Clustering Analysis

The mean intensity of each marker j within each cell k of an image m, Ijk
m was

calculated as the mean intensity of all the pixels within the segmentation of that cell. It was
normalized by calculating the z-score zjk

m = (Ijk
m − µj

m)/σj
m, where µj

m and σj
m are the

mean and standard deviation of Ijk
m for k = 1, 2, 3, . . . , Nm in the image m for that marker j,

and Nm is the total number of cells in the image m. Phenograph clustering was performed
using the Matlab cyt package. In the first step, the normalized data were under-clustered to
detect and separate the major cell populations using 100 nearest neighbors. Sixteen markers

https://github.com/matterport/Mask_RCNN
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were used: SMA, CD14, CD163, CD11b, CD45, CD44, CD4, CD73, CD68, CD20, CD8a,
granzyme B, Ki67, Coll-I, CD45RO, and Keratin8/18. Of the nineteen clusters generated,
nine tumor or stroma clusters were kept, and 10 non-tumor and non-stroma clusters were
pooled together and underwent a second round of clustering using 80 nearest neighbors
and 15 markers: CD14, CD163, CD11b, CD31, CD45, CD44, CD4, CD73, CD68, CD20,
CD8a, CD196, granzyme B, Ki67, and CD45RO. Of the eighteen clusters generated, three
macrophage clusters were pooled together and were further clustered by markers: CD44,
CD14, CD163, CD68, CD4, CD45RO, and CD11b. Similarly, CD8+ T cell cluster, CD4+ T cell
cluster, and clusters that had mixed tumor and immune cells underwent further clustering
using their related markers. Finally, all the clusters were gathered together and visualized
in Barnes-Hut t-SNE [26], a two-dimensional representation of high dimensional data.

2.8. Cell Density and Nearest-Neighbor Interactions in Tumor-Enriched Regions

Tumor-enriched regions were calculated as a thresholded two-dimensional Gaussian
convolved image (σ = 15 pixels, threshold = 0.0005) of the density map of the centroid
of tumor cells. The regions outside of tumor-enriched regions were defined as tumor-
unenriched regions. Cell density in tumor-enriched regions was computed as the cell
count in the tumor-enriched region per total tumor cells. For the nearest-neighbor cell-cell
interactions (if the distance between the centroids of two cells < 20 µm, the two cells are
considered as the nearest neighbors), the average cell count Avg.Cm

j of any cell subtype
j in the nearest neighborhood of each cell subtype of interest m in the tumor-enriched
region was computed as Avg.Cm

j = Nmj/Nm, where Nmj is the total number of nearest
neighboring pairs of cell subtypes m and j of each sample, and Nm is the total cell counts of
cell subtype m in the tumor-enriched region of each sample. An unpaired t test was used
to determine if there was a significant difference (adjusted p < 0.05) between the means of
nearest-neighbor cell-cell interactions of long-term and short-term survivors. Adjustment
for multiple testing was conducted using the Benjamini-Hochberg method [27].

2.9. Survival Prediction

The training and test data sets were randomly split at 80% and 20% of the total
41 samples containing 21 long-term survivors and 20 short-term survivors. The ratio of
the long-term to short-term survivors in the training data set was 1 while in the test data
set was 1.25. For survival prediction using only cell density and age, the forty-one cell
density and age features were first subjected to Spearman correlation with survival, and
22 features that had an absolute correlation coefficient larger than 0.2 were kept. Since
logistic regression assumes independence between features, features could not be highly
correlated. Only one of the highly correlated features (absolute Spearman correlation
coefficient ≥ 0.65) that had the highest correlation with survival was selected and the rest
were dropped, leaving 17 features. Each feature was normalized to a 0 to 1 scale. Recursive
feature elimination and logistic regression (Python’s sklearn package) were used to rank
the features according to their importance. Owing to the small sample size, leave-one-out
cross validation was used to evaluate performance during the training. The optimal feature
number was selected at the highest validation accuracy.

To narrow down the nearest-neighbor interaction features that were related to the
prognostic cell density features, we selected forty-six features of the nearest-neighbor
interaction that contained any of the seven prognostic cell density features and were also
significantly different between long-term and short-term survivors and combined them
with age to predict survival. To filter the features, we performed Spearman correlation
between survival and these forty-seven features. Forty-four features that had an absolute
correlation coefficient larger than 0.2 were kept. Because features of logistic regression
cannot be highly correlated, only one of the highly correlated features (absolute Spearman
correlation coefficient ≥ 0.65) that had the highest correlation with survival was kept,
leaving 26 features. Each feature was normalized to a 0 to 1 scale. Recursive feature
elimination and logistic regression were used to rank the features according to their impor-
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tance. Owing to the small sample size, leave-one-out cross validation was used to evaluate
performance during the training. The optimal feature number was selected at the highest
validation accuracy.

2.10. Correlation of Cell Density with Gene Expression

Gene expression was normalized by Robust Multi-array Average [28]. Spearman
correlation between gene expressions in microdissected stromal or epithelial components
and cell densities in tumor-enriched regions was performed and genes of interest were
selected from those that had positive correlation coefficients (p < 0.05, absolute correlation
coefficient > 0.4) with each cell subtype that showed a significant difference between long-
term survivors and short-term survivors. For genes that had multiple probe IDs, we used
only the probe ID that had the largest variance. The genes of interest of the microdissected
stromal components were filtered by the single-cell RNA sequencing (scRNAseq) data [22],
and only the genes expressed in fibroblasts or stromal cells were kept. Moreover, to
understand the molecular mechanism that might explain the correlation between IMC
and HGSC patient survival, we included only genes encoding for secreted or receptor
proteins for all listed IMC features, except for CD73_1 and CD73_2 (for which we included
all genes). The genes of interest of the microdissected epithelial components were filtered
by the scRNAseq data and only genes expressed in epithelial cells were retained. Among
these, genes encoding for secreted or receptor proteins for all listed IMC features, except
for tu_9 (for which we included all genes), were included. Kaplan-Meier analysis was
performed on the filtered genes of interest, and only genes that had significant prognostic
values (p < 0.05) were retained.

2.11. Kaplan-Meier Analysis

Kaplan-Meier analysis was performed differently for genes in stromal and epithelial
components. For genes in stromal components, Kaplan-Meier analysis was performed
on our microdissected gene expression data in the stromal component (70 patients, over-
all survival < 150 months). For genes in epithelial components, Kaplan-Meier analysis
was performed using an online tool, KMplotter [29], which employs a database of gene
expression data and survival information of 530 HGSC patients (stage II/III/IV; grade 2/3;
optimal debulking), downloaded from Gene Expression Omnibus and the Cancer Genome
Atlas. To analyze the prognostic value of each selected gene, we divided the patients into
two groups according to various quantile expressions of the gene, and the best performing
threshold was used as a cutoff. Statistical comparison of the two groups was performed
using the log-rank test.

2.12. Data and Code Availability

Raw data of the microdissected transcriptomes were downloaded from GEO with
accession number GSE115635. The datasets/code supporting the current study are available
from https://data.mendeley.com/datasets/4dpk7fjb58/draft?a=4aa42b24-f791-4a89-b7
4e-9dba795f3755, accessed on: 30 March 2021.

3. Results
3.1. Image Analysis Pipeline

To comprehensively quantify the cellular heterogeneity and spatial organization of
HGSC tissue and find biomarkers that predict patient survival, we used IMC to detect
21 different proteins in 41 tumor samples from treatment-naïve HGSC patients (Table S1).
Tissue sections were stained with a panel of metal-tagged antibodies (Table S2) followed
by laser ablation coupled to mass spectrometry to generate high-dimensional images as
previously described [11] (Figure 1). Our selected panel consisted of markers of prolifera-
tion; immune cell regulators; and markers of epithelial, stroma, immune and endothelial
lineages (Figures S1A,B and Table S2).

https://data.mendeley.com/datasets/4dpk7fjb58/draft?a=4aa42b24-f791-4a89-b74e-9dba795f3755
https://data.mendeley.com/datasets/4dpk7fjb58/draft?a=4aa42b24-f791-4a89-b74e-9dba795f3755
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Figure 1. Schematic of imaging mass cytometry (IMC) acquisition of multiplexed images from 41 ovarian cancer patient
samples and the spatioimageomics (SIO) pipeline. The SIO pipeline includes cell segmentation by a mix of the mask-R-CNN
method trained on the outputs of the watershed method, phenograph clusterings, cell subtype annotation and visualizations,
cell density and nearest-neighborhood feature selection, survival prediction by logistic regression, and integration of IMC
cell density with transcriptomes from location-specific microdissected epithelial and fibroblastic stromal compartments of
HGSC patient tissue samples.

