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Simple Summary: Cold physical plasma is a partially ionized gas generating various reactive oxygen
and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied
to cells and tissues either directly from the plasma or via exposure to solutions that have been treated
beforehand using plasma processes. This review addresses the challenges and opportunities of
plasma-treated solutions (PTSs) for cancer treatment.

Abstract: Cold physical plasma is a partially ionized gas generating various reactive oxygen and
nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to
cells and tissues either directly from the plasma or via exposure to solutions that have been treated
beforehand using plasma processes. This review addresses the challenges and opportunities of
plasma-treated solutions (PTSs) for cancer treatment. These PTSs include plasma-treated cell culture
media in experimental research as well as clinically approved solutions such as saline and Ringer’s
lactate, which, in principle, already qualify for testing in therapeutic settings. Several types of cancers
were found to succumb to the toxic action of PTSs, suggesting a broad mechanism of action based
on the tumor-toxic activity of ROS/RNS stored in these solutions. Moreover, it is indicated that the
PTS has immuno-stimulatory properties. Two different routes of application are currently envisaged
in the clinical setting. One is direct injection into the bulk tumor, and the other is lavage in patients
suffering from peritoneal carcinomatosis adjuvant to standard chemotherapy. While many promising
results have been achieved so far, several obstacles, such as the standardized generation of large
volumes of sterile PTS, remain to be addressed.

Keywords: cold physical plasma; low-temperature plasma; nonthermal plasma; oncology; PAM;
plasma-activated medium; plasma medicine; reactive oxygen species; reactive nitrogen species

1. Introduction

Cancer is a devastating condition, and the second leading cause of death in Western
countries [1]. Despite ongoing improvements in cancer therapy, novel research lines are
warranted to improve the clinical efficacy of cancer treatments. A recent development
in oncology is increasingly focusing on combination therapies that tackle tumor cells via
several mechanisms, either simultaneously or consecutively. While many therapeutic ap-
proaches focus on targeted therapies and immuno-therapies, promising research motivated
continuously tackling tumors on a much broader scale involving cancer metabolism and
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reactive oxygen and nitrogen species (ROS/RNS) and their associated redox signaling
pathways [2–4].

Cold physical plasma, which also goes by low-temperature plasma or nonthermal
plasma, is a partially ionized gas generating a multitude of ROS/RNS simultaneously.
More than two decades ago, it was proposed that these ROS/RNS can be used for ther-
apeutic purposes. Early work focused on plasma-based disinfection of biologically con-
taminated surfaces and liquids [5,6], which was later transferred to the medical field and
wound decontamination [7,8]. In addition to decontamination, it was soon realized that
plasma-derived ROS/RNS also target eukaryotic cells by cell-intrinsic mechanisms [9,10].
Moreover, a recent randomized clinical trial found that the disinfection properties of plasma
treatment are negligible in promoting wound healing in a cohort of diabetic patients [11].
As ROS/RNS follow hormetic responses in biology [12], it seems natural to investigate
exaggerated ROS/RNS exposure from cold physical plasmas as anticancer agents. Plasma-
based cancer research started more than a decade ago with promising in vitro [13–15] and
in vivo studies [16,17] and, ever since, has generated significant interest in experimental
oncology [18,19] with the first promising results being obtained in palliative cancer patients
in recent years [20,21].

While the direct application of cold physical plasma to cells and tissues is promising
and approved in European dermatology centers [22], an increasing need has emerged
to utilize the plasma-derived ROS/RNS more flexibly as putative injections. One way
to achieve this is the treatment of liquids or solutions with plasma devices [23,24]. In
this process, the plasma-derived ROS/RNS are delivered from the plasma gas phase into
the liquid phase (Figure 1). As most ROS/RNS are short-lived by virtue of their nature,
this comes at the expense of their deterioration [25], yet leaving a delicate mixture of
long-lived ROS/RNS that might even recombine or react with short-lived species again
when in contact with cells [26]. Since the idea of investigating these liquids is a future
clinical application, two routes have been proposed so far. The first involves the injection
into the bulk tumor, while the second relates to the lavage of the peritoneal cavity in
the disease of disseminated peritoneal carcinomatosis, currently tackled with HIPEC and
PIPEC therapy [27].
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Figure 1. Direct plasma treatment exposes the biological target such as in vitro cells or in vivo or ex
vivo tissue directly to the plasma gas phase. Plasma-treated solution (PTS), in turn, is generated by
exposing a solution to the plasma gas phase and subsequently transferring this liquid to a target cell
culture in vitro or for injection in vivo. Reproduced from [28]. Copyright 2020 MDPI.

