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SIPA1 Is a Modulator of HGF/MET Induced Tumour Metastasis
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Simple Summary: The role of Signal Induced Proliferation Associated 1 (SIPA1) in lung cancer
remains largely unknown. This study aimed to evaluate the importance of SIPA1 in the development
and progression of lung cancer, to demonstrate the cellular functions of SIPA1 and the molecular
mechanisms involved.

Abstract: Background: Lung cancer is the leading cause of cancer death. SIPA1 is a mitogen induced
GTPase activating protein (GAP) and may hamper cell cycle progression. SIPA1 has been shown
to be involved in MET signaling and may contribute to tight junction (TJ) function and cancer
metastasis. Methods: Human lung tumour cohorts were analyzed. In vitro cell function assays were
performed after knock down of SIPA1 in lung cancer cells with/without treatment. Quantitative
polymerase chain reaction (qPCR) and western blotting were performed to analyze expression of
HGF (hepatocyte growth factor), MET, and their downstream markers. Immunohistochemistry (IHC)
and immunofluorescence (IFC) staining were performed. Results: Higher expression of SIPA1 in
lung tumours was associated with a poorer prognosis. Knockdown of SIPA1 decreased invasiveness
and proliferation of in vitro cell lines, and the SIPA1 knockdown cells demonstrated leaky barriers.
Knockdown of SIPA1 decreased tight junction-based barrier function by downregulating MET at the
protein but not the transcript level, through silencing of Grb2, SOCS, and PKCµ (Protein kinase Cµ),
reducing the internalization and recycling of MET. Elevated levels of SIPA1 protein are correlated
with receptor tyrosine kinases (RTKs), especially HGF/MET and TJs. The regulation of HGF on
barrier function and invasion required the presence of SIPA1. Conclusions: SIPA1 plays an essential
role in lung tumourigenesis and metastasis. SIPA1 may be a diagnostic and prognostic predictive
biomarker. SIPA1 may also be a potential therapeutic target for non-small cell lung cancer (NSCLC)
patients with aberrant MET expression and drug resistance.

Keywords: signal induced proliferation associated 1 (SIPA1); hepatocyte growth factor (HGF); N-
methyl-N′-nitroso-guanidine human osteosarcoma transforming gene (MET); tight junction (TJ);
non-small cell lung cancer (NSCLC)

1. Introduction

Lung cancer is the commonest form of cancer and the leading cause of cancer death
both in the UK and worldwide [1]. Non-small cell lung cancer (NSCLC) is the most preva-
lent type of lung cancer, accounting for approximately 85% of all lung cancers [2]. In
comparison to small cell lung cancer (SCLC), NSCLC tumours contain numerous cancer
driver gene mutations which may be targeted for treatment [3]. Multiple studies have
shown that targeted therapies have improved the prognosis and survival of NSCLC pa-
tients carrying appropriate driver genes [4]. In developed countries, all NSCLC patients,
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regardless of their clinical characteristics, are routinely tested for suspected mutation points,
such as epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase
(ALK) fusions, ROS proto-oncogene 1 (ROS1) fusions, and N-methyl-N′-nitroso-guanidine
human osteosarcoma transforming gene (MET) mutation and amplification [5,6].

High expression of MET (a receptor tyrosine-protein kinase) can be observed in ap-
proximately 60% of NSCLC patients and correlates with poor prognosis [7]. In NSCLC,
anomalous expression of MET may work as the driver of tumorigenesis and the cause for
drug resistance to other therapies [8]. MET exon 14-skipping mutations and amplification
of MET are the most frequent types of MET mutation found in NSCLC and are already in-
cluded in the routine tests for driver oncogenes and therapeutic targets [5,6]. The MET gene
encodes the protein MET which acts as the receptor for hepatocyte growth factor (HGF) [9].
MET belongs to the receptor tyrosine kinase (RTK) family with a conservative molecular
structure and intracellular downstream signaling pathways [10]. Usually, HGF activation
of MET acts in a paracrine pathway at the cell surface where there is a cycle of degradation
and internalization. HGF/MET has been demonstrated to play an essential role in the
ability of a tumour to metastasize by regulating cell motility, migration, proliferation and
angiogenesis, and in addition, modulating the tight junction (TJs) cell to cell barrier [11,12].
TJ, together with anchoring (adherens) junctions and communicating (gap) junctions, con-
stitute the epithelial cell junction, which is the basic structural entity which strengthens the
mechanical connection between cells. They also maintain the integrity of tissue architecture
and help coordinate the function of cells within human tissues [11]. TJ are located in
the areas between the cell membranes of adjacent cells, and can completely occlude the
space between cells and isolate the extracellular space, thereby creating an intercellular
barrier which functions to maintain permeability and polarity, prevents migration and
motility, mediates cell to cell adhesion, and transduce cell signaling which plays a role in
differentiation and growth of epithelial and endothelial cells [13]. The TJ proteins consist of
three major components: integral transmembrane proteins, peripheral or plaque anchoring
proteins, and TJ associated or regulatory proteins. It has become increasingly recognized
that human cancer is frequently associated with failure of epithelial cells to form TJ and to
establish correct apicobasal polarity [14]. Changes in the expression and/or distribution
of TJ proteins may result in complete loss of the TJ structure allowing cancer cell invasion
and progression [11]. Therefore, TJs are an important factor in the progression of tumours.
Our previous research has shown that TJ are largely regulated by the HGF/MET signaling
pathway [15]. In human vascular endothelial cells (HUVECs), HGF treatment reduced the
transendothelial resistance (TER) and increased paracellular permeability (PCP), which
are regarded as key measurements of cell to cell TJ function [15–17]. HGF/MET signaling
disrupted TJs in the breast cancer cell lines MDA-MB-231 and MCF-7 by downregulating
the expression of several important TJ molecules, such as occludin, at both transcript and
protein levels [18]. In prostate cancer, PC-3 cells had reduced TER and increased PCP
after treatment with HGF [19]. Signal induced proliferation associated protein 1 (SIPA1),
appears to play a crucial role in the regulation of TJs by HGF/MET.