Resulting data were then analyzed using a novel IMC-adapted image analysis pipeline.
Briefly, cell segmentation was performed using the deep learning method, MRCNN, fol-
lowed by phenograph clusterings to identify and annotate different cell subtypes used for
cell density and neighborhood analyses. These two features were then used for survival
prediction analysis and correlating IMC phenotype with gene expression profile (Figure 1).

3.2. Cell Segmentation and Annotation by Deep Learning-Based IMC Data Analysis

We employed MRCNN for IMC cell segmentation. We used the computerized outputs
of watershed segmentation as the training sets for MRCNN. The mean Sørensen–Dice
coefficient of MRCNN was significantly higher than that of watershed (mean of mean
Sørensen–Dice coefficient of MRCNN = 0.71, mean of mean Sørensen–Dice coefficient of
watershed = 0.64, p = 1.46× 10−6, n = 10 samples, paired t test; Figure 2B), and the standard
deviation of Sørensen–Dice coefficient of MRCNN was significantly lower than that of
watershed (mean standard deviation of Sørensen–Dice coefficient of MRCNN = 0.17, mean
standard deviation of Sørensen–Dice coefficient of watershed = 0.25, p = 9.3 × 10−6, n = 10
samples, paired t test; Figure 2C). These results suggest that the segmentation by MRCNN
is more similar to the manual segmentation than the watershed segmentation, and that it
has less over-segmentation issue than watershed (Figures 2A and 3A).

After performing phenograph clusterings to identify cell subtypes, we identified
40 cell subtypes of T and B cell, macrophage, endothelial, and other stroma cell populations
as well as tumor cell subtypes from 162,869 cells in 41 images (Figure 3B) and quantified the
normalized expression of all markers across various cell subtypes (Figure 3C). Specifically,
based on the normalized expression of cell subtype–specific markers, we identified nine
macrophage/monocyte subtypes (Figure 4A), four CD8+ T cell subtypes and 6 CD4+ T cell
subtypes (Figure 4B), nine tumor subtypes (Figure 4C), and many other stroma and immune
cell subtypes (Figure 4D). Since the normalization step converts the expression of all cells
in a sample to a z-score (see Methods), the normalized expression reflects the relative
expression across all cells. For example, although tumor cells subtypes (such as tu_1,
tu_2, tu_3, tu_5, tu_6, tu_8, and tu_9) have median normalized Keratin 8/18 expression
around zero (Figure 4C), they exhibit significantly higher Keratin 8_18 expression levels
than non-tumor cells (Figure S2). Based on the results of Figures 3C and 4, the phenotypes
of all cell subtypes are summarized in Figure 4. The spatial distribution of all cell subtypes
in one representative sample can be visualized in Figure S1C.
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tation drawn manually (n = 10 images, 300 cells segmented per image on average, paired t test). *** p < 0.001. 
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Figure 2. Comparison between watershed and mask-R-CNN cell segmentation. (A). Cell segmentation comparison on
one representative image. Top, imaging mass cytometry (IMC) image; red: Keratin8/18, green: histone H3, blue: CD45.
Bottom left, mask-R-CNN segmentation (transparent segmentations with pseudo colors are placed over nucleus image).
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segmentation drawn manually (n = 10 images, 300 cells segmented per image on average, paired t test). *** p < 0.001.
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Figure 3. Cell segmentation by mask-R-CNN and cell subtype annotation based on marker expression. (A). Comparison of
watershed segmentation and mask-R-CNN segmentation. Left, imaging mass cytometry (IMC) image; red: Keratin8/18,
green: histone H3, blue: CD68. Middle, watershed segmentation. Right, mask-R-CNN segmentation. Bottom three images
are the zoomed-in images of the yellow rectangle region of the top three images. White scale bar, 200 µm. (B). Two-
dimensional bh-SNE representation of multiplexed IMC data highlighted by cell subtypes generated by phenograph
clusterings. Each dot represents one cell. (C). Heatmap showing the median marker expression (z-scored by column) of
each cluster (cell subtype). Twenty markers and 40 clusters were ordered by hierarchical clustering with the distance based
on Pearson correlation.
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Figure 4. Marker expression levels of major individual cell subtypes. Left, heatmaps of median marker expression level
(z-scored by column) for different major cell subtypes. Middle, histograms of Gaussian-smoothed (σ = 0.5) normalized
marker expression levels of the cells of each cell subtype across all samples (red line) and normalized marker expression
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of the cells of non-tumor cells across all samples (black line, (C)). Right, summary of phenotypes of IMC cell subtypes.
(A). Macrophage subtypes. (B). CD8+/CD4+ T cell subtypes. (C). Tumor subtypes. (D). Other immune cell subtypes.
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3.3. Spatially Resolved Cell Density and Nearest-Neighbor Cell-Cell Interactions Analyses of the
Ovarian Tumor Microenvironment

We automatically calculated the tumor-enriched region for each image (see Methods).
By computing the cell density as the cell count in the tumor-enriched region per total
number of tumor cells, we found several cell subtypes exhibiting significant differences
between long-term survivors (LTS; overall survival ≥ 60 months, n = 21) and short-term
survivors (STS; overall survival ≤ 20 months, n = 20; Figure 5A). Among different T cell
subtypes, granzyme B+ CD8+ cytotoxic T cell (CD8_4) density was significantly higher
in LTS (p = 0.019, Figure 5A) and CD45RO+ CD44+ CD8+ memory T cell (CD8_3) density
had a declining trend of LTS (p = 0.084, Figure S3) than of STS. In addition, CD45RO+

CD4+ memory T cell (CD4_4) density was significantly higher in LTS than in STS (p = 0.024,
Figure 5A). Among different CD73+ cell subtypes, CD73+ cell (CD73_1) density and
CD73mid cell (CD73_2) density were significantly lower in the LTS than in STS (p = 0.015
and p = 0.002, respectively; Figure 5A). CD31+ CD73mid endothelial cell (CD31) density
was significantly lower in LTS than in STS (p = 0.007, Figure 5A). Among tumor cell
subtypes, B7H4+ Keratin+ tumor cell (tu_9) density was significantly lower in LTS than in
STS (p = 0.018, Figure 5A). A comparison of cell densities of all cell subtypes between LTS
and STS is shown in Figure S3.

To determine whether the appearance of one cell subtype is associated with the ap-
pearance of another cell subtype, a Spearman correlation matrix between various cell
subtype densities was generated. The results demonstrated that the granzyme B+ CD8+

cytotoxic T cell (CD8_4) density was negatively correlated with cell densities of B7H4+

tumor cells (tu_7; r = −0.47, p = 0.0006) and tu_9 (r = −0.38, p = 0.006; Figure 5B), suggest-
ing that these CD8+ cytotoxic cells are infiltrating the tumor mass and actively depleting
B7H4+ ovarian cancer cells in LTS. CD163+ CD68+ CD14+ macrophage (ma_3) density
was positively correlated with CD45RO+ CD44+ CD4+ memory T cell (CD4_1) density
(r = 0.56, p = 2.8× 10−5), CD45ROmid CD44+ CD4+ memory T cell (CD4_3) density (r = 0.56,
p = 2.4 × 10−5), and CD45ROmid CD44mid CD4+ memory T cell (CD4_5) density (r = 0.45,
p = 0.001) (Figure 5B). A simultaneous high expression of CD163 and CD68 has been
used as a marker for M2 macrophage [30,31]. However, previous studies demonstrated
that tumor-associated macrophages are diverse and heterogeneous, and do not have re-
stricted M1 or M2 phenotypes [32,33]. Our results indicated a positive correlation between
CD163+ CD68+ CD14+ cell type (ma_3) and CD4+ memory T cells (CD4_1, CD_3, CD_5)
(Figure 5B).

