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Simple Summary: Prognostication of breast cancer patients is essential for risk communication and
clinical decision-making. Many clinical tools for the survival prediction of breast cancer patients
have been developed over the years. However, most of them were developed from Western coun-
tries. Studies have shown that these tools did not perform well in other ethnicities, such as Asian
populations, including Thai. This study developed a new prediction model for survival predictions
using modern statistical methods that allow a more accurate estimation of the baseline survival. The
model was entitled the Individualized Prediction of Breast cancer Survival or the IPBS model. It
contains twelve routinely available predictors that oncologists usually evaluate in daily practice. The
survival information provided by the model was proven to be acceptably accurate and might be
useful for physicians and patients, especially in Thailand or other Asian countries, to arrive at the
most appropriate management plan.

Abstract: Prognostic models for breast cancer developed from Western countries performed less
accurately in the Asian population. We aimed to develop a survival prediction model for overall
survival (OS) and disease-free survival (DFS) for Thai patients with breast cancer. We conducted
a prognostic model research using a multicenter hospital-based cancer clinical registry from the
Network of National Cancer Institutes of Thailand. All women diagnosed with breast cancer who
underwent surgery between 1 January 2010 and 31 December 2011 were included in the analysis.
A flexible parametric survival model was used for developing the prognostic model for OS and
DFS prediction. During the study period, 2021 patients were included. Of these, 1386 patients with
590 events were available for a complete-case analysis. The newly derived individualized prediction
of breast cancer survival or the IPBS model consists of twelve routinely available predictors. The
C-statistics from the OS and the DFS model were 0.72 and 0.70, respectively. The model showed good
calibration for the prediction of five-year OS and DFS. The IPBS model provides good performance
for the prediction of OS and PFS for breast cancer patients. A further external validation study is
required before clinical implementation.

Keywords: breast neoplasms; adult; female; prognosis; statistical models

Cancers 2021, 13, 1567. https://doi.org/10.3390/cancers13071567 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-7993-9912
https://orcid.org/0000-0002-8543-6254
https://doi.org/10.3390/cancers13071567
https://doi.org/10.3390/cancers13071567
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13071567
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/13/7/1567?type=check_update&version=2


Cancers 2021, 13, 1567 2 of 16

1. Introduction

Breast cancer is the most common cancer among women and a significant public health
burden worldwide [1]. Globally, the five-year prevalence of breast cancer was reported at
1.8 million cases, with an age-standardized incidence rate at 47.8 and an age-standardized
mortality rate of 13.6 per 100,000 person/years [1]. In Thailand, breast cancer incidence
was the highest among all other cancers, with an age-standardized incidence rate of 31.4
per 100,000 person/years, with approximately 15,000 new cases diagnosed each year [2].
The overall trends of breast cancer have been observed to be increasing in every region of
Thailand. The incidence rate was projected to be around 48.5 per 100,000 person/years in
2034 [3–6]. Despite the high incidence rate of female breast cancer, the overall prognosis
was favorable compared to other cancers with an estimated age-standardized five-year
net survival of over 85% in developed countries [7]. In developing countries, including
Thailand, the five-year net survival was somehow lower at 64.8–68.7% [7].

Cancer prognostication is essential for guiding cancer management policy at both
the national and the global levels. Estimating the average prognosis from a population of
individuals with specific cancer (i.e., population-based cancer registry) can provide useful
information for policymakers to evaluate and benchmark the overall effectiveness of the
current healthcare situation. In contrast, estimating an accurate individual prognosis for
each patient with breast cancer is crucial for oncologists to arrive at the appropriate clinical
management decisions due to the highly heterogeneous nature and variations of breast
cancer [8]. For instance, prognostic models can provide survival predictions of patients
with early breast cancer after their surgical management, allowing clinicians to determine
whether adjuvant therapy will be beneficial to them.

Several survival prognostic models for patients with breast cancer were developed
over the years. Some of the well-known models were as follows: the Nottingham prognostic
index (NPI) [9], Adjuvant! [10], BC Nomogram [11], OPTIONS [12], CancerMath [13]
and PREDICT [14]. However, all of these models were originally developed from the
populations in Western countries, and some of the models were proven to provide less
accurate predictions during validation in other populations, including Asian ones [15–20].
There was one study that externally validated Western prognostic models in Thailand [20].
This external validation study concluded that Western models were less accurate in Thai
breast cancer patients. The poor external performance of the models could be the result of
the differences in the population case-mix and regression coefficients [21]. The association
and the predictive ability of the previously reported predictors in the Western models
might also be different, and the re-estimation of regression coefficients is often necessary.
Therefore, a prognostic model for survival prediction should be specifically developed
from a dataset of Thai patients with breast cancer. This study aimed to develop and
internally validate the novel prognostic models to predict the overall survival (OS) and
disease-free survival (DFS) for individual patient using multicenter hospital-based clinical
cancer registry data from the Network of National Cancer Institutes of Thailand.