SIPA1 was first cloned from murine cells in 1995 [20], and the human SIPA1 cDNA
was identified in 1997 [21]. Initially, SIPA1 was believed to be a specific mitogen induced
GTPase activating protein (GAP) for several Ras-related mediating proteins such Rap1
and Rap2 [20–22]. Subsequently, SIPA1 was found to be important in the development of
various cancers and metastases. SIPA1 promotes the adhesion, migration and invasion of
breast cancer MDA-MB-231 cells by binding to the promoter region of ITGB1 (integrin β1)
gene and activating it, thus stimulating the downstream integrin mediated focal adhesion
kinase/Protein kinase B/matrix metalloproteinase 9 (FAK/Akt-MMP9) pathway [23].
Higher expression levels of SIPA1 were associated with worse prognosis and increased
incidence of metastases for prostate cancer (CaP) patients. SIPA1 has been found to
intensify the invasion efficiency, but decrease the attachment ability, of CaP cells by down
regulating bromodomain protein 4 (BRD4) and extra cellular matrix (ECM)-related gene
expression [24]. In human oral squamous cell carcinoma (OSCC), SIPA1 interacting with
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BRD4 increases the level of matrix metalloproteinase 7 (MMP7), leading to increased
invasiveness of the OSCC cells and worse prognosis for OSCC patients [25]. In colorectal
cancer (CRC) cell lines HT115 and CaCO-2, knockdown of SIPA1 increased the invasion,
adhesion, and migration potential of cancer cells compared to the control group, while
the ability to proliferate was decreased [26]. It may be that SIPA1 can exert similar effects
in cells with either high or low/knocked down of SIPA1 in different cancer types due to
their tissue specificity, an area that requires further study. Moreover, SIPA1 is considered to
be involved in many cancer types, including cervical cancer [27], gastric cancer [28], lung
cancer [29,30], and melanoma [31], suggesting that SIPA1 may have an active role during
progression and metastasis of cancer. While there has been little research focused on the
modulating function of SIPA1 on the regulation of HGF/MET in TJs, previous work from
the host laboratory indicated that in breast and prostate cancer cells, the presence of SIPA1
was required for the regulation of HGF/MET in TJs. Knockdown of SIPA1 silenced the
effect of HGF on TJs in breast and prostate cancer cells [32,33]. However, there are limited
studies investigating the function of SIPA1 in lung cancer [29,30] and the mechanism of
SIPA1 in cancer development and metastasis remains largely unknown, particularly the
role of SIPA1 in regulating the TJs and reacting to HGF signaling in lung cancer cells. This
project, therefore, aimed to evaluate the interaction between SIPA1 and HGF/MET, as well
as their influence on lung cancer in terms of molecular activation, cellular behaviour and
clinical relevance.

2. Materials and Methods
2.1. Lung Cancer Tissue Samples

A clinical cohort consisting of lung tumours (n = 148) together with adjacent back-
ground tissues (n = 148) was obtained from patients at Peking University Cancer Hospital
immediately after surgery and stored in a freezer at −80 ◦C until used. All protocol and
procedures were approved by the Peking University Cancer Hospital Research Ethics
Committee and informed consent was obtained from the patients.

2.2. Cell Culture

The cell lines used throughout this study to compare different types of lung cancer
were the lung cancer cell lines A549 (an epithelial lung carcinoma cell), SK-MES-1 (a squa-
mous cell carcinoma derived from a metastatic site) and COR-L23 (a tumourigenic lung
large cell carcinoma). A549 and SK-MES-1 cell lines were purchased from the American
Type Culture Collection (ATCC, LGC Standard, Salisbury, UK) and COR-L23 was pur-
chased from the European Collection of Animal Cell Cultures (ECACC, Salisbury, UK).
A549 and SK-MES-1 cells were cultured in Dulbecco’s Modified Eagle’s medium (DMEM),
and COR-L23 lung cancer cells were cultured in GI1640 containing 2 mM glutamine.
Medium was supplemented with heat inactivated fetal calf serum (FCS) (Sigma-Aldrich,
Poole, Dorset, UK) and an antibiotic cocktail comprising penicillin, streptomycin and
amphotericin B (Sigma-Aldrich).

2.3. Establishment of the Stable SIPA1 Knockdown Cell Lines

SIPA1 knockdown in A549, SK-MES-1 and COR-L23 cells was performed using ham-
merhead ribozyme transgenes. Anti-SIPA1 hammerhead ribozymes targeting the secondary
structure of SIPA1 mRNA were designed using the Zuker NA mFold program, according
to the protocol provided [34]. SIPA1 knockdown cells were designated SIPA1-KD, whereas
plasmid control cells were designated pEF-CT.

