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Simple Summary: Hepatocellular carcinoma (HCC) is among the most common cancer diseases
worldwide and has only limited treatment options at advanced disease stages. Activation of the
immune system with checkpoint inhibitors has revolutionized cancer medicine and has become
important also for HCC treatment. Here, we summarize the current status of immunotherapy options
for HCC and highlight how combination with locoregional therapies could improve the outcome of
patients. Novel pathways and targets for immunologic drug development are briefly discussed that
could help to increase the response rate of these approaches in HCC.

Abstract: Background: Hepatocellular carcinoma (HCC) still represents a human tumor entity
with very limited therapeutic options, especially for advanced stages. Here, immune checkpoint
modulating drugs alone or in combination with local ablative techniques could open a new and
attractive therapeutic “door” to improve outcome and response rate for patients with HCC. Methods:
Published data on HCC experimental to pre-(clinical) treatment strategies from standard of care to
novel immunomodulatory concepts were summarized and discussed in detail. Results: Overall,
our knowledge of the role of immune checkpoints in HCC is dramatically increased in the last
years. Experimental and pre-clinical findings could be translated to phase 1 and 2 clinical trials
and became standard of care. Local ablative techniques of HCC could improve the effectivity of
immune checkpoint inhibitors in situ. Conclusions: This review demonstrates the importance of
immunomodulatory treatment strategies of HCC, whereby the “best treatment code” of immune
checkpoint drugs, combination with ablative techniques and of timing must be evaluated in coming
clinical trials.

Keywords: hepatocellular carcinoma; immunotherapy; immune checkpoint inhibitors; locore-
gional treatment

1. Introduction

Liver cancer represents a considerable health issue due to an increasing incidence in
most regions worldwide. It accounts for about 840,000 new cases and 780,000 estimated
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deaths—ranking 6th by incidence and 4th by cancer-related mortality for both sexes [1-3].
A clear male preponderance (2-3 times higher, up to five times in some countries [3,4]) is
reflected by the age-standardized worldwide incidence rate of 13.9 and 4.9 per 100,000 male
and female inhabitants, respectively [2]. Both, incidence and mortality rates vary by
region mapping to the geographical distribution of viral hepatitis B/C (HBV/HCV) which
are the most important causes of chronic liver disease and HCC [3,5]: while the highest
numbers are found in eastern Asia with incidence/mortality rates of 17.7/16.0, respectively,
Europe records about 4.0-6.8 new cases and 3.8-5.3 deaths from liver cancer and North
America has about 6.6 new cases and 4.8 deaths per 100,000 inhabitants, for example [2].
These epidemiologic figures describe the situation for primary liver cancer which mainly
compromises cases with hepatocellular carcinoma (HCC, 75-85%), besides 10-15% cases of
intrahepatic cholangiocarcinoma as well as other rare tumors [1].

Figure 1 summarizes the main risk factors for development of HCC which include
HBYV, HCV, excessive alcohol consumption, metabolic syndrome, type-2 diabetes, obesity,
non-alcoholic fatty liver disease (NAFLD), aflatoxin B; (AFB;), tobacco, dietary factors
(coffee decreases while high iron intake increases the HCC risk), as well as individual
genetics (e.g., mutations in genes responsible for hemochromatosis, alpha-1-antitrypsin
deficiency, glycogen storage disease, porphyrias, tyrosinemia, and Wilson'’s disease) [3].
Accordingly, programs for prevention of HCC showed considerable efficiency, e.g., by
a 80%/92% reduction of HCC incidence/mortality after neonatal HBV vaccination in
Taiwan [6] and a 71% reduction of HCC risk by antiviral therapy achieving sustained
virological response (SVR, [7]).