2. Terminology

Such treated liquids go by several terms, such as plasma-activated medium (PAM) [29],
plasma-activated solution (PAS) [30], plasma-stimulated medium (PSM) [31], plasma-
activated Ringer’s lactate (PAL) [32], plasma-treated liquid (PTL) [33], plasma-oxidized
liquid (POL) [27], plasma-treated medium (PTM) [34], plasma-activated water (PAW) [35],
and plasma-activated acetic acid Ringer’s solution (PAA) as well as plasma-activated
bicarbonate Ringer’s solution (PAB) [36]. Here, we propose harmonizing the nomenclature
in the field of plasma medicine by using the term plasma-treated solutions (PTSs) for
the following reasons. First, the term “solution” per definitionem includes all types of
liquids that have dissolved organic or inorganic compounds, which is the case for all types
of solutions used in experimental research as well as clinically accredited solutions [37].
Even though this is not entirely the case for plasma-treated water, the plasma treatment
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submerges reactive components generated in the ambient air such as nitrite and nitrate
into the liquid, effectively generating a solution as well. Second, the term “treated” is a
neutral expression describing that a plasma process modified the solution. Hence, every
solution exposed to plasma is treated but not necessarily activated, as termed in many
previous studies. Activated implies a biomedical response after exposure to such a solution.
However, in the case of very short plasma treatment times or low energy, this is not
necessarily the case, while at the biochemical level, trace amounts of modified organic
or inorganic solvents and ROS/RNS might still be detectable. Third, the term medium
should be avoided. Cell culture media differ to extreme extents, differences in inactivation
properties with the same treatment times of about 10× were observed [38], discouraging a
general utilization of the term “medium”. By contrast, we encourage specifying the type of
solution immediately behind PTS—for instance, PTS-RL (Ringer’s lactate) or PTS-saline
(sodium chloride). When using cell culture media PTSs, the exact chemical composition
of the type of media should be given in the methods section along with the manufacturer
and part number. This is the first important step of standardizing reports projected on
this topic. Along similar lines, each study should contain a basic characterization of the
essential types of ROS/RNS generated in the solution by the plasma source, together
with information on evaporation (and its compensation) and changes in the pH. After all,
the exact biochemical description of PTSs is vital in understanding and optimizing this
approach towards clinical translation.

3. In Vitro Experiments of Plasma-Treated Solutions (PTSs) for Cancer Treatment

It has been reported that PTSs selectively kill glioblastoma brain tumor cells against as-
trocyte normal cells [23]. Antitumor effects of PAM have been demonstrated—for instance,
in ovarian cancer cells [39], colon cancer cells [37,40], lung cancer cells [41,42], gastric
cancer cells [43], pancreatic cancer cells [44–46], leukemia cells [47,48], melanoma cells [49],
and squamous cell carcinoma [50]. Antitumor effects of plasma-treated Ringer’s lactate
solution, plasma-treated acetic acid Ringer’s solution, and plasma-treated bicarbonate
Ringer’s solution were investigated, and interestingly, the lactate and acetic acid solutions
effectively killed ovarian cancer cells. In contrast, the plasma-treated bicarbonate solution
did not [36]. These results suggest that plasma-treated lactate and acetate are important
products for obtaining antitumor effects for these solutions.

For cell culture media, reaction products are complex since they contain about 30 com-
ponents. However, several components such as amino acids [31] and fetal bovine/calf
serum, as well as other compounds such as pyruvate [51], have been investigated for their
individual contributions to cytotoxic effects. In general, the drawback of using cell culture
media is their complex composition, which disallows unambiguously identifying single or
small groups of compounds mainly responsible for the toxicity observed. Moreover, there
are many different types of standard cell culture mediums, such as RPMI and DMEM, and
unfortunately, many of the differences relate to antioxidants as additives—e.g., pyruvate.
If not appropriately referenced, this disallows comparison of the results obtained with
plasma-treated media in the field. A comprehensive study comparing several types of
media is lacking so far. One study comparing IMDM and RPMI media found a 10-fold
difference in mediating cytotoxic effects [38], showing only the tip of the iceberg of how
the interpretation of results across several studies may be challenging. Less drastic but still
potent differences were recently suggested [52]. In terms of clinical translation, clinically
approved solutions seem more promising for apparent reasons. Their composition is
defined apart from standardized and quality-controlled production processes needed for
medical application. In a previous study, we compared six clinically approved solutions
(Table 1) and their storability for their suitability as clinically relevant PTS compared to
RPMI cell culture media and phosphate-buffered saline (PBS) [37]. We found sodium
chloride and Ringer’s lactate to be especially promising agents for future research along
more clinically relevant avenues.
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Table 1. Chemical composition of six clinically approved solutions compared to phosphate-buffered saline (PBS) and RPMI
cell culture medium containing 10% fetal bovine/calf serum (R10F). Reproduced from [37]. Copyright 2019 IEEE.