Next, we examined the prognostic significance of nearest-neighbor cell-cell interac-
tions by computing the average cell count (Avg. C) of any cell subtype in the nearest
neighborhood of each cell subtype of interest (distance between the center of two cells
less than 20 µm) in the tumor-enriched region of every LTS or STS patient sample. We
computed the nearest-neighbor cell-cell interactions that were significantly higher or lower
(Benjamini-Hochberg adjusted p value < 0.05) in LTS (n = 21) than in STS (n = 20). We
identified 120 nearest-neighbor cell-cell interactions that were significantly different be-
tween LTS and STS (Figure 6A). Among them, granzyme B+ CD8+ cytotoxic T cells (CD8_4)
had significantly more interactions with multiple tumor cell subtypes (tu_1, tu_2, tu_3,
and tu_5) in LTS than in STS (Figure 6A), suggesting increased interactions between CD8
cytotoxic cells and multiple subtypes of tumor cells in LTS. An example of the interaction
between CD8_4 and tu_1 is shown in Figure S4A.
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Figure 5. Identification of cell subtypes that exhibit density differences in tumor-enriched regions between long-term
survivors (LTS) and short-term survivors (STS). (A). Left, visualization of the spatial distribution of tumor-infiltrated cells of
interest in LTS and STS. White scale bar, 200 µm. Right, comparison of cell counts in tumor-enriched regions per total tumor
cells for each cell subtype of interest between LTS and STS (n = 21 LTS, n = 20 STS, unpaired t test, * p < 0.05, ** p < 0.01). (B).
Spearman correlation between cell densities of any two cell subtypes in the tumor-enriched regions. White color indicates
correlation coefficient = 0 or p ≥ 0.05. Cell densities were ordered by hierarchical clustering with the Ward method.
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Figure 6. Comparison of nearest-neighbor cell-cell interactions between long-term survivors (LTS) and short-term survivors
(STS) and feature selection for patient survival prediction. (A). Map of significant increases and decreases in nearest-neighbor
interactions, computed as the average number of cell subtype X in the nearest neighbor of cell subtype Y (distance between
the center of X and Y less than 20 µm), that are significantly (Benjamini-Hochberg adjusted p value < 0.05) increased
(magenta) or decreased (green) in LTS compared with STS. (B). (Top) Number of cell density features selected by recursive
feature elimination as a function of training (red) or validation (blue) accuracy. The optimal number of features is indicated
by the green dashed line. Validation was done by leave-one-out cross validation. (Middle) Receiver operating characteristic
(ROC) curve for the test set. (Bottom) Logistic regression coefficients of the features selected by the model. (C) (Top)
Number of features of nearest-neighbor cell-cell interactions selected by recursive feature elimination as a function of
training (red) or validation (blue) accuracy. The optimal number of features is indicated by the green dashed line. Validation
was done by leave-one-out cross validation. (Middle) Receiver operating characteristic curve for the test set. (Bottom)
Logistic regression coefficients of the features selected by the model. (D). Spearman correlation between the features that
both correlate with patient survival (absolute correlation coefficient > 0.2). White color indicates correlation coefficient = 0
or p ≥ 0.05. Neighborhood features were ordered by hierarchical clustering with the Ward method.



Cancers 2021, 13, 1777 13 of 23

In contrast to more CD8_4–tumor cell interactions in LTS than in STS, CD73mid cell
(CD73_2) had significantly fewer interactions with 17 cell subtypes, including CD73_1,
CD31, macrophages and monocytes (ma_1, ma_2, ma_4, ma_5, ma_8, ma_9), stromal cells
(s_1, s_2), T cells (CD4_5, CD8_2), and tumor cells (tu_1, tu_3, tu_4, tu_5, tu_6), than in STS,
suggesting that when there are more CD73_2 cells in the tumor microenvironment, most
of them are surrounded by macrophages and tumor cells in STS. The interaction between
CD73_2 and CD163+ CD68+ CD14+ macrophages (ma_9) is shown in Figure S4B. CD4_4
cells had significantly more interactions with CD163+ CD68+ Vistamid CD14+ macrophages
(ma_1; Figure S4C) and CD14+ monocytes (ma_2) in LTS than in STS (Figure 6A), suggesting
increased interactions between CD4+ memory T cells and certain subtypes of macrophages
in LTS. CD45RO+ CD44+ CD8+ memory T cells (CD8_3) had significantly fewer interactions
with CD163+ CD14mid macrophages (ma_8; Figure S4D, Figure 6A) in LTS than in STS,
suggesting decreased interactions between CD8+ memory T cells and this subtype of
macrophages in LTS.

3.4. Feature Selection for Overall Survival Prediction by Logistic Regression

We deployed a common machine learning method, logistic regression, to identify
prognostic features that predict survival. After splitting the data (41 samples) into training
(80%) and test (20%) sets, we filtered out highly correlated features and kept the ones
that had the highest correlation with survival. We next performed recursive feature
elimination (RFE) on these features (see Methods). Our first approach used only the cell
densities detected in tumor-enriched regions and patient age as features (Figure 6B). The
optimal number of selected features was seven, because both training accuracy (0.947)
and validation accuracy (0.938) were high (Figure 6B, top). The test accuracy was 0.78
(test sensitivity = 0.6, test specificity = 1) and the area under the curve (AUC) was 0.8
(Figure 6B, middle). Among the seven prognostic features selected by the model, CD73mid

cells (CD73_2), CD31+ CD73mid endothelial cells (CD31), CD163+ CD68+ Vistamid CD14+

macrophages (ma_1), CD45RO+ CD44+ CD8+ memory T cells (CD8_3), and age had
negative coefficients, suggesting that they were inversely correlated with patient survival.
Granzyme B+ CD8+ cytotoxic T cells (CD8_4) and CD45RO+ CD4+ memory T cells (CD4_4)
had positive coefficients, suggesting that they were positively correlated with patient
survival (Figure 6B, bottom, Figure 5A).

Next, we used the nearest-neighbor, cell-cell interactions in the tumor-enriched region,
which are related to the seven prognostic cell density features in Figure 6B, bottom, and
patient age as features (Figure 6C). The optimal number of selected features was 11 as
both training accuracy (1) and validation accuracy (1) were the highest for that number
of features (Figure 6C, top). The test accuracy was 0.89 (test sensitivity = 1, test specificity
= 0.75) and the AUC was 1 (Figure 6C, middle). Among the eleven features selected by
the logistic regression model, average cell count (Avg.C) of CD73_2 neighboring CD73_1,
ma_9, or s_2; CD31 neighboring tu_4; CD8_3 neighboring ma_8; and age were negatively
correlated with patient survival. In contrast, Avg.C of CD4_4 neighboring s_2, s_1, ma_1,
or CD44 and CD8_4 neighboring tu_1 was positively correlated with survival (Figure 6C,
bottom). Some of the prognostic nearest-neighbor interaction features, such as Avg.C of
CD8_4 neighboring tu_1, CD73_2 neighboring ma_9, CD4_4 neighboring ma_1, and CD8_3
neighboring ma_8, can be visualized in Figure S4. These results indicate that multiple
neighboring interactions between stromal, immune, and tumor cells may work together
to influence patient survival. The complex cell-cell interaction patterns of ovarian cancer
with various immune cell and other stromal subtypes led to divergence in the tumor
microenvironment between LTS and STS.

Taken together, our results indicated that using nearest-neighbor, cell-cell interactions
and age as features allowed a more accurate prediction of patient survival than using
cell densities and age as features. The Spearman correlation of any two nearest-neighbor
interaction features that both had relatively high correlation with patient survival (Spear-
man correlation coefficient > 0.2) and were related to the seven prognostic cell density
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features were visualized in Figure 6D. The Spearman correlation study demonstrated that
certain features were highly correlated. For example, we found that the average cell count
(Avg.C) of CD8_4 neighboring with a tu_1 cell was highly correlated with Avg.C of CD8_4
neighboring with a tu_2 cell (r = 0.77, p = 5 × 10−9) and Avg.C of CD8_4 neighboring
with a tu_3 cell (r = 0.72, p = 1 × 10−7). The feature elimination process of our logistic
regression model first filtered out the highly correlated features as mentioned above (also
see Methods). Owing to this elimination process, features that are highly correlated with
any feature in the prognostic list identified by the logistic regression model may also have
prognostic value. For example, because Avg.C of CD8_4 neighboring tu_1 was a prognostic
feature, Avg.C of CD8_4 neighboring tu_2 or CD8_4 neighboring tu_3 may have similar
prognostic values.

3.5. Correlations between Cell Subtype Density and Transcriptomic Profiles from Microdissected
Fibroblastic Stromal and Epithelial Compartments of HGSC

To provide mechanistic insights by which certain cell phenotypes identified by IMC
modulate survival in HGSC patients, we performed correlation studies and filtered genes
by scRNA-seq [22] data (see Methods) to identify genes in the epithelial compartment
(Figure 7A) or fibroblastic stromal compartment (Figure 7B) of HGSCs that had a significant
positive or negative correlation with the IMC cell densities in the tumor tissue (Tables S3
and S4) and that were significantly different between LTS and STS (Figures S5 and S6).
A total of 26 samples with whole transcriptome data available were used. We focused
on the cell densities of the six IMC features significantly different between LTS and STS
(Figure 5A), four of which were also selected by our machine learning model for survival
prediction (Figure 6B, bottom). We discovered relationships consistent with known cancer
biology while making unexpected observations.