As reviewed by others [5,8], surveillance for HCC is based on abdominal ultrasound
and includes patients with liver cirrhosis, chronic HBV carriers or HCV-infected subjects
with bridging fibrosis as well as patients with HCV infection and advanced fibrosis. Such
surveillance might be supplemented in future by liquid biopsy [8-10] or other blood tests
(e.g., GALAD score [11,12]). Currently, diagnosis of HCC is primarily based on imaging us-
ing computed tomography (CT) or magnetic resonance imaging (MRI) taking into account
the typical vascular characteristics of HCC [5,13]. While the formal pathological proof is not
mandatory for diagnosis of HCC, histopathological analyses by hematoxylin & eosin (H&E)
supplemented by specific immunohistochemical analysis (IHC) allows for discrimination
of HCC from benign or premalignant lesions (dysplastic nodules, hepatocellular adenoma,
focal nodular hyperplasia) or intrahepatic cholangiocarcinoma (ihCC), combined HCC/CC
and metastases of other primary tumors [5]. As summarized in Figure 1, confirmed cases
of HCC undergo staging for optimal patient stratification and decision on subsequent
therapeutic approaches: the most commonly used Barcelona Clinic Liver Cancer system
(BCLC) integrates tumor stage, liver function parameters, cancer-related symptoms and
performance status and classifies HCC patients into five categories (0, A-D) [14]. While
very early or early stage HCC (BCLC 0, A) patients are eligible for curative surgical treat-
ment (including liver transplantation) and locoregional ablation yielding survival times of
>5 years, BCLC B (intermediate stage) patients currently receive transarterial chemoemboli-
sation (TACE) associated with <2-5 years survival. Systemic treatment with multikinase
inhibitors (e.g., sorafenib) in patients at BCLC stage C (advanced) usually achieves survival
times of up to one year [14].
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Figure 1. HCC-Etiology, risk factors, diagnosis and staging-dependent current treatment. Based on [3,5,8,15]. Immunomodu-
latory treatments are highlighted bold and blue. Abbreviations: AFBy, aflatoxin B;; APHE, arterial phase hyperenhancement;
BCLC, Barcelona Clinic Liver Cancer; BT, brachytherapy; CT, computed tomography; EtOH, ethanol; H(B/C)V, hepatitis
B/C virus; H & E, hematoxylin & eosin; HCC, hepatocellular carcinoma; (ih)CC), (intrahepatic) cholangiocarcinoma; IHC,
immunohistochemistry; LTX, liver transplantation; MRI, magnetic resonance imaging; NAFLD, nonalcoholic fatty liver
disease; NASH, nonalcoholic steatohepatitis; SBRT, stereotactic body radiotherapy; SIRT, selective internal radiotherapy; T2
diabetes, type 2 diabetes; TACE, transarterial chemoembolisation.

In the subsequent sections, this review summarizes the use of immunomodulatory
agents for treatment of HCC—in particular, immune checkpoint inhibitors (ICIs). This subset
of membrane-bound molecules fine-tune the immune response by preventing continuous
T cell effector function after prior stimulation of antigen-specific T cells thus serving an
immunosuppressive function to prevent uncontrolled T cell responses [16]. In the context
of human cancer therapy, the currently most studied ICIs are PD1 (programmed cell death
protein 1), CTLA-4 (cytotoxic T lymphocyte protein 4), LAG-3 (lymphocyte activation
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gene 3 protein), and, TIM-3 (T cell immunoglobulin and mucin-domain containing)—for an
overview including the respective ligands, see also Figure 2.
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Figure 2. The most important immune checkpoints. Based on [16-22]. Abbreviations: APC, antigen-presenting cell; CTLA-4,

cytotoxic T lymphocyte protein 4; LAG-3, lymphocyte activation gene 3 protein; PD1, programmed cell death protein

1, PDL1/2, programmed cell death protein ligand 1/2; TIGIT, T cell immunoreceptor with immunoglobulin and ITIM

domains; TIM-3, T cell immunoglobulin and mucin-domain containing.

As discussed recently [23,24], HCC represents a tumor which could be especially
attractive for using immunomodulatory drugs because: (i) the liver itself covers important
immune functions by filtering infectious agents from the blood flow or from the gastroin-
testinal system and, therefore, is permanently exposed to various antigens requiring a
certain immune tolerability, and, (ii) HCC arises from typical inflammatory conditions
(cirrhosis, hepatitis, see above) and can thus be considered an inflammation-related cancer
with potential immunogenicity. The currently poor prognosis of HCC patients at advanced
stages requires continuous efforts in identifying specific and more effective anti-HCC
approaches. Here, the status of immunomodulatory drugs for treatment of HCC is dis-
cussed with special emphasis on currently available clinical data, possible combinations
with established systemic therapies and local-ablative techniques as well as an outlook on
possible future strategies.

2. Immunological Based Therapies in HCC
2.1. Established/Approved Immunotherapeutics in HCC
2.1.1. Established / Approved Immunotherapeutics in HCC

Treatment options in advanced HCC (BCLC C) have evolved rapidly over the last
3 years. After the implementation of the tyrosine kinase inhibitor (TKI) sorafenib in 2005
for advanced HCC [25], it took more than 10 years until levantinib was able to show
comparable efficacy and was approved for the treatment of HCC [26]. The established
first-line treatment options opened the possibility for second-line studies. After having
progressed during sorafenib, treatment with regorafenib and cabozantinib showed efficacy
in phase-III studies [27,28] and extended the use of TKI in HCC. Further treatment options
in second-line consist of the use of ramucirumab (IgG1 targeting the extracellular domain
of VEGEF receptor 2), the first monoclonal antibody that has been approved for the use in
HCC treatment [29]. The effect of ramucirumab was limited to those patients with elevated
AFP levels. With an AFP level of higher than 400 ng/mL, the first predictive biomarker was
introduced to the treatment of HCC. All those treatment options were in the pre-immune
checkpoint era and consisted of TKIs or monoclonal antibodies.