2. Materials and Methods
2.1. Patients and Data

This prognostic model research was conducted based on the multicenter hospital-
based clinical cancer registry data from the Network of National Cancer Institutes of Thai-
land, which includes the National Cancer Institute (NCI) and five regional cancer hospitals,
including Lampang Cancer Hospital, Udon Thani Cancer Hospital, Ubon Ratchathani
Cancer Hospital, Surat Thani Cancer Hospital and Chonburi Cancer Hospital. These
cancer hospitals were located in different regions of Thailand and were responsible for
approximately 10% of patients with breast cancer in Thailand (Figure 1).
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Figure 1. The Network of National Cancer Institute of Thailand, which contributed to the clinical database of breast cancer.

The patient domain was all women newly diagnosed with invasive breast cancer
who underwent surgery and were treated at the NCI and the participating regional cancer
hospitals between 1st January 2010 and 31st December 2011. As our model was intended
to be used for prognostication in patients with operable breast cancer patients, patients
with stage IV breast cancer were excluded. We also excluded patients with any neoad-
juvant therapy before surgery. Patients were followed up from the date of surgery to
31st December 2016. Overall survival (OS) was estimated from patients who died from
any causes, and the definition of disease-free survival (DFS) was based on the guidelines
for time-to-event endpoint definitions in breast cancer trials [22]. In our study, DFS was
estimated from any invasive relapse (including ipsilateral recurrence), any appearance of a
second primary cancer (including contralateral breast cancer), any appearance of distant
metastasis and any causes of death, whichever occurred first and were documented in the
medical records. Therefore, disease-free in our study was the length of time after surgery
ends that the patient survives without any signs or symptoms or evidence of breast cancer.
Patients who did not have any endpoints were censored on 31st December 2016. The study
was approved by the institutional review board and ethical committee of the Faculty of
Medicine, Thammasat University (MTU-EC-ES-4-211/60) and by the ethical committee of
NCI and participating regional Cancer Hospitals (LPCH-EC-19/2015).

2.2. Predictors

Candidate predictors for the survival of patients with breast cancer were selected
based on clinical importance (expert advice, previously reported prognostic models and
the availability of predictors at the point of prediction). These prognostic factors included
patient factors: age at diagnosis (surgery) and menopausal status; tumor factors: patho-
logical staging, histological type, size of the tumor, histological grade, lymphovascular
invasion (LVI), nodal involvement, estrogen receptor (ER), progesterone receptor (PR) and
human epidermal growth factor receptor 2 (HER-2) and treatment factors: type of surgery,
chemotherapy, hormonal therapy and radiotherapy.

All prognostic factor data were reviewed and retrieved from medical records. Tumor
factor data were extracted directly from the pathological report. The ER or PR positivity
was examined by immunohistochemistry and defined as 1% or more positive tumor cells
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with nuclear staining. The HER-2 positivity was defined as either a score of 2+ and 3+ by
immunohistochemistry.

2.3. Derivation of the Survival Models

The Royston–Parmar (RP) model, a parametric alternative to the Cox’s model, was
used to derive the prognostic model for overall survival and disease-free survival [23,24].
As the RP model estimates the baseline cumulative hazard function using restricted cu-
bic splines, it provides smooth estimates of the hazard and survival functions used to
extrapolate survival beyond the observed data. The number of degrees of freedom for the
baseline spline function was chosen based on the lowest Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC). The proportional hazard assumption was
tested graphically using Schoenfeld residuals. A multivariable fractional polynomial (MFP)
procedure was used to model continuous variables, including age at surgery and size of the
tumor [25]. All data analyses were performed using Stata version 16 (StataCorp, College
Station, TX, USA). The derivatives of the RP model and multivariable fractional polynomial
model were fitted using stpm2 and mfp packages, respectively. The mathematical details of
the RP model are described in Supplementary File S1.

2.3.1. Missing Data

A complete case analysis would have excluded up to 30% of the original dataset due
to missing values among the ten candidate predictors; multiple imputation with chained
equation (MICE) was used to handle these missing values [26]. The mi impute chained
command was used to generate missing values, and the mi estimate command was used to
combine estimated coefficients from each RP model of the imputed datasets. We generated
20 imputed datasets during the MICE procedure based on the percentage of the variable
with the highest missing values. Predictive mean matching was to impute the size of
the tumor, ordinal logit models for pathological staging and histological grade and logit
models for the rest of the binary predictors. The endpoint indicator and log of survival
time were included in the series of chained imputation equations. The models derived
from MICE were compared to the models derived from the complete-case analysis. If no
significant differences were observed, the models from the complete-case analysis would
be presented.

2.3.2. Model Performance

The model performance was assessed in terms of discrimination and calibration.
The discriminative ability assesses how well the model can distinguish between a person
with more prolonged survival and shorter survival. Two measures of discrimination were
selected. One is based on a concordance and another one on prognostic separation. Harrell’s
C discrimination index (C-statistic) is the concordance measure that quantifies the rank
between the predicted risk and the observed survival times [27]. Royston and Sauerbrei’s
D statistic (D-statistic and R2

D) were reported for prognostic separation measures [28].
D-statistic quantifies the observed separation between patients from low- and high-risk
groups, where these two equally sized groups are dichotomized at the median value of the
linear predictor of the proportional hazard model. Higher values of this statistic indicate
a more remarkable discriminative ability of the model. R2

D is a measure of explained
variation derived from the D-statistic.