In the epithelial compartment of HGSC tumors, we identified expression levels of
several genes involved in the migration and invasion of cancer cells correlated with CD73_1,
CD73_2, and CD31 densities and with poor survival, suggesting that these genes regulate
the metastatic potential of cancer cells in a paracrine manner; these genes included PARD6B,
S100A10, SLURP1, and SPINT1. In addition, we demonstrated that ovarian cancer cell–
derived ITIH5, TACSTD2, and WFDC2 expression levels were negatively correlated with
granzyme B+ CD8+ cytotoxic T cell (CD8_4) densities. In contrast, BPIFB1 and SLURP1
expression levels were positively correlated, and CD9 and ITIH5 were negatively correlated
with CD45RO+ CD4+ memory T cell (CD4_4) densities (Figure 7A and Figure S5, Table S3).
These findings suggest that these ovarian cancer cell–derived genes, which are known
to code for extracellular matrix and metabolism modulators [34–39], could facilitate or
block T cell infiltration in the tumor microenvironment as well as interfere with T cell
activation and facilitate immune system evasion. Moreover, cancer cell–derived FST
and PARD6B were positively correlated with CD31+ CD73mid endothelial cell (CD31)
density, indicating that these genes modulate endothelial cell activity and subsequently
angiogenesis. The prognostic significance of these genes was determined by analyzing
530 samples of optimally debulked advanced HGSC in the KM Plotter, and the results are
summarized in Figure S5.

To identify cancer-associated fibroblast (CAF)-derived mediators that confer the prog-
nostic phenotypes identified by IMC, we analyzed correlations of the expression levels
of genes in the transcriptomes generated from the microdissected fibroblastic stromal
compartment of HGSC with the prognostic phenotypes identified. Survival analyses of
the significantly correlated genes were also performed. The list of CAF-derived genes that
were positively correlated with CD73+ cell (CD73_1) and CD73mid cell (CD73_2) densities
and also associated with STS is shown in Table S4, Figure 7B, and Figure S6. These genes
are likely expressed by CD73_1 and CD73_2, two CAF subtypes. Among these genes,
CCDC85B, DDAH1, EFEMP2, F2RL1, ITGB1, LOX, LDLR, MFGE8, MICAL2, MKL1, MSRB3,
NCAM1, NPTX, PLAT, SLC2A3, SPSB1, and VASN have been described as promotors of
tumor cell growth, invasion, and migration, as well as angiogenesis [40–55] (Table S4,
Figure S6). HMOX2, ICMT, MICU1, and TSPAN9 also positively correlated with CD73_1
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and CD73_2 densities and short survival and have been shown to be involved in conferring
chemoresistance in ovarian cancer [56–59] (Table S4, Figure S6). CAF-derived ANGPTL2,
WWTR1, and PLOD2 promote tumor progression and cell invasion, and MYO10 regulates
CAF rigidity [60–65]. These findings indicate that these mediators produced by CD73_1
and CD73_2 CAF subtypes modulate malignant phenotypes of HGSC.

CAF-derived genes involved in the modulation of the immune response and associated
with patient survival were examined. The results are summarized in Table S4 and Figure S6.
Among these genes, BMPR1B, a gene encoding the receptor of the bone morphogenetic
protein (BMP), was negatively correlated with CD4_4 cells and associated with STS. This
finding suggests that CAFs expressing high levels of BMPR1B may be more responsive to
BMP signaling, which subsequently modulates the rigidity of CAFs, stiffness of the tumor
microenvironment, and CD4_4 T cell trafficking. Besides BMPR1B, VSTM4, a secreted
protein that can reduce IFN-γ, IL-2, and IL-17 cytokine production by human T cells and
cause a profound decrease in T cell activation [66], was negatively correlated with CD4_4
density but positively associated with STS, suggesting that CAF-derived VSTM4 modulates
CD4_4 activity and subsequently leads to poor survival rates in patients with HGSC.

In addition to these correlations between expression of CAF-derived genes and prog-
nostic immune cell phenotypes, expression of several genes with prognostic significance
was also associated with the two CAF phenotypes CD73_1 and CD73_2. FN1, TGFBI, TNC,
and LRRC32 were positively correlated with both CD73_1 and CD73_2 and negatively
correlated with survival. LRRC32 is a key regulator of TGF-β activation [67]. Together
with increased TGFB1 secreted by CD73_1 and CD73_2 CAFs, LRRC32 may generate an
immune-suppressive and pro-tumorigenic microenvironment to support the malignant
phenotype of ovarian cancer cells, as we previously described [23,68]. Both FN1 and TNC
encode extracellular proteins that have previously been shown to be associated with short
progression-free survival and increased migration-inducing potential in HGSC [69,70].

Several stromal genes were associated with density of endothelial cells (CD31). Among
them, MFGE8, which was also positively correlated with CD73_1 and CD73_2 densities,
demonstrated the strongest correlation with increased CD31 density and poor patient sur-
vival (Table S4 and Figure S6). Our findings are supported by published studies reporting
that MFGE8 increases tumor angiogenesis by increasing VEGF and ET-1 expression in
stromal cells and by enhancing M2 polarization of macrophages [46]. Moreover, MFGE8
proteins accumulated around CD31+ blood vessels have been shown to promote angiogen-
esis by enhancing PDGF-PDGFRβ signaling mediated by integrin-growth factor receptor
crosstalk [47,71].

Taken together, the transcriptome analysis revealed several key genes in both cancer
cell and fibroblastic stromal compartments of HGSC that correlate with IMC features
positively or negatively. The presented SIO method indicates that these genes can promote
either a tumor-promoting or an immune-suppressive microenvironment, subsequently
leading to short-term survival in HGSC patients (Figure 7C).
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Figure 7. Gene correlation studies. Shown are correlations of gene expression in microdissected
epithelial (A) and fibroblastic stromal (B) components of high-grade serous ovarian cancer (HSGC)
samples with the imaging mass cytometry cell density in tumor-enriched regions (n = 26 samples,
Spearman correlation, p < 0.05). White color indicates absolute correlation coefficient≤0.4 or p≥ 0.05.
Genes were ordered by hierarchical clustering with the Ward method. (C) Schematic summarizing
the genes that are significantly correlated with prognostic IMC features to postulate the mechanisms
by which these genes contribute to the prognostic features. Cancer cell-derived WFDC2, TACSTD2,
and ITIH5 drive immune surveillance failure by compromising cytotoxic CD8+ T cells activity
and infiltration. CAF-derived VSTM4 can reduce cytokine production by CD4 T cells and cause a
decrease in T cell activation. CAFs expressing BMPR1B are more responsive to BMP signaling, which
subsequently modulates the rigidity of CAFs, and reduces CD4_4 T cell trafficking. CAF-derived
LRRC32 suppresses anticancer immune cell infiltration by modulating TGF-β signaling networks.
ANGPTL2, TNC, TGFB1, FN1, BMPR1B, and LRRC32 promote tumor progression, angiogenesis, and
ECM remodeling.
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4. Discussion

In the present study, we applied a new analytic pipeline, SIO, to location-specific,
highly multiplexed IMC data based on deep learning and logistic regression to predict
HGSC patients’ survival rates. We quantified the abundance of twenty-one markers in each
sample, characterizing the immune milieu in both tumoral and stromal compartments.
The advanced deep learning algorithm, MRCNN, incorporated in SIO has been shown
to efficiently detect objects in an image while simultaneously generate a high-quality
segmentation mask for each instance [19]. In this study, we demonstrated that the MRCNN
algorithm can be adapted for cell segmentation in densely packed, structurally complicated,
and widely varying IMC images with minor configuration. Our pipeline automatically
split the image into tumor-enriched and non-enriched regions and identified prognostic
cell density or nearest neighbor features in tumor-enriched regions that predict survival.

Accurate and reliable cell segmentation in tissues is always a challenging task, espe-
cially for large, highly multiplexed images such as IMC images. In 5 µm tissue sections,
only a portion of a cell may be present within the analyzed section, many cells will overlap
or do not have clear boundaries, and sizes and shapes of different cell types may vary a
lot. Conventional microscopic image analysis algorithms, such as Watershed segmentation,
has been applied to segment large, high resolution IMC images [17]. In this study, we
showed that the deep learning algorithm outperformed watershed algorithm for IMC
cell segmentation yet leveraging computerized outputs of watershed segmentation as the
training sets to sidestep the laborious and time-consuming labeling efforts of training sets
encountered in deep learning.