Early phase II studies investigating single agent use of immune-checkpoint inhibitors
showed encouraging results and let to the premature approval of pembrolizumab (target:
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PD-1). The results of the respective phase III studies (KEYNOTE-240 and CheckMate 459)
were disappointing. KEYNOTE-240 evaluated the efficacy of pembrolizumab in second
line compared to placebo. The primary endpoints, OS and PFS, were improved by the use
of pembrolizumab but did not meet their pre-specified statistical significance [30]. The use
of nivolumab (target: PD-1) compared to sorafenib in the first-line setting was investigated
in the CheckMate-459 study. The primary endpoint OS was not significantly improved [31]
but both studies showed a favorable safety profile proofing the feasibility and low toxicity
of immune checkpoint inhibitors in advanced HCC (aHCC).

The combination of immunecheckpoint inhibitors with anti-angiogenic substances or
TKI’s revealed surprisingly positive results. Within the ImBrave-150 study, atezolizumab
(target: PD-L1) was combined with bevacizumab (target: VEGF) and compared against
sorafenib in first-line treatment of aHCC [32]. With Hazard ratios of 0.59 and 0.58 respec-
tively, both, PFS and OS were statistically and clinically significantly improved. The use of
atezolizumab and bevacizumab has set the new standard for first-line treatment of aHCC
and recent data confirmed these preliminary data with a mPFS of 6.8 months and and ORR
of 27% vs. 4.3 months and 12%, respectively, for sorafenib [33]. Table 1 gives and overview
of the approved treatment options in HCC.

Table 1. Approved substances in the treatment of aHCC.

Substance

Year of Stud Comments
Approval y and Primary Endpoint

First-Line Options

Sorafenib

Levantinib

Atezolizumab + Bevacizumab

OS vs. placebo: 10.7 mo vs.
7.9 mo; (HR 0.69)
Non inferiority to sorafenib
2018 REFLECT 0S: 13.6 mo vs. 12.3 mo
(HR 0.92)
OS vs. sorafenib
2020 ImBrave-150 OS: not reached vs. 13.2 mo
(HR 0.58)

2005 SHARP

Second-Line Options

Regorafenib

Cabozantinib

Ramucirumab

After sorafenib first-line
vs. BSC
0OS: 10.6 mo vs. 7.8 mo
(HR 0.63)
After sorafenib first-line vs.
BSC
0S: 10.2 mo vs. 8.0 mo
(HR 0.76)
After sorafenib first-line
vs. BSC in patients with AFP
2019 REACH-2 >400 ng/mL
0OS: 8.5 mo vs. 7.3 mo
(HR 0.71)

2017 RESORCE

2019 CELESTIAL

AFP: alpha fetoprotein; aHCC: advanced hepatocellular carcinoma; BSC: best supportive care; HR: hazard ratio; OS: overall survival; mo:

months.

Ongoing studies evaluate the efficacy of double immunecheckpoint inhibition using
PD-L1 inhibition and CTLA4 inhibition. The NCT02519348 study has shown efficacy and
tolerability for the combination of tremelimumab (target: CTLA-4) and durvalumab (target:
PD-L1) [34].

2.1.2. Therapies with Immunologic Component

Locoregional therapy strategies (including transarterial embolization (TAE), transar-
terial chemoembolization (TACE), transarterial radioembolization (TARE), and ablative
therapies like radiofrequency or (RFA) and microwave ablation (MWA)) are now routinely
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used in the adjuvant and neoadjuvant treatment of hepatocellular carcinoma [35]. Besides
local therapeutic effects on tumor shrinkage, tumor necrosis and local reparative processes
in the liver, systemic effects are already recognized, although the clinical relevance of this
inflammatory response is not fully understood until now. Nevertheless, the increasing
immunotherapy options for HCC raise the question, how combination treatment strategies
could improve local ablative techniques and, vice versa, how those invasive procedures
could impact on immunotherapy approaches. Therefore, the following chapter will sum-
marize the known findings in animal studies and in patients as already recently reviewed
in detail [36].

The first ablative experiments were performed with a locoregional VX-2 rabbit model,
which served to establish the ablative techniques for clinical beginners and to investigate
experimentally the “therapeutic” effects [37]. The application of VX2 was criticized due
to following reasons: (i) the used VX2 tumor, an anaplastic squamous cell carcinoma
induced by papilloma virus is not and does not reflect the typical HCC morphological
and molecular phenotype; (ii) genetically heterogeneity between VX2 tumor specimen and
animal recipient raise the question of being an allograft, rather than an autograft-model
overall [36]. Therefore, animal models with spontaneous HCC development by treatment
with the toxin diethylnitrosamine or by woodchuck hepatitis virus infection should reflect
more the real immunological in situ situation than the “classical” VX2 tumor model [38]. A
meta-analysis revealed that carcinogen induced tumor models showed the best correlation
with clinical responses [39].