The ribozymes were synthesized using touchdown polymerase chain reaction (PCR)
and cloned into the pEF6/V5-His TOPO TA expression plasmid vector (Invitrogen, Lough-
borough, UK). Ribozyme transgenes and empty plasmids as control were transfected
into the lung cancer cell lines using the Easyjet Plus electroporator (EquiBio, Kent, UK).
Transfected cells for use in this projected were verified by selection with blasticidin.
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2.4. RNA Extraction and PCR

RNA extraction was performed according to the Tri Reagent protocol (Sigma-Aldrich).
RT-PCR was performed using the GoScriptTM Reverse Transcription System kit (Promega,
Southampton, UK). The reverse transcription conditions were 25 ◦C for 5 min, 42 ◦C for
60 min and finally 70 ◦C for 15 min. GoTaq Green master mix (Promega) was subsequently
used to amplify the target genes. The cycling conditions of the procedure were: denat-
uration at 94 ◦C for 5 min; 32 cycles of 94 ◦C for 20 s, 55 ◦C for 20 s and 72 ◦C for 15 s;
with an extension phase at 72 ◦C for 10 min followed by storage at 4 ◦C until use. All the
reactions were carried out in a 2720 Thermal Cycler (Applied Biosystems, Paisley, UK).
Electrophoresis on agarose gel stained by SYBR Safe Gel Stain (Life Technologies, Paisley,
UK) was used to separate the DNA fragments.

Quantitative PCR (qPCR) was performed using the Ampliflour™ Uniprimer™ Uni-
versal system (Intergen Company®, New York, NY, USA). The Ampliflour probe consists of
a 3′ region specific to the Z-sequence (ACTGAACCTGACCGTACA) present on the target
specific primers and a 5′ hairpin structure labelled with a fluorophore (FAM). The cycling
conditions of the procedure were: 94 ◦C for 5 min; up to 100 cycles of 94 ◦C for 10 s, 55 ◦C
for 35 s and 72 ◦C for 20 s. The fluorescent signal is detected to determine a threshold for
quantification of genes amplified in the reaction. Copy number of a target transcript is
determined using the cycle number of a reaction when its fluorescence signal reaches the
threshold. The sequences for the primers used in this project are shown in supplementary
data (Table S1).

2.5. Protein Extraction and Western Blotting

Cells were washed, detached, and lysed using lysis buffer, centrifuged and the concen-
tration of proteins was measured using Bio-Rad DC protein assay kit (Bio-Rad Laboratories,
Hemel-Hempstead, UK). Protein detection was performed using the sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and antibody recognition. Information of the
antibodies used in this project are shown in supplementary table (Table S2).

2.6. Tissue Microarray (TMA) and Immunohistochemistry (IHC)

The lung disease spectrum tissue microarray slide LC1201(Biomax, Cheltenham, UK)
was used in this project. IHC was performed using the VECTASTAIN® Universal ABC
Kit (Vector Laboratories Inc., Upper Heyford, UK). The TMA slide was dewaxed and
rehydrated and treated with 30% hydrogen peroxide (H2O2) followed by microwaving
for 20 min. After cooling, the slide was blocked with horse serum (1–2 drops) in 5 mL of
1× OptiMax Wash Buffer (BioGenex, Fremont, CA, USA) for 2 h. After washing, the slide
was incubated with primary antibody (10 µg/mL) overnight at 4 ◦C. Following incubation
with the corresponding secondary antibody, VECTASTAIN® Universal ABC complex
(Vector Laboratories Inc.) was added, then 3,3′-Diaminobenzidine (DAB) chromogen
(Vector Laboratories Inc.) and the slide incubated in the dark. The target protein was
indicated by brown colouration.

2.7. Immunofluorescence (IFC)

Cells were seeded into 8 or 16 well glass chamber. Cells were fixed, treated with a
permeabilization buffer, blocked by horse serum and incubated with primary antibody
overnight at 4 ◦C. 4′,6-Diamidino-2-phenylindole (DAPI), for nucleus staining, together
with secondary antibodies tagged with either fluorescein isothiocyanate (FITC) or tetram-
ethylrhodamine isothiocyanate (TRITC) were added. The procedures were carried out in
the dark and slides stored at 4 ◦C. The slides were examined under a fluorescent microscope
and photographs obtained using an Orca digital camera (Hamamatsu, Welwyn Garden
City, UK).
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2.8. Protein Array

Protein was extracted from A549 Pef-CT and SIPA1-KD cells. After quantification,
protein samples were sent to Kinexus™ Bioinformatics (Kinexus Bioinformatics, Vancouver,
BC, Canada). Data were analyzed using several parameters including Globally Normalized
Signal Intensity, percentage (%) change from control (CFC) and the Z-scores.

2.9. Transendothelial Resistance (TER) Assay

Transwell inserts (Millicell, MerkMillipore, Watford, UK) with 0.4 µm pores were
placed into the wells of a 24 well plate. Appropriately 5 × 104 cells in 50 µL medium were
seeded into inserts until confluent with 1ml medium in the well outside the insert. Resis-
tance across the membrane was then measured in triplicate using the EVOM2 Epithelial
Volt/Ohm Meter (World Precision Instruments, Hitchin, Hertfordshire, UK). Change in
resistance was used as the measurement of the change in the TJ function of the cells.

2.10. Electric Cell-Substrate Impedance Sensing (ECIS) Assay

An ECIS instrument (Applied Biophysics Inc., Troy, NJ, USA) was used to asses
changes in cell behaviour assay. The 96 well ECIS plate was connected to the Applied Bio
Physics-ECIS Software V1.2.135 (Applied Biophysics Inc.), and then stabilized in 200 µL of
serum free medium. Cells in appropriate density were seeded on the plate with at least six
replicates. After cell seeding, the 96 well ECIS plate was connected to the ECIS station in
the incubator. Resistance increases as the cells attach to the electrode and begin spreading
and the resistance will continue to increase until the cells reach confluence.

2.11. In-Vitro Cell Proliferation Assay

Medium (200 µL containing appropriate cells (2 × 103) was added to 96 well plates.
These plates were incubated at 37 ◦C, with 5% carbon dioxide (CO2), for periods of 24, 48,
72, and 120 h.