Recently, methods of spatial analysis on highly multiplexed imaging have been devel-
oped, such as neighbor analysis [15] and community analysis [16]. Neighbor analysis was
reported to measure the significance of a neighbor interaction by permutation test [15]. In
this study, we further extended the utility of neighborhood analysis to the nearest neighbor
interactions in the tumor-enriched regions. To the best of our knowledge, this is the first
study that integrates automated spatial feature selection and associated neighborhood
analysis to predict clinical outcomes based on extracted specimens of cancer patients.

Spatial analysis of cell densities enables the identification of novel cell subtypes exhibit-
ing significant differences between LTS and STS. In particular, the density of granzyme B+

CD8+ cytotoxic T cells (CD8_4) was significantly higher in LTS than in STS, expanding the
prior knowledge that CD3+, CD4+, and CD8+ tumor-infiltrating lymphocytes are associated
with positive outcomes in ovarian cancer [72–75] and highlighting that only a particular
subtype of activated T cells (granzyme B+) is associated with good clinical outcomes in
ovarian cancer. In addition, we found that the density of CD45RO+ CD4+ memory T cell
(CD4_4) was significantly higher in LTS than in STS. Memory CD4+ T cells could provide a
protective response against cancer cells by making effector cytokines respond early and by
enhancing CD8+ T and B cell responses, as well as by secreting cytokines that can induce
other cells in the tumor microenvironment to mount antitumor immunity [73].

Among different CD73+ cell subtypes, densities of CD73_1 and CD73_2, two different
CAF subtypes, were significantly lower in LTS than in STS. CD73 is a GPI-anchored
nucleotidase that catabolizes the production of extracellular adenosine and promotes
tumor immune escape and thereby tumor growth. Indeed, CD73 expression has been
shown to be associated with shorter disease-free and overall survival in HGSC patients and
decreased CD8+ tumor-infiltrating lymphocytes [76,77]. A recent study reported that CAF-
derived CD73 enforces an immune checkpoint [78]. These findings reinforce the hypothesis
that CAFs play a role in shaping the immune landscape of the tumor microenvironment
and modulating patient survival rates.

Among different tumor cell subtypes, B7H4+ Keratin+ tumor cell (tu_9) density was
significantly lower in LTS than in STS. B7-H4 overexpression in cancer cells has been
previously identified in high-grade ovarian tumors [79], but to the best of our knowledge,
this is the first report showing that increased density of tu_9, a subtype of ovarian cancer
cells expressing high levels of B7-H4, is associated with poor patient overall survival rates.
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Meanwhile, we found CD31+ CD73mid endothelial cell (CD31) density was significantly
lower in LTS than in STS. Although CD31 expression has shown no prognostic survival
value, high CD31 expression was found in poorly differentiated tumors in a published
study [80].

Cell-cell communication between heterogeneous tumor cells and various types of
stromal cells, including infiltrating T cells, macrophages, CAFs, endothelial cells, and others,
has been shown to be able to shape the ovarian cancer ecosystem, which in turn modulates
disease progression and clinical outcome [3,74,81]. Our machine learning driven SIO
pipeline identified ten nearest-neighbor, cell-cell interactions together with age as salient
features to attain the best survival prediction accuracy of HGSC patients, with an AUC of 1.
These findings indicate that cell-cell communication between different cell subtypes in the
tumor microenvironment generates more reliable prognostic features in predicting patient
survival rates than cell density alone. For example, CD31 neighboring tu_4 was negatively
correlated with patient survival, confirming that increased angiogenesis supports tumor
cell growth and leads to poor patient survival rates. In contrast, CD8_4 neighboring tu_1
was positively correlated with patient survival, suggesting that intratumoral activated CD8+

cytotoxic T cells closely interact with tumor cells as an attempt of an anti-tumor response
and lead to improve patient survival rates, consistent with the findings reported in the
literature [72–75]. Increased interaction between heterogenous populations of cell subtypes
in the tumor microenvironment likely involves ligand-receptor crosstalk among different
cell subtypes. Further experiments using spatially resolved single cell transcriptomes
on one cell subtype with its nearest neighboring partner will be needed to validate the
predicted cell-cell interactions as well as to understand how these interactions and the
crosstalk signaling networks contribute to malignant phenotypes and their correlation with
patient survival rates.

Several studies have coupled IMC data to multiplatform genomics to understand
how the genome shapes the composition and architecture of tumor ecosystems [82,83].
To delineate the molecular mechanisms by which certain cell phenotypes identified by
IMC modulate survival rates in HGSC patients, correlational studies have used genes in
the microdissected epithelial compartment or fibroblastic stromal compartment of HGSCs
associated with patient survival and prognostic cell phenotypes identified by IMC. We
found that cancer cell–derived WFDC2 negatively correlated with granzyme B+ CD8+

cytotoxic T cell (CD8_4) density and was associated with poor HGSC patient survival.
In fact, WFDC2, which encodes the protein HE4, has been shown to correlate with poor
survival in HGSC patients and promote tumor growth and confer chemoresistance in
ovarian cancer [84]. Moreover, HE4 has been described as a driver of immune failure in
ovarian tumors by compromising cytotoxic CD8+ T cells through upregulation of self-
produced dual-specificity phosphatase 6 (DUSP6) [85]. These findings suggest that our SIO
pipeline showed robust performance in identifying prognostic biomarkers associated with
immune cell phenotypes described in previous studies. Besides WFDC2, we found that
other relevant genes involved in the regulation of T cell activity, apoptosis, and infiltration
were overexpressed in STS; including ITM2B, ITIH5, CD9, and TACSTD2 [36,37,86].

CAFs have been shown to facilitate cancer progression by supporting tumor cell
growth, extracellular matrix remodeling, angiogenesis, and formation of an immunosup-
pressive microenviroment [83]. These results are supported by our research showing that
CAF subtypes, CD73_1 and CD73_2, express genes, such as ANGPTL2, TNC, TGFB1, FN1,
BMPR1B, and LRRC32, promote tumor progression, angiogenesis, and extracellular matrix
remodeling [60,61,67,69,70,87,88]. Some of these genes, including TGFB1, BMPR1B, and
LRRC32, have been shown to modulate TGF-β signaling, which suppresses infiltration
of anticancer immune cells such as cytotoxic T cells and natural killer cells and promotes
the function of pro-cancer immune cells, such as regulatory T cells and M2 macrophages,
in the tumor microenvironment [60,89,90], leading to poor patient survival rates. Using
additional antibodies targeting these immune cell phenotypes in IMC analysis will further
validate our observations.
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5. Conclusions

In conclusion, the presented SIO analytic pipeline combined with transcriptomes
generated from microdissected epithelial and fibroblastic stromal compartments of HGSC
patient specimens demonstrates the heterogeneity of both tumor and stromal cell subtypes
in HGSC. The spatial image-omics analysis also identified cellular features and phenotypes
with prognostic significance and helped delineate the molecular mechanism by which
these features modulate the tumor-promoting and immune-suppressive microenvironment
(Figure 7C).
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29. Győrffy, B.; Lánczky, A.; Szállási, Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers

in ovarian-cancer using microarray data from 1287 patients. Endocr. Relat. Cancer 2012, 19, 197–208. [CrossRef]
30. Elliott, L.A.; Doherty, G.A.; Sheahan, K.; Ryan, E.J. Human Tumor-Infiltrating Myeloid Cells: Phenotypic and Functional Diversity.

