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Figure S1. Baseline hazard rates of overall survival and disease-free survival models estimated from different survival
models.
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Table S1. Predictors, scores, and formulas for calculating predicted survival probabilities.

Predictors Score
AGE Age at surgery (year) Age at surgery - 50
MENO  Menopausal status 0 = Pre-menopause,
1 = Post-menopause
SURG Type of surgery 0 = Mastectomy,
1 = Breast conserving surgery
STG Pathological stage
I STG2=0,STG3=0
I STG2=1,STG3=0
11 STG2=0,STG3=1
HIST Histological type 0 = Others, 1 =Ductal
GRD Histological grade
I GRD2 =0, GRD3 =0
II GRD2=1, GRD3=0
111 GRD2=0, GRD3 =1
SIZE Tumor size (mm) Tumor size - 30
LVI Lympho-vascular invasion 0=No, 1=Yes
NODE Number of positive axillary lymph nodes (node)
0 NODE2 =0, NODE3 =0
1-3 NODE2 =1, NODE3 =0
>4 NODE2 =0, NODE3 =1
ER Estrogen receptor status 0 =Negative, 1 = Positive
PR Progesterone receptor status 0 =Negative, 1 = Positive
HER2 HER-2 status 0 =Negative, 1 = Positive
CHEM Chemotherapy 0  =no adjuvant therapy
0.839 = received adjuvant therapy
HORM  Hormonal therapy 0  =no adjuvant therapy
0.539 = received adjuvant therapy
RADI Radiotherapy 0  =no adjuvant therapy
0.579 = received adjuvant therapy
0Ss Baseline 5-year overall survival probability 0.893
OS1o Baseline 10-year overall survival probability 0.818
DFSs Baseline 5-year disease-free survival probability ~ 0.889
DEFSuo Baseline 10-year disease-free survival probability  0.838
Plos Prognostic index of overall survival 0.0001*AGE + 0.1681*MENO - 0.2428*SURG
+0.0398*STG2 + 0.5962*STG3 + 0.4004*HIST + 0.0021*SIZE
+0.4655*NODE2 + 0.8066*NODE3 + 0.2071*LVI
+0.1737*GRD2 + 0.3126*GRD3 - 0.1122*ER - 0.1037*PR
+0.0714*HER2 - 0.4421*CHEM - 0.5539*HORM - 0.0246*RADI
Plors Prognostic index of disease-free survival 0.0018*AGE + 0.1510*MENO - 0.1956*SURG

+0.2018*STG2 + 0.6774*STG3 + 0.3416*HIST + 0.0016*SIZE
+0.5409*NODE?2 + 0.7573*NODES3 + 0.2435*LVI
+0.3422*GRD2 + 0.4226*GRD3 - 0.1073*ER - 0.0358*PR
+0.0973*HER? - 0.5737*CHEM - 0.4825*HORM + 0.0050*RADI

Predicted 5-year overall survival probability

Predicted 10-year overall survival probability

Predicted 5-year disease-free survival probability

Predicted 10-year disease-free survival probability

OSsexp(Plog)
OS10exp(Plog)
DEFSsexp(FIpgs)
DESi0exp(Plog)
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Supplementary File S1: Royston-Parmar model [1-3]

When regression modeling is used for prognostic models, Cox proportional hazard model is a common regression
model type because of its ease of calculating the relative effects of hazards between groups (i.e., hazard ratio (HR))
without needing to estimate the baseline hazard function. Therefore, the only measures that can be estimated at the
event times are absolute measures of effects (e.g., survival probability, hazard rates), which results in a step function
where the estimate at one event is held constant and carried forward until the time of the next event. Moreover, the
important assumption is proportional hazards where any two hazard rates predict by the model are proportional over
time. In other word, we assume that relative hazard (i.e., HR) is constant over time. Cox proportional hazard model can
be algebraically written as:

hi(t i) = ho(t)exp(Bxi) 1)

hi(t1xi) is the hazard function of the ith individual and conditional on covariates xi and the baseline hazard function ho(t)
is hi(tIx = 0) when all the covariates xiequals to zero. = 1,..., fris the vector of the regression coefficients. The appealing
feature of the Cox proportional hazard model is that we do not need to assume that the baseline hazard function has a
specific shape.