The model calibration was evaluated with multiple measures, as follows: Firstly,
the calibration plot was visualized by contrasting the observed proportion of endpoints
(overall survival and disease-free survival) at a fixed time point of five years from surgery
against the expected probabilities estimated from the models in 10 risk groups. To generate
the ten risk categories, we estimated the linear predictors of each patient through statistical
modeling and split them at the 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th and 90th
centiles. Secondly, we plotted the predicted and observed survival curves in four risk
groups to assess the longitudinal calibration. Cut-offs at the 25th, 50th and 75th centiles
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were applied to the linear predictor for generating four risk categories. Lastly, we presented
the calibration slope. By regressing the observed survival outcomes on the predicted
prognostic index, the regression coefficient is the calibration slope, where the values of the
slope close to 1 suggest that the model is well-calibrated. Internal validity and optimism
of the model were assessed by the bootstrap resampling method with 1000 replications.
Optimism-corrected C-statistic, D-statistic, R2

D and calibration slope were calculated.

2.3.3. Model Presentation

The hazard ratio (HR) of each predictor was presented. The regression coefficient of
each predictor can be calculated by taking the natural logarithm of the hazard ratio. Baseline
overall and disease-free survival probabilities (S0) at 5 (S0(5)) and 10 (S0(10)) years after
surgery were also presented. The prognostic index (PI) can be calculated by multiplying
the value of each predictor by its coefficient and then summing all the numbers together.
The five-year or 10-year predicted survival probability is then calculated as S0(5)exp(PI)

or S0(10)exp(PI). The formula of how to calculate the predicted survival probability was
presented in Supplementary Table S1.

3. Results
3.1. Study Patients

During the study period, 2489 women diagnosed with breast cancer who underwent
surgical treatment were included. A total of 468 women were excluded (Figure 2). Of
these patients, 519 died, 69 had local recurrence and 194 had distant metastasis before
31 December 2016. A total of 590 events were considered in the disease-free survival model.
Of 2021 included cases, 1386 were available for a complete-case analysis. Regarding the
complete-case analyses, the number of events was 339 for the overall survival model and
384 for the disease-free survival model. According to the reverse Kaplan–Meier method,
the median follow-up time was six years for both the overall survival and the disease-free
survival. The overall survival and disease-free survival probabilities at five years after
surgical treatment were 77.9% and 74.0%, respectively.

Most of the patients were from the National Cancer Institute (41%). The mean age of
the patients was 50 years old. A large proportion of patients had an invasive ductal tumor
(95%), pathological stage II and III (85%), tumor histological grade II and III (80%), no
lymphovascular invasion (60%), positive nodes (58%), positive ER and PR status (61% and
51%) and negative HER-2 status (55%). In terms of treatment, 87% of patients underwent
a mastectomy, 84% received chemotherapy, 52% received hormonal therapy and 56%
received radiation therapy. The demographic and clinicopathologic characteristics of the
patient cohort are listed in Table 1.

Table 1. Demographic and clinicopathologic characteristics of the study patients.

Characteristics
Total 5-Year OS 5-Year DFS

n (%) (%) p-Value (%) p-Value

Cancer Hospital
Lampang 343 (17.0) 77.8 0.182 67.9 0.131
Udon Thani 350 (17.3) 77.1 76.6
Ubon Ratchathani 149 (7.4) 85.2 79.2
Surat Thani 115 (5.7) 80.9 73.9
Chonburi 231 (11.4) 78.0 77.5
NCI 833 (41.2) 76.5 73.6

Age at surgery (year, mean ± SD) 50.4 ± 10.6
<50 1020 (50.5) 80.5 0.001 77.0 <0.001
≥50 1001 (49.5) 75.2 71.0

Menopausal status
Premenopause 903 (44.7) 80.2 0.012 76.6 0.005
Postmenopause 996 (49.3) 75.4 71.2
Unknown 112 (6.0)
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Table 1. Cont.

Characteristics
Total 5-Year OS 5-Year DFS

n (%) (%) p-Value (%) p-Value

Pathological stage
I 286 (14.2) 91.3 <0.001 88.1 <0.001
II 979 (48.4) 84.9 80.8
III 744 (36.8) 63.8 60.0
Unknown 12 (0.6)

Histological type
Ductal 1915 (94.8) 77.7 0.140 73.7 0.107
Other types 106 (5.2) 82.1 79.3

Histological grade
I 277 (13.7) 85.2 <0.001 83.0 <0.001
II 955 (47.2) 80.0 75.5
III 652 (32.3) 72.2 68.7
Unknown 137 (6.8)

Tumor size (mm, mean ± SD) 32.7 ± 20.7
<30 1014 (50.2) 82.6 <0.001 79.1 <0.001
≥30 954 (47.2) 73.6 69.2
Unknown 53 (2.6)