HES NaCl G-5 E153 Ri-Lac Gela PBS R10F

main component
60 g/L hy-
droxyethyl

starch

9 g/500 mL
sodium
chloride

50 g/L
glucose

153 mval/L
ions

Ringer’s
solution with
28 mmol/L

Gelatine
40 g/L

12 mM
phosphate

Amino acids,
vitamins and

10% FCS
pH-range 4.0–5.5 4.5–7.0 3.5–5.5 5.0–7.0 5.0–7.0 7.1–7.7 7.3–7.5 8.0

pH-treated 5.2 5.1 5.6 6.2 6.0 7.0 7.3 8.3
osmolarity (mOsm) 308 308 278 303 277 274 280 -

acetions X
amino acids X

Ca X X X
calcium

hydrochloride-dihydrate X X

calcium nitrate X
carbohydrates X X X

Cl X
gelatine poly succinate X

HCl X
K X

KCl X X X
lactate X

magnesium sulfate X
magnesium

chlorid-hecyhydrat X

Mg X
NaCl X X X X X X X

phosphate X X
protein X

sodium acetate X X
sodium hydroxide X

vitamins X

3.1. Reactive Species in Plasma-Treated Solutions (PTSs)

Cold physical plasma interacts with oxygen, nitrogen, and water in the air and gen-
erates short-lived reactive species in the gas phase such as nitric oxide, ozone, hydroxyl
radicals, singlet oxygen, and superoxide anion [53]. Long-lived species such as hydrogen
peroxide, nitrite, and nitrate are major components in PTSs [25]. High concentrations of
hydrogen peroxide are known to be cytotoxic [54]. For several years, Georg Bauer proposed
a synergy between the different PTS components—namely, hydrogen peroxide and nitrite,
especially when interacting with enzymes that have located a tumor cell membrane [55–57].
Peroxynitrite is produced from hydrogen peroxide and nitrite, followed by the primary
singlet oxygen. It has been reported that the primary singlet oxygen causes inactivation
of membrane-associated catalase, and hydrogen peroxide and peroxynitrite are produced
continuously at the site of locally inactivated catalase, which leads to the generation of
secondary singlet oxygen [26]. Other reactive species derived from solutes contribute
to physiological responses in PTS-exposed cells (Figure 2, [29]). For example, lactate in
Ringer’s lactate solution is a crucial antitumor component when treated with cold physical
plasma, and NMR analyses revealed that acetyl- and pyruvic acid-like groups are generated
in PTSs (Ringer’s lactate) [36].