How does necrosis induce unspecific or even specific inflammatory response in these
experimental in vitro and in vivo settings? Interestingly, while apoptosis, but not necrosis,
was linked to the inflammatory reaction in vitro [40], the in vivo situation of the necrosis-
inflammation-axis is quite complex, since immunogenic and non-immunogenic cell death
is involved in this process [41]. Our own experiments with RFA in the VX2 model revealed
that the local tumor control was paralleled by a local and systemic inflammatory reaction
of activated T-cells [42]. The presented tumor antigens, released by tumor ablative tech-
niques, could induce a localized immune response and activate a heterogeneous systematic
immune response via antigen presenting cells like dendritic cells [43,44]. Additionally,
combination of tumor ablation with checkpoint inhibitors like anti-CTLA4 could enhance
anti-tumor immunity in vivo, too [45,46]. Consequently, the additional application of CpGs
could improve this effect [47].

Effects on the immune response were clinically investigated in different patients’
cohorts with HCC treated with different locoregional therapies like MWA, RFA, TACE
or radioembolization with Y90 alone or in combination (as summarized in Figure 3).
One major concern is linked to the fact, that the immune response is mostly analyzed
in peripheral blood and not in the primary targeted liver tissue, limiting essentially the
impact of such investigations. Furthermore, the immune outcome parameters are not
strictly the same ranging from immune cells and cytokines to tumor-associated antigens.
Lastly, transfer experiments of such “stimulated” immune cells and their cytokine and
tumor-associated antigen counterparts are missing as proof of principle. Nevertheless,
major findings of immune responses after locoregional treatment strategies of HCC are
described in brief:

(1) MWA induces T-cell activation and IL-12 release [48,49].

(2) The RFA associated T cell response is specific to thermally ablated HCC extracts [50]
and is also specific for tumor-associated antigens [51]. Furthermore, patients receiving
RFA showed reduced frequency of myeloid-derived suppressor cells, which inversely
correlates with tumor progression or relapse [52]. Treatment with RFA or TACE
induces glypican-3 peptide specific cytotoxic T-lymphocytes compared to surgical
resection which is a very interesting target for typical Glypican-3 overexpressing
HCCs [53].

(3) Treatment with TACE leads to a change in inflammatory cytokine towards a Th2
profile [54] and an enhancement of CD4+CD25+ regulatory T cells [55].
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(4) Radioembolization with Y90 leads to an increase in TNFA on CD4 and CDS cells
paralleled by an enhancement of antigen-presenting cells [56].
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Figure 3. Overview of known immune effects of locoregional therapies for HCC. The arrows indicate the up- or downreg-

ulation of the observed immune effects. Based on [48-56]. Abbreviations: Y, XYZ; HCC, hepatocellular carcinoma; IL,

interleukin; MDSC, myeloid-derived suppressor cells; MWA, microwave ablation; RFA, radiofrequency ablation; TACE,

transarterial chemoembolisation; TNF, tumor necrosis factor; Treg, regulatory T cell.

Finally, ongoing clinical trials investigated the combination of immune checkpoint
inhibitors and locoregional ablative therapeutic strategies: Greten et al. initiated a clinical
trial with 39 HCC patients who progressed after sorafinib therapy with a locoregional
therapy after tremelimumab treatment [36] and confirmed the median overall survival of
10.9 months with a one complete and seven partial response as seen in an earlier study [57].
The additional molecular analysis of the peripheral blood of these treated patients revealed
an increase of the PD1 expression on CD4+ and CD8+ T-cells.

Searching at the clinical trial registry (https://www.clinicaltrials.gov/ lastly accessed
on 15 February 2021) with the term “HCC” for the disease input box and “immunotherapy
and locoregional therapy” for other terms input box (last updated 3 February 2021) the
database query indicates only six recruiting clinical trials (see Table 2).

Due to the low number of studies and the heterogeneous study designs (different
locoregional interventions, different combination partners), a more structured analysis of
these strategies is needed in the future.

Taken together, there is evidence that tumor destruction via apoptosis and necrosis
could induce a local immune response via activation of T cells and dendritic cells and
via suppression of regulatory T cells and of myeloid-derived suppressor cells. This is
associated with a change of inflammatory cytokines, whereby specific agonist like CpGs or
antagonists like anti-CTL4 could enhance the anti-tumor immunity.