LVI
Yes 684 (33.9) 70.0 <0.001 65.2 <0.001
No 1205 (59.6) 82.0 79.0
Unknown 132 (6.5)

Node
0 838 (41.5) 88.5 <0.001 85.7 <0.001
1–3 524 (25.9) 80.3 74.6
≥4 659 (32.6) 62.4 58.7

ER
Positive 1237 (61.2) 82.7 <0.001 78.6 <0.001
Negative 718 (35.5) 69.6 66.3
Unknown 66 (3.3)

PR
Positive 1026 (50.8) 84.1 <0.001 80.4 <0.001
Negative 925 (45.8) 71.1 67.2
Unknown 70 (3.4)

HER-2 status
Positive 687 (34.0) 74.5 0.001 69.6 0.001
Negative 1110 (54.9) 80.6 77.7
Unknown 224 (11.1)

Type of surgery
Mastectomy 1758 (87.0) 76.3 <0.001 72.6 <0.001
BCS 263 (13.0) 88.2 83.3

Chemotherapy
Yes 1696 (83.9) 78.1 0.685 74.2 0.645
No 325 (16.1) 76.9 72.9

Hormonal therapy
Yes 1053 (52.1) 85.5 <0.001 81.2 <0.001
No 900 (44.5) 69.8 66.2
Unknown 68 (3.4)

RT
Yes 1126 (55.7) 75.1 <0.001 70.3 <0.001
No 819 (40.5) 82.3 79.6
Unknown 76 (3.8)

Abbreviations: DFS, disease-free survival; ER, estrogen receptor; HER-2, human epidermal growth factor receptor
2; LVI, lymphovascular invasion; NCI, National Cancer Institute; OS, overall survival; PR, progesterone receptor;
RT, radiotherapy and BCS, breast conserving surgery.
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3.2. Flexible Parametric Survival Models

The final predictors of both the overall survival and disease-free survival models
are shown in Table 2. Pathological stage III, histological grade III, the presence of lym-
phovascular invasion and the greater number of positive lymph nodes were identified as
significant predictors in the disease-free survival models. The risk was significant reduced
with chemotherapy and hormonal therapy. The overall survival models also identified the
statistical significance of the same set of predictors, except for pathological stage III, histo-
logical grade III and the presence of lymphovascular invasion in the complete-case analysis
dataset. However, the direction and the magnitude of these nonsignificant coefficients were
not different from that of the other models. Overall, the patterns of association for each
predictor on the overall and disease-free survival were similar. The number of degrees of
freedom for the baseline spline function that have the lowest AIC and BIC for the overall
survival and disease-free survival models were degrees of freedom (df) = 2 (one interior
knot) and df = 3 (two interior knots), respectively. The distributions of baseline hazard
functions were shown in Supplementary Figure S1. The multiple imputation analyses gave
approximately the same results. No major violations of the proportional hazard assumption
were detected, and the continuous predictors (age and tumor size) were included in the
models as the linear functional forms.
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Table 2. Predictors and estimated hazard ratios from multivariable flexible parametric survival models.

Predictors

OS DFS

Complete-Case Multiple Imputation Complete-Case Multiple Imputation

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

Age at surgery (year) 1.00 (0.99, 1.01) 0.985 1.00 (0.99, 1.01) 0.829 1.00 (0.99, 1.01) 0.784 1.00 (0.99, 1.01) 0.563
Menopausal status

Premenopause 1 1 1 1
Postmenopause 1.18 (0.89, 1.57) 0.241 1.17 (0.92, 1.49) 0.204 1.16 (0.89, 1.52) 0.265 1.17 (0.93, 1.46) 0.174

Pathological stage
I 1 1 1 1
II 1.04 (0.62, 1.74) 0.880 1.38 (0.91, 2.10) 0.132 1.22 (0.75, 1.99) 0.417 1.35 (0.92, 1.98) 0.126
III 1.82 (0.97, 3.41) 0.064 2.02 (1.20, 3.38) 0.008 1.97 (1.08, 3.58) 0.026 1.97 (1.22, 3.18) 0.006

Histological type
Other types 1 1 1 1
Ductal 1.49 (0.66, 3.37) 0.335 0.99 (0.63, 1.56) 0.980 1.41 (0.66, 2.99) 0.374 1.02 (0.67,1.56) 0.920

Histological grade
I 1 1 1 1
II 1.19 (0.82, 1.73) 0.360 1.25 (0.92, 1.70) 0.159 1.41 (0.98, 2.02) 0.064 1.30 (0.97, 1.74) 0.078
III 1.37 (0.93, 2.01) 0.112 1.38 (1.00, 1.89) 0.048 1.53 (1.05, 2.23) 0.028 1.38 (1.02, 1.86) 0.038

Tumor size (mm) 1.00 (0.99, 1.01) 0.368 1.00 (0.99, 1.01) 0.565 1.00 (0.99, 1.01) 0.458 1.00 (0.99, 1.01) 0.696
LVI