Front. Immunol. 2017, 8, 86. [CrossRef]
31. Yamaguchi, T.; Fushida, S.; Yamamoto, Y.; Tsukada, T.; Kinoshita, J.; Oyama, K.; Miyashita, T.; Tajima, H.; Ninomiya, I.; Munesue,

S.; et al. Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal
dissemination. Gastric Cancer 2016, 19, 1052–1065. [CrossRef]

32. Koelzer, V.H.; Canonica, K.; Dawson, H.; Sokol, L.; Karamitopoulou-Diamantis, E.; Lugli, A.; Zlobec, I. Phenotyping of tumor-
associated macrophages in colorectal cancer: Impact on single cell invasion (tumor budding) and clinicopathological outcome.
Oncoimmunology 2015, 5, e1106677. [CrossRef]

33. Minami, K.; Hiwatashi, K.; Ueno, S.; Sakoda, M.; Iino, S.; Okumura, H.; Hashiguchi, M.; Kawasaki, Y.; Kurahara, H.; Mataki, Y.;
et al. Prognostic significance of CD68, CD163 and Folate receptor-β positive macrophages in hepatocellular carcinoma. Exp. Ther.
Med. 2018, 15, 4465–4476. [CrossRef]

34. Wei, F.; Wu, Y.; Tang, L.; He, Y.; Shi, L.; Xiong, F.; Gong, Z.; Guo, C.; Li, X.; Liao, Q.; et al. BPIFB1 (LPLUNC1) inhibits migration and
invasion of nasopharyngeal carcinoma by interacting with VTN and VIM. Br. J. Cancer 2018, 118, 233–247. [CrossRef] [PubMed]

35. Ikeyama, S.; Koyama, M.; Yamaoko, M.; Sasada, R.; Miyake, M. Suppression of cell motility and metastasis by transfection with
human motility-related protein (MRP-1/CD9) DNA. J. Exp. Med. 1993, 177, 1231–1237. [CrossRef] [PubMed]

36. Hwang, J.R.; Jo, K.; Lee, Y.; Sung, B.J.; Park, Y.W.; Lee, J.H. Upregulation of CD9 in ovarian cancer is related to the induction of
TNF-α gene expression and constitutive NF-κB activation. Carcinogenesis 2012, 33, 77–83. [CrossRef]

37. Veeck, J.; Chorovicer, M.; Naami, A.; Breuer, E.; Zafrakas, M.; Bektas, N.; Dürst, M.; Kristiansen, G.; Wild, P.J.; Hartmann, A.; et al.
The extracellular matrix protein ITIH5 is a novel prognostic marker in invasive node-negative breast cancer and its aberrant
expression is caused by promoter hypermethylation. Oncogene 2007, 27, 865–876. [CrossRef] [PubMed]

38. Ridge, R.J.; Sloane, N.H. Partial N-terminal amino acid sequence of the anti-neoplastic urinary protein (ANUP) and the
anti-tumour effect of the N-terminal nonapeptide of the unique cytokine present in human granulocytes. Cytokine 1996,
8, 1–5. [CrossRef] [PubMed]

39. Moriwaki, Y.; Yoshikawa, K.; Fukuda, H.; Fujii, Y.X.; Misawa, H.; Kawashima, K. Immune system expression of SLURP-1 and
SLURP-2, two endogenous nicotinic acetylcholine receptor ligands. Life Sci. 2007, 80, 2365–2368. [CrossRef]

40. Feng, Y.; Gao, Y.; Yu, J.; Jiang, G.; Zhang, X.; Lin, X.; Han, Q.; Rong, X.; Xu, H.; Li, Q.; et al. CCDC85B promotes non-small cell
lung cancer cell proliferation and invasion. Mol. Carcinog. 2019, 58, 126–134. [CrossRef] [PubMed]

41. Hulin, J.-A.; Tommasi, S.; Elliot, D.; Mangoni, A.A. Small molecule inhibition of DDAH1 significantly attenuates triple negative
breast cancer cell vasculogenic mimicry in vitro. Biomed. Pharmacother. 2019, 111, 602–612. [CrossRef]

42. Chen, J.; Liu, Z.; Fang, S.; Fang, R.; Liu, X.; Zhao, Y.; Li, X.; Huang, L.; Zhang, J. Fibulin-4 is associated with tumor progression
and a poor prognosis in ovarian carcinomas. BMC Cancer 2015, 15, 91. [CrossRef]

43. Ungefroren, H.; Witte, D.; Rauch, B.H.; Settmacher, U.; Lehnert, H.; Gieseler, F.; Kaufmann, R. Proteinase-Activated Receptor 2
May Drive Cancer Progression by Facilitating TGF-β Signaling. Int. J. Mol. Sci. 2017, 18, 2494. [CrossRef] [PubMed]

44. Zhang, L.; Zou, W. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy
via the FAK/STAT1 signaling pathway. Mol. Med. Rep. 2015, 12, 7869–7876. [CrossRef]

45. Ji, F.; Wang, Y.; Qiu, L.; Li, S.; Zhu, J.; Liang, Z.; Wan, Y.; Di, W. Hypoxia inducible factor 1α-mediated LOX expression correlates
with migration and invasion in epithelial ovarian cancer. Int. J. Oncol. 2013, 42, 1578–1588. [CrossRef] [PubMed]

46. Yamada, K.; Uchiyama, A.; Uehara, A.; Perera, B.; Ogino, S.; Yokoyama, Y.; Takeuchi, Y.; Udey, M.C.; Ishikawa, O.; Motegi, S.-I.
MFG-E8 Drives Melanoma Growth by Stimulating Mesenchymal Stromal Cell–Induced Angiogenesis and M2 Polarization of
Tumor-Associated Macrophages. Cancer Res. 2016, 76, 4283–4292. [CrossRef] [PubMed]

47. Uchiyama, A.; Yamada, K.; Ogino, S.; Yokoyama, Y.; Takeuchi, Y.; Udey, M.C.; Ishikawa, O.; Motegi, S.-I. MFG-E8 Regulates
Angiogenesis in Cutaneous Wound Healing. Am. J. Pathol. 2014, 184, 1981–1990. [CrossRef]

48. Zhu, L.-Y.; Zhang, W.-M.; Yang, X.-M.; Cui, L.; Li, J.; Zhang, Y.-L.; Wang, Y.-H.; Ao, J.-P.; Ma, M.-Z.; Lu, H.; et al. Silencing
of MICAL-L2 suppresses malignancy of ovarian cancer by inducing mesenchymal–epithelial transition. Cancer Lett. 2015,
363, 71–82. [CrossRef]

49. Hernandez, L.; Kim, M.K.; Lyle, L.T.; Bunch, K.P.; House, C.D.; Ning, F.; Noonan, A.M.; Annunziata, C.M. Characterization of
ovarian cancer cell lines as in vivo models for preclinical studies. Gynecol. Oncol. 2016, 142, 332–340. [CrossRef]

http://doi.org/10.1016/j.cels.2018.02.010
http://doi.org/10.1002/cyto.a.22272
http://www.ncbi.nlm.nih.gov/pubmed/23526804
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://doi.org/10.1093/biostatistics/4.2.249
http://doi.org/10.1530/ERC-11-0329
http://doi.org/10.3389/fimmu.2017.00086
http://doi.org/10.1007/s10120-015-0579-8
http://doi.org/10.1080/2162402X.2015.1106677
http://doi.org/10.3892/etm.2018.5959
http://doi.org/10.1038/bjc.2017.385
http://www.ncbi.nlm.nih.gov/pubmed/29123267
http://doi.org/10.1084/jem.177.5.1231
http://www.ncbi.nlm.nih.gov/pubmed/8478605
http://doi.org/10.1093/carcin/bgr257
http://doi.org/10.1038/sj.onc.1210669
http://www.ncbi.nlm.nih.gov/pubmed/17653090
http://doi.org/10.1006/cyto.1996.0001
http://www.ncbi.nlm.nih.gov/pubmed/8742060
http://doi.org/10.1016/j.lfs.2006.12.028
http://doi.org/10.1002/mc.22914
http://www.ncbi.nlm.nih.gov/pubmed/30242906
http://doi.org/10.1016/j.biopha.2018.12.117
http://doi.org/10.1186/s12885-015-1100-9
http://doi.org/10.3390/ijms18112494
http://www.ncbi.nlm.nih.gov/pubmed/29165389
http://doi.org/10.3892/mmr.2015.4443
http://doi.org/10.3892/ijo.2013.1878
http://www.ncbi.nlm.nih.gov/pubmed/23545606
http://doi.org/10.1158/0008-5472.CAN-15-2812
http://www.ncbi.nlm.nih.gov/pubmed/27197197
http://doi.org/10.1016/j.ajpath.2014.03.017
http://doi.org/10.1016/j.canlet.2015.04.002
http://doi.org/10.1016/j.ygyno.2016.05.028


Cancers 2021, 13, 1777 22 of 23

50. Zecchini, S.; Bombardelli, L.; Decio, A.; Bianchi, M.; Mazzarol, G.; Sanguineti, F.; Aletti, G.; Maddaluno, L.; Berezin, V.; Bock,
E.; et al. The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling. EMBO Mol. Med. 2011, 3,
480–494. [CrossRef]

51. Xu, C.; Tian, G.; Jiang, C.; Xue, H.; Kuerbanjiang, M.; Sun, L.; Gu, L.; Zhou, H.; Liu, Y.; Zhang, Z.; et al. NPTX2 promotes colorectal
cancer growth and liver metastasis by the activation of the canonical Wnt/β-catenin pathway via FZD6. Cell Death Dis. 2019, 10,
1–12. [CrossRef]