The specific cellular response in the nutrient-starved environment and the nutrient-
rich environment may cause cancer cells to show drastically different responses to extracel-
lular reactive species such as H2O2 [58]. The cytotoxicity of reactive species on mammalian
cells was found to be dampened in one study when the PTS was made up of simple
buffered solutions such as PBS [36,59]. Nevertheless, ROS/RNS are vital components
in PTS. These can be monitored in living cells in vitro using fluorescent redox-sensitive
reporter probes that can be analyzed by flow cytometry [54], microscopy [60], or microplate
readers. The drawback of these probes is the lack of specificity towards individual types of
ROS/RNS once entering the intracellular compartment, as reported many times [61,62].
Notwithstanding, they prove useful in estimating intracellular redox changes with ten-
dencies towards some types of ROS over others. For instance, intracellular ROS are often
detected using 5-(and-6)-chloromethyl- 2′,7′-dichlorodihydrofluorescein diacetate, acetyl
ester (CM-H2DCFDA), although it has been reported that its fluorescent product DCF
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is not a direct consequence of ROS/RNS oxidation but rather an enzymatic product of
intracellular oxidase. Direct plasma treatment and PTSs often induce intracellular ROS
on cells, and the extent of this finding for PTS exposure depends on the type of solution
used. For example, plasma-treated cell culture media were previously suggested to have
stronger DCF signals compared to plasma-treated Ringer’s lactate in U251SP cells [63].
To obtain more details of intracellular ROS dynamics, 3′-(p-aminophenyl) fluorescein
(APF) and 3′-(p-hydroxyphenyl) fluorescein (HPF) are frequently used probes in plasma
medicine [46,54,60,64,65]. Intracellular hydroxyl radicals, peroxynitrite, and OCl- are de-
tected using APF, while intracellular hydroxyl radicals and peroxynitrite are detected using
HPF. In addition to these dyes, intracellular hydrogen peroxide, nitric oxide, peroxyni-
trite, superoxide anion, and OCl- can be detected using other reagents in PTS-exposed
HeLa cells to dissect putative intracellular ROS/RNS following exposure (Figure 3) [60]).
Up to 2 h after exposure, intracellular hydrogen peroxide, nitric oxide, and superoxide
anion were dominant. Intracellular peroxynitrite was negligible. After 5 h, intracellular
hydrogen peroxide, nitric oxide, and superoxide anion decreased, and intracellular perox-
ynitrite increased. While these data are interesting, it nevertheless needs to be noted that
direct plasma exposure was found to be significantly more toxic in U251 tumor spheroids
compared to PTS (PBS) treatment [66].
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3.2. Factors Affecting the Anticancer Efficacy of Plasma-Treated Solutions (PTSs)

The carriers of these reactive species, such as cell culture media, PBS, and other
solutions such as lactate solutions, are important factors affecting the anticancer efficacy of
PTSs. Specific cancer cell lines may be vulnerable to one PTS, such as medium, compared
to another PTS, such as PBS, as seen for the pancreatic tumor cells PA-TU-8988T cells and
glioblastoma cells U87MG [58] (Figure 4). PTS can also be combined with chemotherapy
affecting the efficacy of PTS. Using four different human pancreatic cancer cell lines and the
clinically relevant drugs to target those cells, cisplatin and gemcitabine, additive toxicity
with PTS was found (Ringer’s lactate, kINPen argon plasma jet) in both 2D cultures
and three-dimensional multicellular tumors grown on the CAM of chicken embryos (in
ovo). [46]. A synergistic action of PTS (fully supplemented RPMI, kINPen argon plasma
jet) and gemcitabine was also confirmed in murine pancreatic cancer cells and found to be
selective compared to primary murine fibroblasts [67]. However, it should be noted that
such treatment also severely affects the viability of human immune cells, such as monocytes
and T cells [68], while leaving differentiated macrophages largely unaffected [69].
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3.3. Intracellular Molecular Mechanism of Cancer Cell Death Induced by Plasma-Treated
Solution (PTS)

The transmembrane diffusion of reactive species may affect the cytotoxicity of PTS
(cell culture medium) on cancer cells. One example is the study on aquaporins (AQPs) [70].
Knocking down of the gene encoding AQP8, one type of H2O2 channel in glioblastoma
cells, reduced the cytotoxicity of PTS.

To identify intracellular molecular mechanisms of cell death of PTS-exposed cells,
many cell lines have been used. For example, U251SP, U87MG, LN229, and T98G are
glioblastoma cell lines, and their genetic backgrounds are different. The TP53 gene is the
wildtype in the U87MG cell line, and the PTEN gene is the wildtype in the LN229 cell line.
Sensitivity against PTS is different among those cell lines [71]. Further studies are needed
to elucidate what the effectiveness of specific types of PTS depends on. The ovarian cancer
cell lines SKOV3, ES2, NOS2, and TOV21G have also been investigated [72]. Ovarian
clear-cell carcinoma (CCC) is a subtype of epithelial ovarian carcinoma (EOC), and it is
naturally chemoresistant and often associated with a poor prognosis. TOV21G was used as
a CCC cell line.