No 1 1 1 1
Yes 1.23 (0.98, 1.54) 0.072 1.38 (1.14, 1.66) 0.001 1.28 (1.03, 1.58) 0.024 1.39 (1.17, 1.65) <0.001

Node
0 1 1 1 1
1–3 1.59 (1.11, 2.30) 0.013 1.51 (1.14, 2.00) 0.004 1.72 (1.23, 2.39) 0.001 1.60 (1.23, 2.07) <0.001
≥4 2.24 (1.40, 3.59) 0.001 2.20 (1.51, 3.20) <0.001 2.13 (1.38, 3.30) 0.001 1.99 (1.41, 2.82) <0.001

ER
Negative 1 1 1 1
Positive 0.89 (0.62, 1.29) 0.545 1.04 (0.77, 1.40) 0.792 0.90 (0.64, 1.27) 0.542 1.05 (0.78, 1.40) 0.753

PR
Negative 1 1 1 1
Positive 0.90 (0.65, 1.25) 0.537 0.75 (0.58, 0.97) 0.028 0.96 (0.71, 1.31) 0.819 0.79 (0.62, 1.00) 0.054

HER-2 status
Negative 1 1 1 1
Positive 1.07 (0.86, 1.34) 0.532 1.11 (0.91, 1.35) 0.307 1.10 (0.89, 1.36) 0.363 1.10 (0.91, 1.33) 0.332

Type of surgery
Mastectomy 1 1 1 1
BCS 0.78 (0.52, 1.17) 0.237 0.72 (0.51, 1.02) 0.061 0.82 (0.57, 1.19) 0.295 0.79 (0.59, 1.08) 0.140

Chemotherapy
No 1 1 1
Yes 0.64 (0.45, 0.93) 0.018 0.63 (0.49, 0.82) 0.001 0.56 (0.40, 0.79) 0.001 0.62 (0.48, 0.79) <0.001

Hormonal therapy
No 1 1 1 1
Yes 0.57 (0.42, 0.78) <0.001 0.62 (0.48, 0.80) <0.001 0.62 (0.46, 0.82) 0.001 0.63 (0.50, 0.81) <0.001

RT
No 1 1 1 1
Yes 0.98 (0.75, 1.27) 0.857 0.89 (0.72, 1.10) 0.277 1.01 (0.78, 1.29) 0.968 0.96 (0.79, 1.18) 0.717

5-year baseline OS = 89.3% DFS = 88.9%
10-year baseline OS = 81.8% DFS = 83.8%

Abbreviations: CI, confidence interval; DFS, disease-free survival; ER, estrogen receptor; HER-2, human epidermal growth factor receptor
2; HR, hazard ratio; LVI, lymphovascular invasion; OS, overall survival; PR, progesterone receptor and RT, radiotherapy. Significant
predictors are shown in bold.

3.2.1. Model Performance

For discrimination, the C-statistics for the complete-case and multiple imputation
analyses of the overall survival models were 0.72 and 0.71, respectively. The D-statistics
and R2

D were 1.246 and 0.27 for the complete-case analysis model and 1.219 and 0.26 for the
multiple imputation analysis model. Since the D-statistic is an estimate of the log hazard
ratio comparing two equal-sized prognostic groups, the D-statistic of 1.246 from the overall
survival model can be interpreted as the risk of death in a high-risk group and is 3.48 times
higher than the risk of death in a low-risk group. R2

D of 0.27 can be interpreted as 27%
of the variability explained by this model on the log relative hazard scale. Regarding the
disease-free survival models, the C-statistics for the complete-case and multiple imputation
analysis models were 0.70 and 0.69, respectively. The D-statistics and R2

D were 1.179 and
0.25 for the complete-case analysis model and 1.129 and 0.23 for the multiple imputation
analysis model.

The overall survival and disease-free survival models appeared to be well-calibrated,
according to the calibration plots comparing the predicted and the observed risks at the
five-year after surgical treatment (Figure 3). Both models slightly underestimated the
probability of events in the fourth risk quantile (Figure 4). The overall survival model
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minimally overestimated the probability of death in the second and the third risk quantiles.
The disease-free survival model also slightly overestimated the probability of events in the
second quantile.
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For the internal validation of the complete-case analysis models, the C-statistics
optimisms were 0.015 (95%CI 0.014–0.016) for the overall survival model and 0.015 (95%CI
0.014–0.016) for the disease-free survival model. The D-statistics and R2

D optimisms were
0.141 (95%CI 0.135–0.147) and 0.044 (95%CI 0.042–0.046) for the overall survival model
and 0.130 (95%CI 0.124–0.136) and 0.041 (95%CI 0.039–0.043) for the disease-free survival
model. The shrinkage factor for both the overall survival and disease-free survival models
was 0.90.