Under these circumstances, the clinical efficacy of immune modulation via checkpoint
inhibitors is essentially influenced by the baseline immune response and by triggering
pre-existing immunity, leading to the concept of “hot” and “cold” tumors on the basis of
level and spatial distribution of CD3+ and CD8+ T cell infiltration into the tumor [58,59].
The already mentioned response rate of e.g., atezolizumab and bevacizumab in HCC is
mostly comparable to a rate of “hot” HCC of about 20-30% [60,61]. Although this is in
line with results found in many other cancers, it is surprising for HCC since the liver
plays a central role in human immune regulation via the complex interaction of sinusoidal
endothelial cells and resident macrophages (Kupffer cells) with NK cells and different
CD4+/CD8+ T cell subsets and many HCCs develop on the basis of an underlying chronic
inflammatory process [62,63]. As recently discussed elsewhere, the main issue to overcome
the limitations of immunotherapy (alone or in combination) is to include the specific
immunogenicity of tumor cells in relation to immune escape mechanisms in HCC [60].
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Possible new treatment strategies for “cold” HCC could be based on intensive immune
priming (e.g., vaccines, adoptive cell therapy or oncolytic approaches) and modulation
(e.g., classical radiotherapy, chemotherapy and targeted therapy) to essentially enhance
response to checkpoint inhibitors [58] as also addressed in the following sections.

Table 2. Ongoing studies investigating the combination of locoregional therapies and immunotherapy.

Start Date NCT

Immuno-
Modulator

Local

Interventions Phase

Title

01/2020

05/2019

11/2019

09/2020

05/2019

05/2019

NCT04220944

NCT03753659

NCT04273100

NCT04518852

NCT03867084

NCT04268888

Combined locoregional treatment
with immunotherapy for
unresectable HCC.
IMMULAB-immunotherapy with
pembrolizumab in combination
with local ablation in
hepatocellular carcinoma (HCC)
PD-1 monoclonal antibody;,
lenvatinib and TACE in the
treatment of HCC
TACE, Sorafenib and PD-1
monoclonal antibody in the
treatment of HCC
dafety and efficacy of
pembrolizumab (MK-3475) versus
placebo as adjuvant therapy in
participants with hepatocellular
carcinoma (HCC) and complete
radiological response after
surgical resection or local ablation
(MK-3475-937 /KEYNOTE-937)
Nivolumab in combination with
TACE/TAE for patients with
intermediate stage HCC

MWA /TACE Sintilimab
RFA, MWA,

Brachytherapy,
TACE

Pembrolizumab

PD-1 mAb and

TACE lenvatinib

sorafenib and

TACE PD-1 mAb

Local ablation Pembrolizumab

TACE/TAE Nivolumab 2/3

HCC: hepatocellular carcinoma; MWA: microwave ablation; RFA: radiofrequency ablation; TACE: trans-arterial chemo-embolization; TAE:

trans-arterial embolization.

2.2. Future Options of HCC Linked Immunmodulation

As shown in Figure 2, currently approved immune checkpoint inhibitors reactivate T
cells by modulating the CTLA-4 or PD-1/PD-L1 signaling pathways. Interestingly, also
other immunosuppressive molecules like TIM3 or LAG3 were found to be significantly
increased in tumor-associated antigen specific HCC infiltrating CD8* lymphocytes and may
represent valuable targets for novel therapeutic approaches alone or in combination [64].
The general importance of T cell mediated anti-tumor effects has also been confirmed
by an increasing number of CAR T approaches in HCC, usually targeting glypican 3 or
AFP [65]. A recent report also demonstrated that hepatic FasL*CD11b*F4/80* monocyte-
derived macrophages can siphon activated CD8" T cells and contribute to limited efficacy
of immunotherapy [66]. In this section we will therefore expand the view also to myeloid
cells like macrophages NK cells as well as the above-mentioned T cell checkpoints TIM-3,
LAG-3 and TIGIT which have not yet been targeted in HCC.

2.2.1. TIM-3

T cell immunoglobulin and mucin domain 3 (TIM-3), alias hepatitis A virus cellular
receptor 2 (HAVCR?2)) is an immunosuppressive surface molecule that is expressed on T
cells, dendritic cells, NK cells, macrophages and also on HCC cells [67]. It is commonly
co-expressed with other immune checkpoint receptors like PD-1. Activation of TIM3
leads to immune exhaustion of CD8" T cells and its expression on CD4" regulatory T
cells (Treg) is associated with advanced tumor stage [68]. On macrophages, TIM-3 can
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stimulate the M2 polarization and promote tumor growth by increasing IL-6 secretion [69].
Not surprisingly, TIM-3 expression has thus been correlated to poor prognosis in various
human cancers, including HCC [70-72]. Four ligands binding to TIM-3 have so far been
identified: Galectin-9, phosphatidylserine, high-mobility group protein B1 (HGMB1) and
carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM-1) [73]. Galectin-9
is produced by numerous cells types, including B and T cells, macrophages, and dendritic
cells but also by epithelial cells, cancer cells and fibroblasts. In HCC, opposing effects
of Galectin-9 have been described that are not well understood so far: while it is able to
induce apoptosis in in vitro and in in vivo HCC models [74], it contributes to the immune
exhaustion in HBV-associated HCC in patients and is a predictor for poor prognosis [72].
Interestingly, high levels of Galectin-9 have also been linked to advanced stages of liver
fibrosis and cirrhosis in patients, underlining the connection between chronic inflammatory
liver damage, fibrosis and HCC [75].