Direct plasma exposure and PTS induce apoptosis in cells. For example, cleaved
Caspases 3 and 7 were detected in PTS-exposed (cell culture medium) U251SP cells [23]
and PTS-exposed (Ringer’s lactate) U251SP cells [36]. However, intracellular molecular
mechanisms of cell death are different between both exposure types [63]. Transcriptome
microarray analyses of PTS-exposed U251SP suggested that PTS-induced gene expres-
sion related to GADD45 signaling is activated by oxidative stress and induces apoptosis.
The dynamics of gene expression analyses related to GADD45 signaling between PTS-
(medium) and PTS-exposed (Ringer’s lactate) U251SP cells revealed that the latter only
showed minimal effects in GADD45 signaling (Figure 5, [63]). These results are consistent
with the results that PTS (medium) induced more ROS than PTS (Ringer’s lactate). Survival
and proliferation signaling pathways such as the PI3K–AKT pathway and the RAS–MAPK
pathway were downregulated in PTS-exposed U251SP cells [73]. These results are also con-
sistent with the fact that AKT inhibition induces GADD45α gene expression. GAD45α/p38
signaling pathway increases the activation of ATF3 and c-JUN transcription factors, which
form the AP-1 complex.
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PTS-exposed A549 cells. Bcl2 mRNA was significantly decreased and CHOP mRNA was
induced in PTS-exposed A549 cells. The formation of poly ADPR was detected in the
nuclei of PTS-exposed A549 cells, and the accumulation of AIF surrounding the nucleus
was detected in PTS-exposed A549 cells. PTS exposure elevated intracellular calcium ion
concentration by activating the nonselective cation channel TRPM2 in A549 cells. Based
on these results, intracellular molecular mechanisms of cell death have been proposed
(Figure 6, [41]).
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PTS affects gene expression, signal transduction, and metabolic networks (Figure 7).
The interface between PTS and the cell is the cell membrane, and PTS first affects proteins
such as receptors, ion channels, transporters, and lipids on the cell membrane. Then, PTS-
affected proteins and lipids alter the signal transduction network. Such alterations affect
gene expression and metabolic networks. Systematic analyses such as transcriptomics,
proteomics, and metabolomics are powerful tools to understand intracellular molecular
mechanisms of PTS-exposed cells.
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Moreover, PTS (fully supplemented cell culture medium, kINPen argon plasma jet)
was shown to affect mitochondrial dynamics in melanoma cells, critically synergizing with
complex I inhibitors to augment cancer cell death (Figure 8) [74].
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Figure 8. Inhibition of cytochrome C oxidase and the addition of PTS (fully supplemented cell
culture medium, kINPen argon plasma jet) leads to an increase in superoxide anions (red) in the
mitochondrial matrix that results in loss of MMP and subsequent ATP depletion. This finally leads to
an energy crisis and cell death. Reproduced from [74]. Copyright 2018 Springer Nature.

3.4. Some Guidelines to Make PTS

Extending the plasma treatment time (dose) is the most straightforward strategy
to enhance the anticancer efficacy of PTSs [23,36,75–77]. Several general principles to
improve the efficacy of PTS (cell culture medium) have been demonstrated by regulating
three treatment factors: the gap between the plasma source and the solution surface, the
contacting area between bulk plasma and the surface (Figure 9), and the volume of solution.
These principles have recently been tested in other PTSs, such as PBS by other groups [78].
A larger containing area between the bulk plasma and the solution surface will result in
a higher reactive species concentration in the PTS [75]. For example, the PTS made in a
well of a 6-well plate is much more toxic to cancer cells than the PTS made in a well of
a 96-well plate. Additionally, a shorter gap between the plasma source and the solution
also generates a more toxic PTS with a higher reactive species concentration. The stronger
capacity of PTS can also be achieved by decreasing the solution volume. Furthermore,
the basic operational parameters of plasma can also modulate the efficacy of PTSs. For
instance, the discharge voltage can noticeably affect the H2O2 generation in PTS, which
further affects the anticancer performance [79].
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It is necessary to emphasize that some media components are very reactive to the
plasma-derived ROS/RNS. For example, fetal bovine/calf serum (FBS/FCS), a standard
component of a typical cell culture media, is highly reactive to ROS. FBS/FCS weakens the
efficacy of PTS on glioblastoma cells [80]. In addition, pyruvate is also reactive with H2O2
in PTS [41]. Cysteine is a common component in nearly all standard cell culture media.
Among all 20 amino acids, however, cysteine is most reactive with ROS [80]. Shortly, an
ideal PTS should avoid containing FBS, pyruvate, and cysteine if maximizing ROS/RNS
concentrations is desired.