3.2.2. Model Presentation and Demonstration

For a demonstration of the model predictions, we present an example of nine patient
cases with specific combinations of predictors (Table 3). The predicted five-year overall
survival probabilities from the complete-case analysis were compared with the results from
the multiple imputation analysis and the estimates generated by the PREDICT and NPI
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models. The selection of these two models was based on their ability to provide survival
prediction at five years, while other models provide predictions at longer time-points
that were not within our interests (i.e., 10- and 15-year survivals). The predicted survival
probabilities from the complete-case analysis were comparable to the results from the
multiple imputation analysis. However, the PREDICT and NPI models estimates were
found to be much different from those of our models (Table 3).

Table 3. Predicted 5-year overall survival after surgery for nine systematically sampled patients using the complete-
case analysis model (CC), multiple-imputation analysis model (MI), PREDICT model and Nottingham prognostic index
(NPI) model.

Case Age Menopause Stage Pathology Grade Size LVI Node ER PR HER-2 Surgery
5-year OS (%)

CC MI PREDICT NPI

1 29 Pre- 1 Ductal 2 20 No 0 Pos Pos Neg Mastectomy 85.4 87.2 93.0 82.0
2 54 Pre- 2 Ductal 2 40 No 0 Neg Neg Neg Mastectomy 79.5 75.2 75.0 82.0
3 36 Pre- 2 Ductal 1 35 No 18 Neg Neg Neg BCS 73.3 72.9 65.0 82.0
4 47 Pre- 2 Ductal 3 30 Yes 2 Pos Pos Neg Mastectomy 68.5 63.9 79.0 37.0
5 56 Post- 2 Ductal 3 48 Yes 2 Pos Pos Neg Mastectomy 62.8 58.2 70.0 37.0
6 51 Pre- 3 Ductal 1 50 No 8 Pos Pos Neg Mastectomy 56.2 59.6 84.0 82.0
7 76 Post- 3 Ductal 2 22 No 34 Pos Pos Neg Mastectomy 46.4 47.0 48.0 72.0
8 49 Pre- 3 Ductal 3 45 No 11 Neg Neg Neg Mastectomy 38.1 40.3 26.0 37.0
9 33 Pre- 3 Ductal 2 150 Yes 17 Neg Neg Neg Mastectomy 27.8 28.4 1.0 37.0

Abbreviations: BCS, breast-conserving surgery; CC, complete-case analysis; ER, estrogen receptor; HER-2, human epidermal growth factor
receptor 2; LVI, lymphovascular invasion; MI, multiple imputation analysis; Neg, negative status; OS, overall survival; POS, positive status;
PR, progesterone receptor and RT, radiotherapy.

We also demonstrated the predicted overall survival probabilities for patients without
any adjuvant treatment after surgery and compared them with the predicted overall
survival probabilities if those patients were prescribed adjuvant treatment after surgery
(Table 4 and Figure 5). For predicting the survival probabilities without any adjuvant
therapy, regression coefficients of zeros were used for adjuvant treatment predictors (0
for chemotherapy, 0 for hormonal therapy and 0 for radiotherapy). For predicting the
survival probabilities if the patient received adjuvant therapy, the population proportions
of patients who received each adjuvant treatment were used as the values of each predictor
(0.839 for chemotherapy, 0.539 for hormonal therapy and 0.579 for radiotherapy). Then, the
regression coefficients of each adjuvant treatment from the model were used for predicting
the survival probabilities.

Table 4. Predicted 5-year and 10-year overall survival probabilities for nine systematically sampled patients without any
adjuvant treatment after surgery (No Rx) and the same patients with adjuvant treatment after surgery (Rx) using the
complete-case analysis models.

Case Age Menopause Stage Pathology Grade Size LVI Node ER PR HER-2 Surgery

5-year OS
(%)

10-year OS
(%)

No
Rx Rx No

Rx Rx

1 29 Pre- 1 Ductal 2 20 No 0 Pos Pos Neg Mastectomy 85.4 92.3 75.5 86.8
2 54 Pre- 2 Ductal 2 40 No 0 Neg Neg Neg Mastectomy 79.5 89.1 66.5 81.4
3 36 Pre- 2 Ductal 1 35 No 18 Neg Neg Neg BCS 73.3 85.5 57.5 75.6
4 47 Pre- 2 Ductal 3 30 Yes 2 Pos Pos Neg Mastectomy 68.5 82.6 51.0 71.2
5 56 Post- 2 Ductal 3 48 Yes 2 Pos Pos Neg Mastectomy 62.8 79.1 43.7 65.8
6 51 Pre- 3 Ductal 1 50 No 8 Pos Pos Neg Mastectomy 56.2 74.8 35.9 59.6
7 76 Post- 3 Ductal 2 22 No 34 Pos Pos Neg Mastectomy 46.4 67.9 25.5 50.2
8 49 Pre- 3 Ductal 3 45 No 11 Neg Neg Neg Mastectomy 38.1 61.4 17.9 42.0
9 33 Pre- 3 Ductal 2 150 Yes 17 Neg Neg Neg Mastectomy 27.8 52.4 10.2 31.6

Abbreviations: BCS, breast-conserving surgery; CC, complete-case analysis; ER, estrogen receptor; HER-2, human epidermal growth factor
receptor 2; LVI, lymphovascular invasion; MI, multiple imputation analysis; Neg, negative status; OS, overall survival; POS, positive status;
PR, progesterone receptor; RT, radiotherapy and Rx, adjuvant treatment after surgery.