Several inhibitors for TIM-3 signaling have been developed (Table 3) [68,73]. While
several compounds investigate TIM-3 blockade in various solid tumors, only one investiga-
tor sponsored study is specifically looking into HCC. Here, the anti-TIM-3 IgG4 antibody
cobolimab is used in combination with the anti-PD1 antibody dostarlimab (both manufac-
tured by Tesaro/GSK) in adult patients with BCLC stage B or C HCC and no prior systemic
therapy. The study is ongoing and no interim data have been reported so far.

Table 3. TIM-3 inhibitors in clinical development.

Compound Company Status/Comment
BMS-986258 BMS Pha§e 1 .in sol.id tumors in
combination with nivolumab
Cobolimab Tesaro/GSK Various Phase 1 studies ongoing
(TSR-022, GSK4069889) +PD-1 in HCC (NCT03680508)
INCAGNO02390 Incyte Phase 1 in solid tumors

PD-1/TIM-3 bispecific
Development stopped
PD-1/TIM-3 bispecific
Phase 1 in solid tumors
Sabatolimab (MBG 453) Novartis Only in hematologic malignancies
Phase 1 in combination with PD-1
and/or LAG-3 antibodies

LY3321367 Eli Lilly

RG7769 (RO7121661) Roche

Sym023 Symphogen

2.22. LAG-3

The lymphocyte activation gene 3 protein (LAG-3; CD223) is another strong suppres-
sor of T cell function. It is expressed on tumor infiltrating lymphocytes (CD4* and CD8* T
cells), Treg, NKT cells. B cells, NK cells, plasmacytoid dendritic cells (pDCs) and on tumor
associated macrophages (TAMs) [76]. It regulates the immune response by inhibiting the
proliferation and activation of T cells, by inducing Treg and by blocking T cell activation
from antigen presenting cells (APCs) [77]. LAG-3 is commonly co-expressed with PD-1
in T cell exhausted cancers and contributes to resistance to immune checkpoint inhibitor
therapy [78-80]. For LAG-3, too, four ligands have been identified today: major histocom-
patibility complex class II proteins (MHC-II) [81], liver sinusoidal endothelial cell lectin
(LSECtin) [82], Galectin-3 [83] and fibrinogen-like protein 1 (FGL-1) [84]. All ligands are
of relevance for HCC formation: while MHC-II is expressed on activated APCs (Kupffer
cells), the other ligands can be expressed by hepatocytes or sinusoidal endothelial cells
which also play a role in chronic liver damage, fibrotic remodeling, angiogenesis and tumor
formation [85-89]. LAG-3 expression has therefore also been associated to poor prognosis
in various human cancers including HCC [90,91].

Preclinical data indicated a strong anti-tumor efficacy of LAG-3 antagonists, esp. when
combined with anti-PD-1 agents [92-95]. Thus, about 15 large-molecule antagonists against
LAG-3 (either mono- or bispecific against PD-1) are currently investigated preclinically
or in early clinical studies (recently reviewed by Lecocq et al. [76]). Yet, single agent
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activity if those compounds was only limited and most trials now combine anti-LAG-3
with anti-PD-1 approaches. Currently, five studies investigating such approaches in HCC
are listed at clinicaltrials.gov (Table 4). So far, only the Phase 1 study for INCAGN02385
(NCTO03538028) is completed and enrolled a total of 22 patients across multiple solid tumor
indications, including HCC, but no data was reported so far. Specific studies for HCC are
only conducted with the IgG4 anti-LAG3 antibody relatlimab (BMS-986016) in combination
with nivolumab in either resectable (NCT04658147) or in immunotherapy naive patients
after failure of tyrosine kinase inhibitors (NCT04567615).

Table 4. LAG-3 inhibitors investigated in HCC.