3.5. The Storage of Plasma-Treated Solutions (PTSs)

Most media used for cell culture purposes have ideal storage temperatures ranging
between 2 and 8 ◦C. Therefore, an ideal PTS made of cell culture media should also be
stably stored in such a temperature range. However, the degradation of PTSs (cell culture
media) after the storage has been investigated across a broader range of temperatures. The
anticancer species and corresponding efficacy of such PTSs will gradually degrade during
the storage over a wide temperature range for less than just 1 day [41,75,80–82]. For H2O2,
its concentration also drastically decreased after storage, which was just proportional to
the decreased efficacy of such PTSs [82]. As a typical example, Mohades et al. observed
that a stored PTS (cell culture medium) lost some of its potency in killing cancer cells
at 12 h post-PTS exposure (Figure 10) [82]. PTS was stored at room temperature for 1, 8
and 12 h before its use. Comparing the cell viability outcome of SCaBER treated with
stored PTS indicated that toxic efficacy of PTS decreased with increasing storage time [82].
However, the plasma exposure time used to generate such PTSs also plays an important
role. Reduction in the efficacy of PTS is more significant for shorter compared to longer
exposure times, suggesting that ROS/RNS concentrations remain high enough after storage
for PTS generated with longer plasma exposure times.
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Figure 10. Effectiveness of stored/aged PTS (cell culture medium) to induce cell death in SCaBER
cells for storage times of 1, 8, and 12 h, when measuring metabolic activity another 12 h later.
Reproduced from [82].

PTS (PBS, kINPen argon plasma jet) was also found to be storable for up to three weeks
at −20 ◦C without a decline of activity [40]. In a structured comparison of 8 different types
of solutions, including 6 clinically approved variants, several solutions were disqualified
in terms of storage at −20 ◦C [37]. Sodium chloride (saline) and Ringer’s lactate at 0.9%
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gave the best results in terms of storability. The temperature of −20 ◦C was chosen as this
is most realistic for a quick on-site-surgery use-on-demand setting.

Without knowing the exact degradation mechanisms, only storage in low-temperature
environments (e.g., −80 ◦C in a freezer or −150 ◦C in liquid nitrogen) can inhibit PTSs’
degradation over long periods [36,41,81]. For cell culture medium, a degradation mecha-
nism has been recently proposed. Comparing the H2O2 concentrations in PTS (cell culture
medium vs. PBS) after storage at −25, 8 and 22 ◦C, medium components and some amino
acids were found to be responsible for the observations [31]. Cysteine and methionine
mainly cause the degradation of H2O2 PTS (cell culture medium) (Figure 11). The PTS
without cysteine and methionine was much more stable than the PTS that included both
amino acids during storage at these temperatures [31].
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22◦C and 8 ◦C. (a) The H2O2 concentration in PTS (PBS) containing a specific component during
the storage at 22 ◦C. (b) The H2O2 concentration in the PTS (cys/met-free DMEM, cys-free DMEM,
met-free DMEM, and standard DMEM) during the storage at 8 ◦C. (c) The anticancer effect of the
PTS (cys/met-free DMEM, cys-free DMEM, met-free DMEM, and standard DMEM) after storage at
8 ◦C. Student’s t-tests were performed and the significance is indicated as * p < 0.05 and *** p < 0.005.
Reproduced from [31]. Copyright 2016 Springer Nature.

Moreover, it was found that PTS (PBS, kINPen argon plasma jet) could induce apopto-
sis in human [83] and murine pancreatic cancer cells in vitro and in vivo [45]. Interestingly,
murine primary fibroblasts were less affected. The toxic effects on the cancer cells were not
affected by adding several amino acids (alanine, leucine, tryptophan, tyrosine, valine; all
20 mM), suggesting their scavenging capability to be minor when added after plasma treat-
ment in this particular setting. By contrast, cysteine added to PBS before plasma treatment
did affect cells [84], suggesting that the oxidation generated by the plasma treatment on
this amino acid conserves some of the initial toxicity of the short-lived ROS/RNS. Stability
and effects of the gap and gas flow rates on ROS/RNS generation in PTS (PBS, kINPen
argon plasma) have been investigated previously (Figure 12) [85].
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Figure 12. The effect of the gap, gas flow rate, plasma treatment time, the occurrence of discharges at
the liquid surface, and the stability of a PTS (PBS, kINPen argon plasma jet) on the concentrations of
NO2

- and H2O2 in PTS and on the anticancer capacity of PTSs for three different cancer cell lines.
Reproduced from [85]. Copyright 2017 Springer Nature.