After incubation, the medium was aspirated, and the cells were fixed with 4%
formaldehyde for 20 min before being stained with 0.5% crystal violet for 15 min. The
plate was then rinsed with tap water and left to air dry. The crystal violet was solubilized
using 200 µL of 10% acetic acid, and the number of cells was assessed by measuring the ab-
sorbance of the resulting solution at 540 nm using a spectrophotometer (ELx800, BIO-TEK,
Swindon, UK). The growth rate was calculated as a percentage, using the absorbance from
the corresponding plate collected at 24 h as a baseline.

2.12. In-Vitro Transwell Matrigel Invasion Assays

Transwell inserts containing 8.0 µm pores (Millicell, Merck KGaA, Darmstadt, Ger-
many) were placed into the wells of a 24 well plate. Inserts were coated with 100 µL of
serum free medium containing 50 µg Matrigel® Basement Membrane Matrix (Corning
Incorporated, Flintshire, UK, stock concentration 0.5 µg/µL) and left to dry for 2 h at 55 ◦C.
After rehydration, 2 × 103 cells in 200 µL culture medium were seeded into each insert.
Medium was then added to the lower chamber of each well. The cells were incubated
with 5% CO2 at 37 ◦C for 72 h. After incubation, the Matrigel layer and the non-invasive
cells were removed and the invasive cells were then fixed with 4% formalin and stained
with 0.5% crystal violet. Stained cells were subsequently counted and photographed under
the microscope, and the crystal violet was solubilized using 10% acetic acid to measure
the absorbance.

2.13. Statistical Analysis

Statistical analysis was performed using the SPSS 26 (SPSS, Inc., Chicago, IL, USA),
GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA), and Minitab 14 (Minitab
Ltd., Coventry, UK). The cumulative survival curves were generated using Kaplan-Meier
plots and analyzed using log-rank test. The two-tailed Student’s t-test or Mann–Whitney
U test were used for two group comparisons depending on data parameters. For PCR
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and western blotting, band intensity was quantified using Image J software. Statistical
significance was set at p < 0.05.

3. Results
3.1. The Expression Level of SIPA1 in Lung Cancer and Its Clinical Relevance

Transcript expression of SIPA1 in lung cancer tissue was determined in the cohort,
collected at the Peking University Cancer Hospital, using qPCR. The clinical and patho-
logical features of the patients, as well as their expression level of the SIPA1 transcript are
summarized in Table 1.

Table 1. Expression level of SIPA1 transcripts in relation to clinical and pathological demographics of the Peking lung
cancer (and normal tissue) cohort.

Parameters
Number

of Samples
Median SIPA1

Expression (Copies/50 ng RNA)
Interquartile Range

Q1 Q3

Entire cohort
Tumour 148 25 12 74

Normal 148 19 7 45

Entire cohort
Tumour 139 24.2 12 74

Paired Normal 139 19 7 45

Histology type

Squamous Cell Carcinoma 50 25 14 62

Adenocarcinoma 67 19.8 9.1 73.8

Other 18 24 6 121

Degree of
differentiation

High 7 14.88 3.05 21.88

High to moderate 16 24.2 15.9 63.5

Moderate 50 25 9 67

Moderate to Low 23 26.9 12.2 96.7

Low 14 17.9 7.5 42.5

T Staging

T-1 21 17.3 4.2 63

T-2 57 21 9 65

T-3 29 50 20 168

T-4 16 18.3 6.1 65.3

Nodal staging

N-0 70 24.1 9 63.7

N-1 22 31 11 82

N-2 38 19 10 78

TNM staging

TNM1 39 17.3 6.9 59.7

TNM2 31 52 20 189

TNM3 51 19 12 63

TNM4 1 0.1134 * *

TNM
sub-staging

TNM1A 17 15.5 4.1 63

TNM1B 22 21.9 8.2 60.3

TNM2A 2 135 *

TNM2B 29 52 20 189

TNM3A 37 20 14 63

TNM3B 14 18.3 6.4 77.1

Smoking history Non smoker 59 28.5 9.7 63.8

Smoker 77 20 11 71

* denotes values too small to calculate.
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It is clear that SIPA1 was significantly upregulated in lung tumour tissues compared
with adjacent normal lung tissues (p = 0.0141) and paired normal lung tissues (p = 0.0358)
(Figure 1A). The transcript level of SIPA1 in stage T-3 lung cancer was statistically sig-
nificantly higher than that in stage T-1 and T-2 tumours. Comprehensive analysis of the
TNM stage of the lung cancers, showed that TNM2 tumours had higher SIPA1 transcript
levels than stage TNM1 tumours, and SIPA1 transcript levels in TNM2-3-4 stage was
comprehensively higher than in the TNM1 tumours, but the difference was not statistically
significant (Figure 1B). In terms of the substage, SIPA1 levels in TNM 1A and 1B tumours
were lower than those in TNM 2B which had increased metastasis; and the difference was
statistically significant (Figure 1B).Cancers 2021, 13, x FOR PEER REVIEW 8 of 22 

 

 

 
Figure 1. Expression level of SIPA1 in lung cancer and its clinical relevance. (A) Transcript level of SIPA1 in lung cancer 
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between SIPA1 transcript levels and survival of all lung cancer patients from Peking cohort-Overall survival (OS) (left), 