Compound Company Combination N Phase NCT
INCAGN02385 Incyte 22 (advanced 1 NCT03538028
solid tumors)
Relatlimab BMS Nivolumab 20 1 NCT04658147
Relatlimab BMS Nivolumab 250 2 NCT04567615
122 (advanced
solid tumors, with
SRF388 Surface Oncology 1 = 40 HCC 1 NCT04374877
expansion arm)
XmAb®22841 Xencor Pembrolizumab 242 (advanced 1 NCTO03849469

solid tumors)

2.2.3. TIGIT

The T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) is ex-
pressed on activated NK and T cells, including CD4+ and CD8+ T cells, as well as Treg and
T helper cell populations under resting conditions to exert an immunosuppressive condi-
tion [96]. CD155 was identified as the main ligand, mainly expressed on DCs, macrophages,
B and T cells. CD112 (Nectin-2) and CD113 (Nectin-3) bind to TIGIT with lower affinity
and all three ligands can also be detected in the liver. TIGIT was found to be upregulated in
patients with advanced fibrosis [97] and in chronic viral hepatitis leading to HCC [98]. In
preclinical HCC models, TIGIT contributed to immunosuppressive effects and potentially
resistance to PD-1 treatment [99,100]. In clinical samples, TIGIT expression increased with
tumor dedifferentiation and with higher AFP expression [101].

Several monoclonal anti-TIGIT antibodies, usually IgG1 subtypes, are currently un-
dergoing early clinical testing (recently reviewed by Harjunpaa and Guillerey [96]). Most
compounds are tested in combination with anti-PD-1 or anti-PD-L1 antibodies but no
study is specifically investigating HCC yet. Recently, tiragolumab in combination with
atezolizumab received FDA breakthrough therapy designation for the first-line treatment
of metastatic non-small cell lung cancer with high PD-L1 expression and no mutations
in EGFR or ALK [102]. Further studies that also investigate HCC are expected. For other
compounds, e.g., vibostolimab (MK-7684), etigilimab (OMP-313M32), domvanalimab (AB-
154), BMS-986207, ASP8374 or BGB-A1217 are currently in Phase 1 studies in various solid
tumors with a focus on NSCLC.

2.2.4. B7-Hé6

The B7 receptor family (alias natural cytotoxicity triggering receptor 3 or NCR3,
Ligand 1) represents co-receptors to e.g., CTLA-4 or PD-1 [103]. B7-H6 is a ligand to the
activating receptor NKp30 on NK cells and thus contributes to their activation [104]. B7-H6
mediated activation of NK cells leads to cytokine release (IFN-g) and enhanced cytotoxicity.
Besides immunological effects, B7-H6 does also regulate intracellular signaling pathways,
esp. STAT3 signaling, which are associated with apoptosis inhibition and induction of cell
proliferation and therefore has a dual role in cancer cell growth [105,106].

While B7-H6 is usually not expressed in normal tissues, it is commonly found in
different human cancers like small cell lung cancer [107], esophageal squamous cell carci-
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noma [108], gliomas [109], ovarian cancer [110] or HCC [106,111], where it is associated
with poorer outcome. Unfortunately, no agents modulating B7-H6 signaling on tumor or
NK cells are currently available [112].

2.2.5. CD47-SIRPa

CD47 is broadly expressed on normal cells, including erythrocytes. It belongs to
the immunoglobulin superfamily and displays a “don’t eat me”-signal to macrophages
and other phagocytes. Binding of CDA47 to its receptor signal regulatory protein a (SIRPa)
on macrophages inhibits phagocytosis activation and can contribute to tumor forma-
tion [113,114]. CD47 is therefore overexpressed on various hematologic and solid tumors
to evade the cellular immune response, including HCC where it is also associated to poorer
outcome [21]. Consequently, blocking CD47-signaling inhibited growth of HCC models
and restored sensitivity to chemotherapy [115].

Activation of CD47 on tumor cells can also lead to caspase-independent cell death in-
duction, although the exact molecular mechanisms are still not completely understood [116].
Therapeutic approaches currently focus on inhibiting the CD47-SIRPa binding to activate
phagocytosis of cancer cells and several small and large molecule inhibitors are undergoing
clinical investigations. Small molecule inhibitors are currently in preclinical stage only and
have been recently reviewed elsewhere [117]. Table 5 gives an overview of large molecule
CD47 inhibitors in early clinical trials. None of these agents is specifically investigated
in HCC.

Table 5. Anti-CD47 antibodies in early clinical development.

Compound Company Status/Comment
AK117 Akeso Phase 1
ALX148 ALX Oncology Phase 2 combinations
AO-176 Arch Oncology Phase 1, combmahon with
paclitaxel
CC-90002
(INBRX103) Celgene Phase 1
HX009 Hanxbio Phase 1
1BI188 Innovent Biologics Phase 1
1BI322 Innovent Biologics Phase 1
IMC-002 ImmuneOncia Therapeutics Phase 1
Phase 3, received
. breakthrough therapy
?ﬁ?f;glgl_rgzk; Gilead designation for MDS, Phase
1b combination studies in
solid tumors
SGN-CD47M Seattle Genetics Terminated
SRF231 Surface Oncology Phase 1 completed
Z1.-1201 Zailab Phase 1

Recently, a Phase 1 study with the bi-functional SIRPa-Fc-CD40L antibody SL-172154
was initiated (NCT04406623). This agent targets CD47 on tumors and CD40 on antigen
presenting cells to enhance antigen presentation to T cells and to induce tumor cell killing.