4. In Vivo Experiments of Plasma-Treated Solutions (PTSs) for Cancer Treatment
4.1. The Anticancer Efficacy of Plasma-Treated Solutions (PTSs)

The effectiveness of PTSs (RPMI cell culture medium) has been tested using xenograft
mouse models and animal disease models. For example, chemoresistant ovarian cancer
cells (NOS2TR) and its parental ovarian cancer cells (NOS2) were subcutaneously injected
into the bilateral flank of mice [39]. The PTS-exposed group of mice received PTS by
subcutaneous injection in each side, three times a week. The control group of mice received
an untreated medium in the same way. PTS significantly reduced the growth of both
parental and chemoresistant ovarian cancer cells (Figure 13, [39]). Similar results were also
observed in pancreatic cancer cells.
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(A,B): The macroscopic observation of nude mice bearing subcutaneous NOS2 (A) and NOS2TR (B) tumors on both flanks.
Mice were injected with NOS2 and NOS2TR cells and then received medium alone or NEAPP-AM. A total of 0.4 mL of
medium or NEAPP-AM was administered locally into both sides of mice three times a week. All mice were sacrificed at
29 days after implantation. Green arrowheads indicate tumor formation. (C,D): Time-dependent changes in the tumor
volume in xenografted models are shown, medium alone or NEAPP-AM. Each point on the line graph represents the mean
tumor volume (mm3) for each group on a particular day after implantation, and the bars represent SD. * p < 0.05, ** p < 0.01
versus control. Reproduced from [39]. Copyright 2013 PLOS.

To examine the effectiveness of the antitumor effects of PTS (cell culture medium),
enhanced green fluorescent protein-tagged GCIY gastric cancer (GCIY-EGFP) cell-induced
peritoneal carcinomatosis was investigated [78]. The intraperitoneal administration of PTS
or untreated medium (control) was performed on days 1 to 4 and days 8 to 11. The in vivo
imaging assays were performed on days 1, 8 and 15 and it was demonstrated that PTS
treatment inhibited the formation of peritoneal metastases (Figure 14, [78]).
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In another study, RPMI cell culture medium (5 mL) was treated with plasma of the
clinically accredited argon plasma jet kINPen MED for 10 min. Although a large number
of injections were needed (1–2 dozens), an apparent reduction in peritoneal carcinomatosis
was identified in a syngeneic orthotopic model of pancreatic cancer using such a PTS
(Figure 15) [86]. The model has the benefit that the immune system is not neglected
as the tumor cells are of the same genetic background as the mouse strain into which
the tumors were inoculated. The findings were accompanied by intratumoral apoptosis
(qualitatively and quantitatively shown using TUNEL staining), as well as a decreased
intratumoral proliferation (qualitatively and quantitatively showed using Ki67 staining)
in the metastatic nodules. PTS exposure led to a significantly improved overall survival
of the mice in the PTS group compared to the vehicle medium control. Detailed analysis
of the tumor microenvironment (TME) revealed an increased influx of macrophages into
the tumor nodules that were repeatedly exposed to PTS in vivo, along with more T cells
as well as an increase in calreticulin (CRT) [87], a marker of the immunogenic cancer cell
death [88]. In vitro experiments confirmed the selectivity of this approach when comparing
the PDA6606 pancreatic cancer cells against murine primary fibroblasts.