52. Teliga-Czajkowska, J.; Sienko, J.; Jalinik, K.; Smolarczyk, R.; Czajkowski, K. Prognostic value of tissue plasminogen activator (tPA)
in patients with epithelial ovarian cancer undergoing chemotherapy. Ginekol. Polska 2016, 90, 235–241. [CrossRef] [PubMed]

53. Ancey, P.; Contat, C.; Meylan, E. Glucose transporters in cancer—From tumor cells to the tumor microenvironment. FEBS J. 2018,
285, 2926–2943. [CrossRef] [PubMed]

54. Kim, H.-J.; Kim, H.J.; Kim, M.K.; Bae, M.K.; Sung, H.Y.; Ahn, J.H.; Kim, Y.H.; Kim, S.C.; Ju, W. SPSB1 enhances ovarian cancer cell
survival by destabilizing p21. Biochem. Biophys. Res. Commun. 2019, 510, 364–369. [CrossRef]

55. Liang, W.; Guo, B.; Ye, J.; Liu, H.; Deng, W.; Lin, C.; Zhong, X.; Wang, L. Vasorin stimulates malignant progression and
angiogenesis in glioma. Cancer Sci. 2019, 110, 2558–2572. [CrossRef]

56. Chakraborty, P.K.; Mustafi, S.B.; Xiong, X.; Dwivedi, S.K.D.; Nesin, V.; Saha, S.; Zhang, M.; Dhanasekaran, D.; Jayaraman, M.; Man-
nel, R.; et al. MICU1 drives glycolysis and chemoresistance in ovarian cancer. Nat. Commun. 2017, 8, 14634. [CrossRef] [PubMed]

57. Podkalicka, P.; Mucha, O.; Józkowicz, A.; Dulak, J.; Łoboda, A. Heme oxygenase inhibition in cancers: Possible tools and targets.
Współczesna Onkol. 2018, 2018, 23–32. [CrossRef]

58. Liu, Q.; Chen, J.; Fu, B.; Dai, J.; Zhao, Y.; Lai, L. Isoprenylcysteine carboxylmethyltransferase regulates ovarian cancer cell response
to chemotherapy and Ras activation. Biochem. Biophys. Res. Commun. 2018, 501, 556–562. [CrossRef]

59. Qi, Y.; Qi, W.; Liu, S.; Sun, L.; Ding, A.; Yu, G.; Li, H.; Wang, Y.; Qiu, W.; Lv, J. TSPAN9 suppresses the chemosensitivity of gastric
cancer to 5-fluorouracil by promoting autophagy. Cancer Cell Int. 2020, 20, 1–11. [CrossRef]

60. Crawford, Y.; Kasman, I.; Yu, L.; Zhong, C.; Wu, X.; Modrusan, Z.; Kaminker, J.; Ferrara, N. PDGF-C Mediates the Angiogenic
and Tumorigenic Properties of Fibroblasts Associated with Tumors Refractory to Anti-VEGF Treatment. Cancer Cell 2009, 15,
21–34. [CrossRef]

61. Aoi, J.; Endo, M.; Kadomatsu, T.; Miyata, K.; Nakano, M.; Horiguchi, H.; Ogata, A.; Odagiri, H.; Yano, M.; Araki, K.; et al.
Angiopoietin-like Protein 2 Is an Important Facilitator of Inflammatory Carcinogenesis and Metastasis. Cancer Res. 2011, 71,
7502–7512. [CrossRef]

62. Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP and TAZ: A signalling hub of the tumour microenvironment. Nat. Rev. Cancer
2019, 19, 454–464. [CrossRef]

63. Pankova, D.; Chen, Y.; Terajima, M.; Schliekelman, M.J.; Baird, B.N.; Fahrenholtz, M.; Sun, L.; Gill, B.J.; Vadakkan, T.J.; Kim,
M.P.; et al. Cancer-Associated Fibroblasts Induce a Collagen Cross-link Switch in Tumor Stroma. Mol. Cancer Res. 2016,
14, 287–295. [CrossRef]

64. Cao, R.; Chen, J.; Zhang, X.; Zhai, Y.; Qing, X.; Xing, W.; Zhang, L.; Malik, Y.S.; Yu, H.; Zhu, X. Elevated expression of myosin X in
tumours contributes to breast cancer aggressiveness and metastasis. Br. J. Cancer 2014, 111, 539–550. [CrossRef]

65. Zhang, X.; Fang, Q.; Ma, Y.; Zou, S.; Liu, Q.; Wang, H. Protease activated receptor 2 mediates tryptase-induced cell migration
through MYO10 in colorectal cancer. Am. J. Cancer Res 2019, 9, 1995–2006.

66. Wang, J.; Manick, B.; Renelt, M.; Suin, J.; Hansen, L.; Person, A.; Kalabokis, V.; Wu, G. VSTM4 is a novel negative regulator of T
cell activation. J. Immunol. 2019, 202, 124.4.

67. Liu, T.; Han, C.; Wang, S.; Fang, P.; Ma, Z.; Xu, L.; Yin, R. Cancer-associated fibroblasts: An emerging target of anti-cancer
immunotherapy. J. Hematol. Oncol. 2019, 12, 1–15. [CrossRef] [PubMed]

68. Yeung, T.-L.; Leung, C.S.; Wong, K.-K.; Samimi, G.; Thompson, M.S.; Liu, J.; Zaid, T.M.; Ghosh, S.; Birrer, M.J.; Mok, S.C. TGF-β
Modulates Ovarian Cancer Invasion by Upregulating CAF-Derived Versican in the Tumor Microenvironment. Cancer Res. 2013,
73, 5016–5028. [CrossRef] [PubMed]

69. Didem, T.; Faruk, T.; Senem, K.; Derya, D.; Murat, S.; Murat, G.; Oznur, K. Clinical significance of serum tenascin-c levels in
epithelial ovarian cancer. Tumor Biol. 2014, 35, 6777–6782. [CrossRef]

70. Yousif, N.G. Fibronectin promotes migration and invasion of ovarian cancer cells through up-regulation of FAK–PI3K/Akt
pathway. Cell Biol. Int. 2014, 38, 85–91. [CrossRef]

71. Raymond, A.; Ensslin, M.A.; Shur, B.D. SED1/MFG-E8: A Bi-Motif protein that orchestrates diverse cellular interactions. J. Cell.
Biochem. 2009, 106, 957–966. [CrossRef]

72. Hwang, W.-T.; Adams, S.F.; Tahirovic, E.; Hagemann, I.S.; Coukos, G. Prognostic significance of tumor-infiltrating T cells in
ovarian cancer: A meta-analysis. Gynecol. Oncol. 2012, 124, 192–198. [CrossRef]

73. Santoiemma, P.P.; Powell, D.J. Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biol. Ther. 2015, 16, 807–820. [CrossRef]
74. Zhang, L.; Conejo-Garcia, J.R.; Katsaros, D.; Gimotty, P.A.; Massobrio, M.; Regnani, G.; Makrigiannakis, A.; Gray, H.; Schlienger,

K.; Liebman, M.N.; et al. Intratumoral T Cells, Recurrence, and Survival in Epithelial Ovarian Cancer. N. Engl. J. Med. 2003, 348,
203–213. [CrossRef] [PubMed]

75. Hamanishi, J.; Mandai, M.; Abiko, K.; Matsumura, N.; Baba, T.; Yoshioka, Y.; Kosaka, K.; Konishi, I. The comprehensive
assessment of local immune status of ovarian cancer by the clustering of multiple immune factors. Clin. Immunol. 2011, 141,
338–347. [CrossRef] [PubMed]

http://doi.org/10.1002/emmm.201100152
http://doi.org/10.1038/s41419-019-1467-7
http://doi.org/10.5603/GP.a2019.0043
http://www.ncbi.nlm.nih.gov/pubmed/30968388
http://doi.org/10.1111/febs.14577
http://www.ncbi.nlm.nih.gov/pubmed/29893496
http://doi.org/10.1016/j.bbrc.2019.01.088
http://doi.org/10.1111/cas.14103
http://doi.org/10.1038/ncomms14634
http://www.ncbi.nlm.nih.gov/pubmed/28530221
http://doi.org/10.5114/wo.2018.73879
http://doi.org/10.1016/j.bbrc.2018.05.038
http://doi.org/10.1186/s12935-019-1089-2
http://doi.org/10.1016/j.ccr.2008.12.004
http://doi.org/10.1158/0008-5472.CAN-11-1758
http://doi.org/10.1038/s41568-019-0168-y
http://doi.org/10.1158/1541-7786.MCR-15-0307
http://doi.org/10.1038/bjc.2014.298
http://doi.org/10.1186/s13045-019-0770-1
http://www.ncbi.nlm.nih.gov/pubmed/31462327
http://doi.org/10.1158/0008-5472.CAN-13-0023
http://www.ncbi.nlm.nih.gov/pubmed/23824740
http://doi.org/10.1007/s13277-014-1923-z
http://doi.org/10.1002/cbin.10184
http://doi.org/10.1002/jcb.22076
http://doi.org/10.1016/j.ygyno.2011.09.039
http://doi.org/10.1080/15384047.2015.1040960
http://doi.org/10.1056/NEJMoa020177
http://www.ncbi.nlm.nih.gov/pubmed/12529460
http://doi.org/10.1016/j.clim.2011.08.013
http://www.ncbi.nlm.nih.gov/pubmed/21955569