2.2.6. Additional in-Silico-Analysis of HCC Linked Immunmodulation via TUMOR
Immune Estimation Resource (TIMER)

We performed an additional in silico analysis of TIM3, LAG3, TIGIT, B7-H6 and
CD47-SIRPa to explore the correlation of these markers of immunomodulation in situ by
using the online platform TIMER, which is based on 10,897 samples across 32 cancer types
from The Cancer Genome Atlas (TCGA) [118]. This included 363 primary HCC samples
with mainly male patient population (66%) of caucasian ethnicity (60%) showing mostly a
moderate differentiation (50%) and a relative homogenous UICC-stage distribution (Stage
139%, 11, 22%, 111 31% and IV 3%. missing 6%) as already published [61].
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We focused on the gene module of TIMER to investigate the correlation with the
tumor purity and the six tumor infiltration subsets of B cells, CD8+ T cells, CD4+ T cells,
macrophages, neutrophils and dendritic cells in HCC as presented in Figure 4.
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Figure 4. In silico analysis using TIMER with the gene module for markers of immune modulation TIM3, LAG3, TIGIT,
B7-H6 and CD47-SIRPa in HCC.

Overall, all markers of immunomodulation showed a negative correlation with the
tumor purity indicating that all markers are more found at the tumor border than in the
tumor center. Furthermore, all markers of immunomodulation were positively associ-
ated with B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic
cells in HCC, with a partial correlation factor reaching up to 0.725/0.764 for TIM3 and
macrophages/dendritic cell. This indicates a very strong association with tumor infiltrating
immune subsets in HCC, especially with antigen presenting cells.

This in silico analysis revealed two major patterns of correlation in dependency of
infiltration density of tumor infiltrating immune cells: immunomodulators like TIM3 and
TIGIT showed parallel increasing expression, while the immunomodulators LAG3, B7-H6
and CD47 displayed a heterogeneous expression pattern compared to the density of tumor
cells. Taken together, the in silico analysis indicates that the density of tumor infiltrating
immune cells like B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and den-
dritic cells is mostly paralled by the expression of selective markers of immunmodulation.
Therefore, the tumor compartments as well as the specific subsets of immune cells, too,
must be integrated in the evaluation as biomarkers for consecutive immune checkpoint
therapy in HCC.

3. Conclusions

In summary, the growing understanding and knowledge of carcinogenesis, diagnosis
and possible treatment strategies for patients with HCC did so far not essentially improve
the outcome of patients suffering from HCC, with 5-year survival rates of only about
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8% and high tumor recurrence rates after resection [119]. Consequently, investigating
alternative therapeutic strategies for HCC is an urgent necessity [65].

The development of immune checkpoint inhibitors like anti-CTLA4 (ipilimumab,
tremelimumab) or anti-PD-1/PD-L1 (nivolumab, pembrolizumab, tislelizumab, camre-
lizumab, atezolizumab, durvalumab, avelumab) antibodies has dramatically revolutionized
the field of clinical oncology leading to impressing treatment responses in different human
cancer types.

Results from recent clinical trials combining a checkpoint inhibitor with either multi-
tyrosine kinase inhibitors or angiogenesis inhibitors confirmed that HCC is an inflamed
(“hot”) tumor. The combination of atezolizumab and bevacizumab received approval for
1st line therapy. Still, the objective response rates of these combinations barely exceed 25 to
30%, indicate that further therapy optimization is needed.

Basic scientific investigations of HCC in vitro and in vivo, especially after locoregional
treatment, created evidence that therapeutic induction of apoptosis and/or necrosis leads
to significant changes of the immune cell repertoire and of immune modulating cytokines
in the liver and systemically in the whole human body/system. Consequently, the idea
was born to combine immune checkpoint inhibitors and locoregional treatments of HCC
to potentiate the local and systemic immune response. The first results of such clinical
trials gave encouraging signs on clinical endpoints like overall survival and response
rate. Nevertheless, this approach of immunotherapy in combination with locoregional
therapeutic approaches raised many “best” questions on the treatment modality, timing
and biomarkers which must be solved in the future: What treatment modality (locoregional
treatment and delivery mode of immunotherapy) is the best choice for maximal immune
triggering? Which and what timing of combination is the best for deep and long-time
tumor response of the HCC? Which biomarker is the best to indicate the most suitable
checkpoint inhibitor?

Taken all together, recent developments of immunomodulatory treatment strategies
alone or in combination will essentially change our therapeutic options for the HCC in
the future.
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