Figure 1. Expression level of SIPA1 in lung cancer and its clinical relevance. (A) Transcript level of SIPA1 in lung cancer and
adjacent normal lung tissue (left) and paired adjacent normal lung tissue (right). (B) Transcript level of SIPA1 in different T stage,
TNM stage and TNM substage lung cancer. (A&B-SIPA1 level was evaluated by copy number/50 ng RNA, and Mann-Whitney
U test was selected to determine significance).(C) Kaplan-Meier survival models of correlation between SIPA1 transcript levels
and survival of all lung cancer patients from Peking cohort-Overall survival (OS) (left), and post progression survival (PPS)
(right). (D) Kaplan-Meier survival model of correlation between SIPA1 transcript levels and survival of lung adenocarcinoma
patients. Left: SIPA1 transcript levels with OS in patients from Peking cohort; middle: SIPA1 transcript levels with OS in
patients from KMplot website; right: SIPA1 transcript levels with PFS in patients from KMplot website. (E) Kaplan-Meier
survival model of correlation between SIPA1 transcript levels and survival of lung squamous cell carcinoma patients. Left:
SIPA1 transcript levels with OS in patients from Peking cohort; middle: SIPA1 transcript levels with OS in patients from KMplot
website; right: SIPA1 transcript levels with PFS in patients from KMplot website.
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Kaplan-Meier survival analysis revealed that patients from the Peking cohort with a
high expression level of SIPA1 had lower overall survival compared to those patients with
a low expression level of SIPA1. However, the data did not reach statistical significance
(p = 0.204). We also analysed the distribution and clinical parameters of SIPA1 using a
publicly available database from the Kaplan Meier plotter website (http://kmplot.com/
analysis/index.php?p=background, accessed on 19 January 2019). This showed that high
expression of SIPA1 was statistically correlated with worse post-progression survival (PPS)
(p = 0.02) in all of the lung cancer patients (Figure 1C), while there was no statistically
significant correlation of SIPA1 expression level with overall survival (OS) (p = 0.46) or
progression-free survival (PFS) (p = 0.071) (data not shown).

With regard to the main histological types of lung cancer, the results from this cohort
showed that in patients with lung adenocarcinoma, those with a low level of SIPA1 tended
to have longer survival. Survival data of patients with lung adenocarcinoma cancers from
the Kaplan Meier plotter website showed high SIPA1 level was accompanied by a poor
outcome from cancer in terms of both OS (p = 0.0021) and PFS (p = 0.0065) (Figure 1D).
However in patients from the Peking cohort with squamous cell carcinoma, those with a
low level of SIPA1 tended toward a worse prognosis without statistical significance; and
data from the Kaplan Meier plotter website also lacked statistical significance (Figure 1E).

To evaluate the protein level of SIPA1 at different stages of lung cancer, IHC was
carried out and scored using a lung cancer tissue microarray (TMA, LC1201) (Figure 2).
The IHC scoring did not show a significant difference of SIPA1 staining in lung tumours
compared with all normal pneumonic tissue, neither did it show differences with normal
tissue and adjacent normal tissue (data not shown).
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3.2. Knockdown of SIPA1 Decreased the Proliferation and Invasion Potential of Lung Cancer Cells

PCR, qPCR and western blot were performed to detect the knockdown of SIPA1 at
both mRNA and protein levels. SIPA1 was successfully knocked down at both mRNA
(Figure 3A,B) and protein levels (Figure 3C) in A549, SKMES1 and CORL23 cell lines.
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The in vitro growth assay indicated that SIPA1 knockdown significantly decreased the
proliferation potential of the A549 cells, both after 3 days (p = 0.0001) and 5 days (p = 0.0020)
(Figure 3D). The in vitro trans-well invasion assay showed the invasion potential was
markedly reduced after knockdown of SIPA1 in A549 and SKMES1 lung cancer cell lines
(Figure 3E).

3.3. Knockdown of SIPA1 Enhanced the Tight Junction Based Barrier Function of Lung Cancer Cells

The data from the ECIS assay showed that knockdown of SIPA1 in A549 cells enhanced
cell-cell barrier function significantly, which was also demonstrated by the quantitative
resistance analysis at time point 2.5 h, as well as the 3D figure, where we detected the resis-
tance under various electric current frequencies. (Figure 3F). The TER experiment results
showed similar findings: knockdown of SIPA1 enhanced cell-cell TJ function compared to
control in the A549 cell line (Figure 3G).

3.4. TJ Markers Were Influenced by SIPA1 in Lung Cancer Cells

QPCR was performed in order to investigate gene expression of the major TJ proteins.
In the A549 cell line, the effects of knockdown of SIPA1 showed that zonula occludens
1 (ZO1) and zonula occludens 3 (ZO3) were upregulated to some extent. Interestingly,
levels of the junctional adhesion molecule (JAM) family members, whilst not changed at
the transcriptional level appeared decreased at the protein level. Whilst transcriptional
levels can be important indicators of changes in protein expression, the relationship is
not always linear and changes in gene expression level are frequently not reflected at the
protein level. Moreover, JAMs, as transmembrane proteins are often cleaved from the cell
and thus not picked up during western blotting. This is an interesting finding that could
be further investigated in the future. Afadin (AF6) was downregulated, whilst multi-PDZ
domain protein 1 (MUPP1) was downregulated significantly; both of these proteins contain
a PDZ domain. MARVEL domain-containing protein 3 (Marvel D3), which belongs to
the TJ-associated MARVEL domain containing protein (TAMP) family was significantly
downregulated by knockdown of SIPA1, whilst occludin, another TAMP protein, was
upregulated by knockdown of SIPA1 at the transcript level.