For example, the estimated five-year overall survival probability after surgery without
any adjuvant treatment for a 56-year-old postmenopausal women diagnosed with 48-mm
ductal breast cancer with evidence of pathological stage II, tumor histological grade III, two
positive lymph nodes, lymphovascular invasion, positive ER and PR status and negative
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HER-2 status was 62.8%. If this patient were provided with adjuvant treatment, the
five-year survival probability is projected to be increased to 79.1%.
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4. Discussion

In this study, we derived an individual survival prediction model for Thai patients
with breast cancer from a hospital-based clinical cancer registry database of the Network
of National Cancer Institute of Thailand, entitled the Individualized Prediction of Breast
Cancer Survival model or the IPBS model. The IPBS model is able to predict both the
overall and the disease-free survival for patients with breast cancer at any time point after
their surgical treatment. In making a prediction, the IPBS model requires twelve routinely
available predictors in clinical practice: age at surgical treatment, menopausal status, patho-
logical staging, tumor type, histological grading, tumor size in millimeters, lymphovascular
invasion status, ER, PR and HER-2 status and type of surgical treatment. The IPBS model
carries an acceptable discriminative ability, is well-calibrated and is potentially useful as a
clinical tool to assist physicians in deciding whether adjuvant therapy is warranted in a
given situation. Moreover, the overall and disease-free survival can help provide clinicians
with a complete picture of the entire disease process.

Previous well-known prognostic models for the survival prediction of patients with
breast cancer such as NPI [9], Adjuvant! [10], BC Nomogram [11], OPTIONS [12], Cancer-
Math [13] and PREDICT [14] were developed from populations in European countries or
the United States. However, it was consistently reported that patients in Asian countries,
including Thailand, had significantly different clinicopathological features from Western
countries. For instance, in Thailand, patients with breast cancer were considerably younger
and were diagnosed with more advanced clinical staging [29–31]. Furthermore, Adjuvant!
and PREDICT, the most well-known prognostic models, performed less accurately in
patients from Asian countries, including Malaysia [16,18], South Korea [17], Taiwan [15]
and Thailand [20]. The differences in the case-mix and regression coefficients both account
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for the drop in external performance. A difference in the population case-mix might occur
because the study settings were different. For instance, when the model was developed in
a secondary care center and was subsequently validated in a tertiary care setting where the
distribution of predictors was often different. The regression coefficients could also be dif-
ferent owing to the clinical heterogeneity. When comparing the characteristics of the study
patients from our model to those of PREDICT, our patients were younger (age < 50 years,
50% vs. 23%) and had a larger size of tumor (size ≥ 3 cm, 47% vs. 20%), a greater number
of positive nodes (node > 4, 27% vs. 11%) and a lower proportion of them were ER-positive
(61% vs. 83%). A validation study of the PREDICT model in Thailand showed that, on
average, the model underestimated the five-year overall survival. A given example of
the predicted five-year overall survival probabilities from nine patient cases with specific
combinations of predictors demonstrated that the PREDICT and NPI models gave different
predictions compared to those from our model. For example, PREDICT overestimated the
five-year survival in case number 4 and case number 6 but underestimated the survival
in case number 8 and case number 9. The possible explanation for this discrepancy could
be the effect of the ER status, which was much higher in PREDICT. Therefore, the overes-
timation of survival was observed in ER-positive patients, and the underestimation was
seen in ER-negative patients. Moreover, some of our significant predictors (e.g., LVI and
stage) were not incorporated in PREDICT. Regarding NPI, only the tumor size, lymph node
status and tumor grade were used as predictors. In addition, the predicted five-year overall
survival probabilities were not for the individual patient but patients within the same
prognosis category. For instance, case numbers 1, 2, 3 and 6 were in the good prognosis
group, and case numbers 4, 5, 8 and 9 were in the poor prognosis group.

Many factors have been reported as the prognostic factors of patients with breast
cancer [32] and have been used as predictors to predict breast cancer outcomes by several
prognostic models over the years. For instance, NPI is based on the tumor size, histopatho-
logical grading and lymph node status [9]. Adjuvant! is based on the age at diagnosis,
tumor size, comorbidities, histopathological grading, number of involved lymph nodes
and ER [10]. PREDICT is also based on the same predictor variables as Adjuvant! but with
the addition of HER-2 and KI-67 [14,33,34]. A recent systematic review of the prognostic
models for breast cancer showed that the most commonly used predictors were the nodal
status, tumor size, histopathological tumor grading, age at diagnosis and ER status [35].
The IPBS model includes all twelve candidate predictors selected based on the clinical im-
portance, clinical availability and previous evidence. A full model approach was employed
to avoid the data-driven selection of predictors and avoid overfitting.