Since the optimal approach for prognostic models would be to utilize the baseline hazard function for the continuous
mathematical estimation of the absolute measures of effect, by ignoring the baseline hazard, we are missing out some
useful information such as the absolute risk (i.e., difference in survival or mortality rates). Furthermore, overfitting
problem can arise because of the lack of baseline hazard specification. It means that the model is too closely matched to
the data that it is based on and may not generalize well to other scenarios.

Parametric survival models (or parametric proportional hazard model) permit direct estimation of absolute measures
of effect because an underlying distribution is specified mathematically and allows extrapolation of survival estimates
outside the study observation time and this is not possible with a Cox proportional hazard model. Parametric survival
models specify the baseline hazard (fo(t)), and a common specification is the Weibull distribution, which is a function
of a scale parameter (1), a shape parameter (y), and time (¢), the baseline hazard function of the Weibull model is written
as:

ho(t) = Ayt¥~1 2

The shape of the Weibull function depends on the shape parameter (y), which generally is a monotonically increasing
(v >1) or decreasing (y <1) hazard; and when the shape parameter equals one (y = 1), the baseline hazard is reduced to
an exponential distribution with a constant hazard. However, “real-life” data may show that hazards peak at certain
points in time followed by a decline, parametric survival models like the exponential and Weibull models are not flex-
ible enough to capture the shape of the baseline hazard function.

Royston-Parmar model (RP model) [19], a type of flexible parametric survival model, solves issues encountered when
using the cox proportional hazard and parametric proportional hazard models. Royston-Parmar model features a re-
stricted cubic spline. Cubic splines are polynomial segments (3o + f1x + B2x2 + $3x%) that smoothly join at intervals called
“knots”. At the knot locations, cubic functions are forced to join resulting in a continuous function with flexibility in-
corporated. A restricted cubic spline is a cubic spline with an additional restriction where the first and last sub-functions
beyond the boundary knots are linear functions instead of cubic functions. Since the RP model can fit of the restricted
cubic spline on many scales (i.e., the proportional hazard (PH) scale, the proportional odds (PO) scale, or the probit
scale), in this study, we use the flexible parametric proportional hazard model which is an extension of the Weibull
model. In the PH scale, the Royston-Parmar model can be thought of as a generalization of the Weibull distribution
where a general function for the baseline log cumulative hazard function on the log timescale is modeled instead of a
linear function.(as is the case when a Weibull distribution is pre-specified). The log cumulative baseline hazard function
on the log timescale for a Weibull distribution is written as:
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In(Ho(t)) = InA + y1In(t) = yo + yiln(t) (3)
where In(Ho(t)) is linear function of In(t)

The above can be extended by including a restricted cubic spline function of In(t):
In(Ho(£)) = yo + yiln(t) + yzziln(¢) + y3zaIn(t) + ... 4)

In(t), ziIn(t) and zaIn(t) are the basis functions of the restricted cubic spline. The number of knots or degrees of freedom
specifies the number of basis functions. The derivation of these basis functions is described below.

We first define m interior knots (ky, ..., km) in addition to the two boundary knots, kmin and kmax which are placed at the
minimum and maximum of In(f) respectively. m interior knots have m+1 degrees of freedom and m+1 basis functions.

Equation 4 can also be rewritten as:
s(In(f) | y) = yo+y1z1 +y2z2 + y3z3 + ... + Yme1Zme1 5)

zj variables are derived as follows:

z1=1In(t) (6)
2= (n(t) - kD3~ AA(0) ~ ki) ~ (1 = 2)ANCE) - K} 7)
the “+” notation denotes (x) .= max(0, x)

where for j=2, ..., m+1,
A = Kmax—kj (8)

) Kmax— Kmin

For instance, a baseline spline function with two interior knots (in addition of two boundary knots) or three degree of
freedom (df(3)) can be written as,

s(In(f) | y) = yo+y1z1 + y2z2 + y3z3 )
One interior knot or two degree of freedom (df(2)): s(In() | y) = yo+yizi+ y2z2 (10)
No interior knot or one degree of freedom (df(1)) or Weibull model: s(In(t) | y) = yo +y1z1 (11)

The Royston-Parmar model under a PH context can be expressed mathematically as:
In(H(t) | xi) =s(In(t) | y) + pxi (12)

Survival function, S(f), at time t for an individual subject can then be defined as:
S(t) = So(t)eP) (13)
where So(t) is the baseline survival function = exp(-exp(s(In(f) | y))) and 1) is the linear predictor of the model.
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