The claudin family members 1, 2, 7, 8, 11, 14, and 17 were significantly downregulated
and claudin 5 was significantly upregulated in SIPA1 knockdown A549 cells (Figure 4A).
There are often poor correlations generally reported between the level of mRNA and
the level of protein which may not be mutually exclusive. This disparity can be due
to complicated and varied post-transcriptional mechanisms involved, moreover, protein
half-live can differ significantly. The claudins constitute an important transmembrane TJ
protein family. In SKMES1 cells, knockdown of SIPA1 upregulated the transcript level of
ZO family proteins significantly, sharing the same trend as that found in A549 cells (albeit
not statistically significant in A549 cells). We also found that AF6 was downregulated and
MUPP1 was upregulated in SKMES1 cells. Both Marvel D3 and occludin, transmembrane
proteins belonging to the TAMP family, were significantly upregulated by knockdown
of SIPA1 at the transcript level (Figure 4B). Further work is required to establish the
significance of these effects on the function of TJs in lung cancer.
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Western blotting was performed to further investigate the potential relationship be-
tween SIPA1 and TJ components in A549 cells. Claudin7, claudin10 and claudin15 protein
levels were decreased by knockdown of SIPA1 in A549 cells, although there appeared to
be a very small non-statistically significant increase at the messenger level. The effect of
knockdown of SIPA1 on the JAM family, occludin and PDZ domain containing proteins
was not significant (Figure 4C).

Immunofluorescence staining was carried out to further investigate the visible impact
of SIPA1 on cell morphology and tight junctions. ZO1 was chosen to stain in the A549
pEF-CT cells and SIPA1-KD cells. The immunofluorescence staining demonstrated that
the intensity of ZO1 was strong in the pEF control cells but weak in the SIPA1 knockdown
cells (Figure 4D); the graph illustrates this difference in intensity between pEF-CT and
SIPA1-KD cells (using the two representative images, n = 20), p < 0.005. The apparent
decrease in ZO1 intensity at the cell membrane in SIPA1-KD cells may indicate that it has
been relocated from the TJ towards the perinuclear region, despite increased expression
seen at the transcriptional and gross protein levels.

3.5. SIPA1 Was Correlated with HGF/MET Signalling Pathway and Tight Junctions

Analysis of the data from the Peking cohort revealed that SIPA1 is highly correlated
with transcript levels of HGF, MET and Protein Tyrosine Kinase 2 (PTK2), or focal adhesion
kinase (FAK), as well as with those of some TJ molecules such as JAM2, Marvel D2,
Marvel D3, nectin2 and some TJ-regulating proteins such as RHOC, ROCK1 and ROCK2.
However, the correlation between SIPA1 and macrophage stimulating 1 (MST1), or HGF-
like protein (HGFL), and receptor of MST1 (MST1R or RON) was not significant (Figure 5A).
Analysis based on the TCGA-LUAD database (available from the website https://www.
cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga, accessed on
19 January 2019) showed hepatocyte growth factor activator (HGFAC, HGF activator), HGF,
MET, MST1/MST1R, ERF/EGFR, PKT2 and its antagonist paxillin (PXN), together with
PRKCA/PTEN, the regulator of PKT2, and SRC, the downstream protein of PKT2, were all
correlated with SIPA1 at the transcriptional level with statistical significance (Figure 5B).
Correlation analysis on the TCGA-LUAD database also demonstrated that TJ markers such
as the gene F11R (encoding JAM1 protein), the ZO family encoding genes, Claudin proteins
encoding genes such as claudin4, claudin5, claudin12, claudin15, and Marvel D3 were all
highly correlated with SIPA1 at the transcriptional level (Figure 5C).

The phosphorylation status between A549 pEF-CT cells and the A549 SIPA1-KD
cells was compared in order to determine if protein within the pathway could still be
phosphorylated/dephosphorylated to identify potential downstream partner proteins.
Those markers with the greatest increase or decrease in phosphorylation status after SIPA1
knockdown in A549 cells, indicated potential interaction markers with intracellular SIPA1.
The website Reactome (www.reactome.org, accessed on 19 January 2019) was used to
determine the key pathways involved and the most downregulated and upregulated
markers after SIPA1 knockdown could be integrated to centralized signaling pathways
(Tables S3 and S4 and Figure 5D).The genome-wide overview schematic diagram of the
signaling pathways was generated to show the overall review of the main area in which
the pathways impacted by SIPA1 are located.

3.6. SIPA1 Was Involved in the Regulation of HGF/MET on TJs in Lung Cancer Cells

The in vitro trans-well invasion assay showed that invasion potential was markedly
increased after the treatment with HGF on the pEF-CT A549 cells. After knockdown of
SIPA1 in A549 cells, the invasion potential in reaction to treatment with HGF was reduced
(Figure 6A). ECIS assay showed that HGF reduced the barrier function of pEF-CT A549 cells,
particularly evident at 15h (where knockdown cells show no reduction in resistance when
treated with HGF) and an inhibitor of MET (Crizotinib) could counteract the effect of HGF on
pEF-CT cells. However, HGF did not reduce barrier function after knockdown of SIPA1 in
A549 cells (Figure 6B). ECIS barrier function is taken as a surrogate marker of TJ function.