Most prognostic models for breast cancer patients were developed using Cox’s pro-
portional hazard regression [35]. However, the flexible parametric survival model or the
Royston–Parmar (RP) model used in this study has many advantages over the standard
Cox’s model [24], such as generating a smooth baseline hazard flexible enough to represent
the true hazard function adequately. The RP model can also give a smooth survival function
and extrapolate survival predictions beyond the actual follow-up time in the dataset. In
this study, our RP models can predict individual smooth OS and DFS probabilities at ten
years from the date of surgery. The IPBS model demonstrated good performance both in
terms of model calibration and discriminative ability.

In general, an overfitting problem often arises when too many prediction parameters
are incorporated into the models; however, only a small amount of optimism (the global
shrinkage factor of 0.9) was identified in our study. The minimal sample size for developing
the multivariable survival prediction models was generally based on three criteria, as
described by Riley et al. [36]. We estimated that a minimum of 698 cases and 172 events
were required for the OS model (events per predictor parameter (EPP) = 9), and a minimum
of 842 cases and 233 events were required for the DFS model (EPP = 11). For the complete-
case analysis models, the EPP for the OS and DFS models were 16 and 18, respectively.
Thus, the study size of 1386 cases in the complete-case analysis models was adequate for
the model development. Nonetheless, as missing data can lead to bias during the statistical
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modeling, the MICE procedure was performed [26]. As the results were comparable
for both approaches (i.e., complete-case analysis and multiple imputation analysis); the
regression coefficients and the baseline survival probabilities of the complete-case analysis
models were reported in order to be used for the external validation study.

In this study, we modeled the treatment “drop-in” or the starting of the adjunctive
treatment during the follow-up as a binary covariate. This approach is one of the seven
available methods to account for treatment use after the point of prediction when devel-
oping prognostic models [37]. Although a review showed that this approach produced
slightly higher-risk predictions [37], the purpose of including chemotherapy, hormonal
therapy and radiotherapy in the IPBS model was not to estimate the treatment effects
but to adjust for the adjuvant therapy in order to have the models capable of generating
predictions of the overall survival and disease-free survival based on the prognostic factors
only. We used the population proportions of patients who received each adjuvant treatment
as the values of each adjuvant therapy predictors to prognosticate patients who would be
given adjuvant treatment in order for physicians and patients to communicate the progno-
sis. It is helpful to bear in mind that the purpose of this study was not to demonstrate the
treatment benefit of each adjuvant therapy but to provide useful information on whether
adjuvant therapy should be initiated or not for each specific patient.

Despite the adequate study size and the rigorous statistical modeling, this study was
not without limitations. Firstly, an unavoidable limitation of this study, or any prognostic
model research in general, was an unavoidable time gap between data collection (i.e.,
during 2010–2011) and the time of model development and reporting (i.e., 2020–2021).
Some novel prognostic factors might be identified during this gap and should theoretically
be included in our model. For example, the data on Ki-67 [38], a specific proliferation-
related gene advocated as the marker of choice for measuring and monitoring tumor
proliferation, was not available when we were developing our models. In addition, the
prognosis of patients with breast cancer generally improved over time as the local therapies
and administration of systemic therapies has been enhanced. Secondly, the IPBS model was
composed of only clinicopathologic factors. Several biological factors are associated with
breast cancer prognosis, such as the urokinase plasminogen activator (uPA), plasminogen
activator inhibitor (PAI-1) [39] and cathepsin D (Cath-D) [40], and were omitted, as the
data were unavailable in our settings. In our future work, we will assess other potential
predictive factors and their effects on the performance of our model. These will include
new prognostic factors, details of treatments and comorbidity to update our prognostic
models of breast cancer patients. Another limitation was that, while our prognostic models
were valid for reproducibility (internal validity), our models have not yet been validated
against an external, independent dataset. Since we developed our models from specialized
hospital-based data, the aspect of generalizability (external validity) of our models for use
in other populations of breast cancer patients in Thailand should be concerned. Therefore,
where the interest lies in the model’s generalizability to other populations and settings,
external validation studies are required before our models can be implemented in clinical
practice. Finally, modern methods to account for the treatment used when developing the
prognostic model, such as the inverse probability of treatment weighing after censoring
(IPCW) or marginal structural modeling (MSM), should be used to reduce the bias in future
predictions [37]. The multistate modeling of the local recurrence, distant metastasis and
death may be used in the future to obtain highly personalized, dynamic predictions of the
outcomes in breast cancer patients.

5. Conclusions

A prognostic model for the individual prediction of overall and disease-free survivals
of Thai patients with early breast cancer who have undergone surgery, the IPBS model,
was developed using flexible parametric survival regression. The model includes twelve
routinely available predictors that were chosen based on a strong theoretical background
and clinical evidence. With a good predictive ability, the IPBS model is potentially useful
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for providing effective risk communication and information for making an appropriate
clinical decision regarding adjuvant therapy initiation for early breast cancer patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13071567/s1: Table S1: Predictors, scoring and formulas for calculating the overall and
disease-free survival probabilities, File S1: Royston–Parma model, Figure S1: Baseline hazard rates of
the overall survival and disease-free survival models estimated from different survival models.
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