In a recent report, we used a PTS (PBS, kINPen argon plasma jet) to investigate its
toxicity in four different gastrointestinal tumor cell lines in vitro. In addition to analyzing
the liquid chemistry, we observed the onset of ICD in CT26 colorectal cancer cells in vitro.
Strikingly, this was accompanied by a massive antitumor action of PTS (NaCl, kINPen
argon plasma jet) in vivo and an increase in intratumoral macrophages as well as T cells
(Figure 16), which corroborates findings with direct plasma exposure in vivo [89]. This
is the first study using a clinically approved solution (NaCl) together with a clinically
approved plasma source (kINPen) in a clinically realistic setting (only PTS stored at −20 ◦C
was used to mimic the clinical situation in which PTS likely would be generated before
application as the generation time of the PTS of 1 h was too long to be generated ad hoc
during surgical procedures) in an immune-competent (syngeneic, immuno-competent)
animal model with the tumors growing at the location where they also would appear
clinically (orthotopic, peritoneal cavity of metastatic colon cancer) [40].
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supplements) against syngeneic, orthotopic, disseminated pancreatic cancer analyzed using MR-
Imaging (I–II) and macroscopic imaging (III–IV) (b) and its quantification (c) as well the absolute
tumor weights (d). Each triangle represents one mouse. * p < 0.05, ** p < 0.01. Reprinted with
permission from [86]. Copyright 2017 Springer Nature.
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As concluded from above, the oxidative stress inflicted upon tumor cells using PTSs
has an immuno-modulatory dimension. The extent of this dimension is underexplored
at the moment. The main idea is that the PTS-induced tumor cell death is immunogenic,
thereby promoting the immune system to recognize dying tumor cells in an inflammatory
context with subsequent induction and promotion of antitumor immunity. The exact
requirements for PTS to induce such an effect remain to be elucidated. However, from the
in vivo studies mentioned above, it is clear that PTS exposure of gastrointestinal tumor
burden increases influx of professional antigen-presenting cells such as dendritic cells
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and macrophages. It is also possible that the immune cells present within the TME will
be directly by PTS. As mentioned above, T cells severely succumb to oxidation-induced
toxicity. Data are intratumoral immune cells and their cell death after PTS exposure has
not been reported so far.

Another point is that the anticancer mechanisms of PTSs are of a general nature—
it is uncertain as to whether they are more potent in some tumor entities over others.
Along similar lines, great heterogeneity is observed within individual tumor entities,
which is related to different mutational loads, variation in cell types within the TME, and
signaling pathway deregulation. The current response rates to conventional drugs and
immunotherapy show that responders and nonresponders can be stratified according to
these factors, and it seems likely that PTS therapy will face similar drawbacks. However,
progress of the PTS regimen to clinics is absent at the moment, leaving such aspects to be
debated in the future. Comparative preclinical studies that incorporate different tumor
entities or cell types with different traits of the same entity would greatly facilitate a much-
needed gain in the knowledge in the field of PTSs. Such studies should also elaborate on
the “dosing” of PTS—i.e., whether hormetic effects are observed that might show subtoxic
effects at low doses.

4.2. The Safety of Plasma-Treated Solutions (PTSs)

The safety of a PTS (water) in immune-deficient nude mice was investigated using
this PTS by oral lavage treatment [35]. The acute toxicity test results showed that the
PTS had no lethal effect or other acute toxicity, even when it was made with a 15 min
plasma treatment time. After two weeks of exposure, the PTS did not cause significant
changes in mice’s body weights and survival status. The major organs, including the heart,
liver, spleen, lung and kidney, did not show observable changes. Liver function, renal
function, electrolytes, glucose metabolism and lipid metabolism were also not affected by
PTS treatment. Only blood neutrophils and mononuclear cells were found to be slightly
increased [35].

The repeated application of PTSs (cell culture medium, kINPen argon plasma jet) in the
peritoneal cavity of tumor-bearing mice suffering from peritoneal pancreatic carcinomatosis
was tolerated well without visible side effects. The relative frequencies of several blood
parameters were not affected in the PTS group compared to the vehicle group. This was
the case for neutrophils, monocytes, lymphocytes, T helper cells, cytotoxic T cells, B cells,
and NK cells. For the non-nucleated blood cells (erythrocytes and thrombocytes), similar
counts and volumes were determined in both groups. The quantification of six different
chemokines and cytokines from nonstimulated and LPS-stimulated splenocytes of both
groups also did not show any differences [86]. Hence, it can be concluded that the repeated
application of a PTS (RPMI cell culture medium) does not cause any apparent harm in
C57BL/6 mice in vivo.

5. Conclusions

Plasma-treated solutions (PTSs) show potent antitumor efficacy in many cancer
cell lines in vitro and in vivo. Cutting-edge research currently addresses the immuno-
modulating effects of the exposure of PTS to cancer cells and immune cells of the tumor
microenvironment. A future step is to increase the translation of this promising field into
clinics using solutions accredited for administration in humans. Along those lines, large
bulk plasma-generators and ISO-standardized processes are needed to generate sufficient
amounts of PTS in a reproducible and quality-controlled manner.
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