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
www.reactome.org
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Figure 5. Correlation coefficient of SIPA1 with key HGF/MET components and tight junction markers.
(A–C) show the Spearman’s rank correlation coefficient between SIPA1, HGF related genes and tight
junction component genes analyzed from the Peking lung cancer cohort (A), and Spearman’s rank
correlation coefficient between SIPA1 and HGF related genes (B), tight junction component genes
(C) analyzed from TCGA-LUAD database. (D) Overall images of a direct fluorescent-dye labelled
KAM-1325 antibody microarray slide detecting the protein sample from the A549 pEF control cells
(left) and A549 SIPA1 knockdown cells (right). * and ** denotes statistical significance, i.e., p values
below 0.05.
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Figure 6. SIPA1 and HGF/MET signaling on the regulation of TJs in lung cancer cells. (A) HGF increased the invasion
potential of pEF-CT A549 cells, and knockdown of SIPA1 decreased invasion in A549 pEF cells with/without the treatment
of HGF. (B) HGF decreased resistance of A549 pEF-CT cells significantly but did not decrease resistance of A549 SIPA1
knockdown cells (left), indicating the regulation of HGF on TJs requires the assistance of SIPA1. The effect that HGF
decreased resistance of A549 pEF-CT cells instead of A549 SIPA1-KD cells produced a similar result as that achieved when
using the MET inhibitor (Crizotinib), and the combination of SIPA1 knockdown and MET inhibitor could further prevent
regulation of HGF on A549 cells (right), all of which revealed that silencing SIPA1 has the same cellular influence on A549
cells as blocking HGF/MET signaling by Crizotinib. (C,D) The mRNA level of MET was not regulated by the knockdown of
SIPA1 in lung cancer cell lines examined using PCR (C) and QPCR (D). (E) Western blot showing the protein level of MET
was down regulated by knockdown of SIPA1 in A549 and SKMES1 lung cancer cell lines. (F). The phosphorylation level of
MET was down regulated by knockdown of SIPA1 in A549 lung cancer cell lines which would be due to the reduction in
total MET protein expression. Experiments were repeated n = 3. *, **, *** indicate statistical significance.
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3.7. SIPA1 Regulates MET at the Protein Level, by Regulating the Internalization and Reuse of MET

RT-PCR and qPCR showed that the transcript level of MET was not influenced by
knockdown of SIPA1 in A549 lung cancer cells. In SK-MES1 lung cancer cells, qPCR showed
the transcript level of MET was actually higher in SIPA1-KD cells compared to pEF-CT
cells (Figure 6C,D). Western blotting results showed that the protein level of MET was
reduced in SIPA1 knockdown A549 and SKMES1 cells (Figure 6E). The phosphorylation of
MET was also reduced in SIPA1 knockdown cells, but then so was total MET expression
(Figure 6F). It appears that SIPA-KD results in reduced ZO1 expression and associated
phosphorylation. This may indicate a key mechanism whereby SIPA1 is able to control the
tightness of the TJ by effecting changes in ZO1 expression and switching off activity.

Western blotting showed the expression of PKCµ, Grb2 was downregulated by SIPA1
knockdown in A549 and SKMES1 cells (Figure 7A,B). Moreover, the expression of most
SOCS family (SOCS1, 3, 5, 7), which can control HGF controlled growth was inhibited by
SIPA1 knockdown in A549 and SKMES1 cells (Figure 7C).
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SKMES1 lung cancer cell lines examined using western blotting.

4. Discussion

Lung cancer is the leading cause of malignant tumour death, independently of country
or region [34]. Extensive evidence has suggested that the HGF/MET signaling pathway is
essential in lung cancer tumorigenesis and progression via the alteration of cell apoptosis,
growth, migration and morphology [35]. MET has been proposed as one of the driving
oncogenes in lung cancer and the cause of drug resistance to EGFR TKIs [8]. Meanwhile, an
increasing number of studies indicate the importance of TJs in cancer metastasis [11]. SIPA1
has been shown to work as a driving factor in a variety of tumours [22]. The potential of
SIPA1 in regulating TJs has also been confirmed in breast cancer and prostate cancer in
the host laboratory. The effect of the HGF/MET signaling pathway on breast cancer cells
requires the presence of SIPA1 [19,32,33]. During this study a series of functional assays
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were performed in order to find out more about the role of SIPA1 in the function of lung
cancer cells.

This study showed that knockdown of SIPA1 reduced the response of lung cancer
cells to HGF in terms of invasion and barrier function. HGF enhanced the invasion of
pEF control cells, while the enhancement could be blocked by SIPA1 knockdown. HGF
decreased the barrier function of lung cancer cells, which was counteracted by SIPA1
knockdown with similarity to the small molecule MET targeted inhibitor, Crizotinib. Since
knockdown of SIPA1 has a similar effect to pharmacological MET inhibition on blocking
the regulation of HGF signaling on tight junctions, it is reasonable to assume that SIPA1
could have some potential interaction with MET.

The mechanism of interaction between SIPA1 and MET is an important issue to
be determined in this study. SIPA1 gene expression was studied in the Peking lung
cancer cohort and the TCGA database. The results showed that SIPA1 expression is
highly correlated with some key markers in the HGF/MET signaling pathways and with
TJ components. At the same time, protein phosphorylation array revealed that SIPA1
is involved in the regulation of complex signal transduction and RTK activation. This
confirms what has previously been described-that SIPA1 and MET interact to effect changes
in cell barrier function. It is known that the regulation of RTKs is an extremely complicated
process involving multiple signaling pathways. Although protein array analysis has shown
that there exists a co-relationship between SIPA1 and the RTKs family, to which MET
belongs, the specific mechanism of interaction has yet to be demonstrated. However, the
protein expression level of MET was suppressed by SIPA1 knockdown, as detected by
western blotting; we can infer from this that the cell surface therefor lacked sufficient MET
receptors to transmit extracellular HGF signals. Moreover, reduced MET expression as
effected by SIPA1 knockdown led to the downregulation in MET phosphorylation (Tyr 1349
and 1365). The phosphorylation status of key sites of the MET receptor’s domain used to
anchor downstream molecules was inhibited, limiting the function of MET to down-stream
transmission signals.