Cancers 2021, 13, 1777 23 of 23

76. Wang, L.; Fan, J.; Thompson, L.F.; Zhang, Y.; Shin, T.; Curiel, T.J.; Zhang, B. CD73 has distinct roles in nonhematopoietic and
hematopoietic cells to promote tumor growth in mice. J. Clin. Investig. 2011, 121, 2371–2382. [CrossRef] [PubMed]

77. Turcotte, M.; Spring, K.; Pommey, S.; Chouinard, G.; Cousineau, I.; George, J.; Chen, G.M.; Gendoo, D.M.; Haibe-Kains, B.;
Karn, T.; et al. CD73 Is Associated with Poor Prognosis in High-Grade Serous Ovarian Cancer. Cancer Res. 2015, 75, 4494–4503.
[CrossRef] [PubMed]

78. Yu, M.; Guo, G.; Huang, L.; Deng, L.; Chang, C.-S.; Achyut, B.R.; Canning, M.; Xu, N.; Arbab, A.S.; Bollag, R.J.; et al. CD73 on
cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat. Commun.
2020, 11, 1–17. [CrossRef]

79. Liang, L.; Jiang, Y.; Chen, J.-S.; Niu, N.; Piao, J.; Ning, J.; Zu, Y.; Zhang, J.; Liu, J. B7-H4 expression in ovarian serous carcinoma: A
study of 306 cases. Hum. Pathol. 2016, 57, 1–6. [CrossRef]

80. Rask, L.; Høgdall, C.K.; Kjaer, S.K.; Christensen, L.; Jensen, A.; Blaakaer, J.; Christensen, I.J.; Høgdall, E.V. Association of CD31
and p53 With Survival of Ovarian Cancer Patients. Anticancer Res. 2019, 39, 567–576. [CrossRef]

81. Kroeger, D.R.; Milne, K.; Nelson, B.H. Tumor-Infiltrating Plasma Cells Are Associated with Tertiary Lymphoid Structures, Cy-
tolytic T-Cell Responses, and Superior Prognosis in Ovarian Cancer. Clin. Cancer Res. 2016, 22, 3005–3015. [CrossRef] [PubMed]

82. Ali, H.R.; Jackson, H.W.; Zanotelli, V.R.; Danenberg, E.; Fischer, J.R.; Bardwell, H.; Provenzano, E.; Rueda, O.M.; Chin, S.F.;
Aparicio, S.; et al. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer.
Nat. Cancer 2020, 1, 163–175. [CrossRef]

83. Wagner, J.; Rapsomaniki, M.A.; Chevrier, S.; Anzeneder, T.; Langwieder, C.; Dykgers, A.; Rees, M.; Ramaswamy, A.; Muenst,
S.; Soysal, S.D.; et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell 2019, 177,
1330–1345.e18. [CrossRef]

84. Moore, R.G.; Hill, E.K.; Horan, T.; Yano, N.; Kim, K.; MacLaughlan, S.; Lambert-Messerlian, G.; Tseng, Y.; Padbury, J.F.; Miller,
M.C.; et al. HE4 (WFDC2) gene overexpression promotes ovarian tumor growth. Sci. Rep. 2014, 4, 3574. [CrossRef]

85. James, N.E.; Oliver, M.T.; Ribeiro, J.R.; Cantillo, E.; Rowswell-Turner, R.B.; Kim, K.K.; Chichester, C.O., III; DiSilvestro, P.A.;
Moore, R.G.; Singh, R.K.; et al. Human Epididymis Secretory Protein 4 (HE4) Compromises Cytotoxic Mononuclear Cells via
Inducing Dual Specificity Phosphatase 6. Front. Pharmacol. 2019, 10, 216. [CrossRef]

86. Fleischer, A.; Ayllón, V.; Dumoutier, L.; Renauld, J.-C.; Rebollo, A. Proapoptotic activity of ITM2Bs, a BH3-only protein induced
upon IL-2-deprivation which interacts with Bcl-2. Oncogene 2002, 21, 3181–3189. [CrossRef]

87. Steitz, A.M.; Steffes, A.; Finkernagel, F.; Unger, A.; Sommerfeld, L.; Jansen, J.M.; Wagner, U.; Graumann, J.; Muller, R.; Reinartz, S.
Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced
(TGFBI) and tenascin C. Cell Death Dis. 2020, 11, 1–15. [CrossRef] [PubMed]

88. Wang, R.; Zhu, J.; Dong, X.; Shi, M.; Lu, C.; Springer, T.A. GARP regulates the bioavailability and activation of TGFβ. Mol. Biol.
Cell 2012, 23, 1129–1139. [CrossRef]

89. Katsuta, E.; Maawy, A.A.; Yan, L.; Takabe, K. High expression of bone morphogenetic protein (BMP) 6 and BMP7 are associated
with higher immune cell infiltration and better survival in estrogen receptor-positive breast cancer. Oncol. Rep. 2019, 42, 1413–1421.
[CrossRef] [PubMed]

90. Yang, L.; Pang, Y.; Moses, H.L. TGF-β and immune cells: An important regulatory axis in the tumor microenvironment and
progression. Trends Immunol. 2010, 31, 220–227. [CrossRef] [PubMed]

http://doi.org/10.1172/JCI45559
http://www.ncbi.nlm.nih.gov/pubmed/21537079
http://doi.org/10.1158/0008-5472.CAN-14-3569
http://www.ncbi.nlm.nih.gov/pubmed/26363007
http://doi.org/10.1038/s41467-019-14060-x
http://doi.org/10.1016/j.humpath.2016.06.011
http://doi.org/10.21873/anticanres.13149
http://doi.org/10.1158/1078-0432.CCR-15-2762
http://www.ncbi.nlm.nih.gov/pubmed/26763251
http://doi.org/10.1038/s43018-020-0026-6
http://doi.org/10.1016/j.cell.2019.03.005
http://doi.org/10.1038/srep03574
http://doi.org/10.3389/fphar.2019.00216
http://doi.org/10.1038/sj.onc.1205464
http://doi.org/10.1038/s41419-020-2438-8
http://www.ncbi.nlm.nih.gov/pubmed/32312959
http://doi.org/10.1091/mbc.e11-12-1018
http://doi.org/10.3892/or.2019.7275
http://www.ncbi.nlm.nih.gov/pubmed/31524275
http://doi.org/10.1016/j.it.2010.04.002
http://www.ncbi.nlm.nih.gov/pubmed/20538542

	Introduction 
	Materials and Methods 
	Patient Samples 
	Preparation and Staining 
	Imaging Mass Cytometry 
	Microdissection and Microarray Analysis of Tissue Samples 
	Data Preprocessing and Cell Segmentation 
	Analysis Workflow 
	Clustering Analysis 
	Cell Density and Nearest-Neighbor Interactions in Tumor-Enriched Regions 
	Survival Prediction 
	Correlation of Cell Density with Gene Expression 
	Kaplan-Meier Analysis 
	Data and Code Availability 

	Results 
	Image Analysis Pipeline 
	Cell Segmentation and Annotation by Deep Learning-Based IMC Data Analysis 
	Spatially Resolved Cell Density and Nearest-Neighbor Cell-Cell Interactions Analyses of the Ovarian Tumor Microenvironment 
	Feature Selection for Overall Survival Prediction by Logistic Regression 
	Correlations between Cell Subtype Density and Transcriptomic Profiles from Microdissected Fibroblastic Stromal and Epithelial Compartments of HGSC 

	Discussion 
	Conclusions 
	References