MET regulation involves multiple different processes from transcription to degrada-
tion, which include MET oncogene mutations, MET gene methylation, transcription factors
regulation, alternative splicing, microRNA regulation, MET translational regulation, prote-
olysis of MET, glycosylation and phosphorylation on MET, internalization, degradation
and recycling of MET, nuclear localization of MET, and autoregulation of MET [36,37]. This
project has shown that SIPA1 can influence the expression of MET, but the specific process
(or processes) by which SIPA1 acts is still an area for future study. Some key regulatory
molecules during the MET recycling process, such as Grb2, SOCS, and PKCµ, were selected
for further analysis. Western blot results for these molecules showed that the protein
expression of these molecules decreased after SIPA1 knockdown. In previous publications,
Grb2, SOCS, and PKCµ all promoted internalization of MET, leading the process towards
recycling to the membrane rather than degradation [37]. Knockdown of SIPA1 decreased
the expression of these molecules which could be a potential approach to regulate MET
receptors. Therefore, we can conclude that in lung cancer cells, Grb2, SCOS and PKCµ are
the potential target molecules for SIPA1, thus promoting the recycling of MET, in order to
maintain the MET receptor at a high level, thereby enabling the transmission of the HGF
signal within the cells.

The findings of this study suggest that the expression of SIPA1 in lung cancer cells
is closely related to the expression of TJ molecules and the cell’s barrier function. Gene
expression correlation analysis showed the potential regulatory effect of SIPA1 on TJs. Data
from the Peking cohort and the TGCA database (available from the website https://www.
cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga, accessed on
19 January 2019) were analyzed. The components of TJ proteins that are highly correlated
with expression of SIPA1 include JAM1, JAM2, ZO family, occludin, Marvel D2, Marvel
D3, nectin2, and claudin4, claudin7, claudin12, and claudin15, which are proven in at
least one database from the Peking cohort and/or the TGCA database. qPCR and/or

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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western blotting demonstrated that claudins 1, 2, 7, 8, 11, 14 and 17 from the claudin
family, and MUPP1 which contains a PDZ domain were downregulated after knockdown
of SIPA1. Claudin5, and the PDZ domain containing protein AF6 was downregulated
and ZO family proteins were upregulated in SIPA1 knockdown cells compared to pEF
control cells. Previous studies have shown that SIPA1 contains a PDZ domain [38], as do
other TJ markers such as the ZO family, AF6, MAGI1, MAGI2, MAGI3, PAR3, PAR6 and
MUPP1. The common feature that SIPA1, AF6, and the ZO family all contain the PDZ
domain, suggests that this could be a potential interaction site. It is possible that SIPA1
could interact with AF6 and the ZO family in the regulation of TJ function.

The transcriptional expression level of SIPA1 was found to be higher in cancer than
adjacent normal tissue or normal tissue in the Peking clinical cohort. The IHC staining
score of the lung tumour TMA lacks statistical significance. The protein level of SIPA1 in
tumour tissue samples was higher than that in normal lung tissue and adjacent normal
lung tissue, but the difference was not statistically significant (data not shown). There
may be inconsistencies between SIPA1 gene transcripts and SIPA1 protein analysis. As
previously discussed, there is a possibility that difference exists between the transcription
level of SIPA1 gene and the protein level of translation, but the Peking clinical cohort had a
larger sample number than the TMA cohort, and importantly, it has a higher number of
normal tissues. The clinical cohort samples are fresh frozen from surgery and it was easy
to quantify the expression of SIPA1, whilst the TMA samples are could only be used for
qualitative or semi-quantitative analysis. In terms of tumorigenesis, the Peking clinical
cohort data showed that the transcription level of SIPA1 was significantly higher in the
advanced T stage and TNM stage tumours. From the prognostic analysis of lung cancer
database, the median survival time of patients with high SIPA1 expression was significantly
shorter than that of patients with low SIPA1 expression, and the difference is particularly
significant in patients with adenocarcinoma. Transcription of SIPA1 was high in lung
cancer tumour and more advanced TNM stages of lung cancer, and the high level of SIPA1
correlated with the worst prognosis of lung cancer patients, which all indicate that SIPA1
can be used as a potential independent clinical biomarker to predict the prognosis and
recurrence of lung cancer. MET has been reported as a driving factor and therapeutic
target for NSCLC. Crizotinib (Xalkori®, Pfizer, Surrey, UK) is approved by the FDA as a
MET targeted inhibitor used in NSCLC patients with MET amplification and/or exon 14
skipping mutation [8]. Since SIPA1 can interact with MET, and SIPA1 can regulate the
MET receptor protein, and the inhibition of SIPA1 has similar effects on the TJs of lung
cancer cells as the MET inhibitor Crizotinib, it is possible that SIPA1 may be a potential
therapeutic target in NSCLC and a potential substitute target for MET targeted therapy
resistance in NSCLC.

5. Conclusions

In conclusion, SIPA1 plays an essential role in NSCLC tumorigenesis and metastasis,
by enhancing invasion and proliferation and suppressing the barrier function of lung
cancer cells. This is achieved via promoting Grb2, SOCS and PKCµ, ensuring the recycling
of MET, and further ensuring normal transmission of the HGF/MET signaling pathway.
Figure 8 summarizes the findings of this project: SIPA1 and HGF form an axis that is able
to regulate the function of TJ’s in human lung cancer cells. This novel discovery offers a
pathway that may be explored both biologically and clinically. Biologically, this of interest
as there has previously been little information regarding the exact pathway involved in
HGF effected changes of TJ function. Clinically, this pathway may provide possible routes
for therapeutic intervention. How this can be achieved is beyond the scope of the current
work and remains an important area of future research.
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Figure 8. Diagram of the overview of this study. Schematic indicating the possible regulatory
pathway for SIPA1 in lung cancer cells and the control of TJ function and assembly by HGF.

There now remains further work to be carried out. Since SIPA1 can interact with
MET, the interaction with other RKTs family members, especially the crucial EGF/EGFR
signaling pathway in NSCLC is worth investigation. The other mechanisms by which SIPA1
regulates the tight junctions of lung cancer cells require further exploration. A targeted
inhibitor of SIPA1 protein needs to be developed and examined for its effect in vitro and
In vivo prior to possible clinical application.
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