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Simple Summary: Anti-angiogenic therapies targeting the vascular endothelial growth factor (VEGF)
signaling are established in the arsenal of cancer treatments. Despite the expectations, their benefits
are temporary in cancer patients, partly due to the compensatory function of other angiogenic
growth factors. This review focuses on the role of basic fibroblast growth factor (bFGF), one of the
highly implicated players in the emergence of resistance to anti-angiogenic approaches. Here, we
summarize data from various tumor types where bFGF is upregulated after anti-angiogenic treatment,
the molecular mechanisms involved, and we highlight the current status and future perspectives of
multi-target anti-angiogenic drugs for cancer.

Abstract: Anti-angiogenic approaches targeting the vascular endothelial growth factor (VEGF)
signaling pathway have been a significant research focus during the past decades and are well
established in clinical practice. Despite the expectations, their benefit is ephemeral in several diseases,
including specific cancers. One of the most prominent side effects of the current, VEGF-based,
anti-angiogenic treatments remains the development of resistance, mostly due to the upregulation
and compensatory mechanisms of other growth factors, with the basic fibroblast growth factor (bFGF)
being at the top of the list. Over the past decade, several anti-angiogenic approaches targeting
simultaneously different growth factors and their signaling pathways have been developed and some
have reached the clinical practice. In the present review, we summarize the knowledge regarding
resistance mechanisms upon anti-angiogenic treatment, mainly focusing on bFGF. We discuss its role
in acquired resistance upon prolonged anti-angiogenic treatment in different tumor settings, outline
the reported resistance mechanisms leading to bFGF upregulation, and summarize the efforts and
outcome of combined anti-angiogenic approaches to date.
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1. Introduction

Angiogenesis is the formation of new blood vessels from preexisting ones [1]. It is the
outcome of a coordinated series of events, which takes place mostly during development
and in certain occasions during adulthood. Angiogenic activity is controlled by a dynamic
balance between growth factors and angiogenesis inhibitors. This balance is disrupted in a
series of diseases, where dysregulated angiogenesis is primarily responsible or augments
the progression of the disease [2]. Among the diseases where angiogenesis is abnormally
increased, thus requiring pharmaceutical intervention, is cancer. Therapeutic endeavors
against tumor angiogenesis are a field of intense scientific efforts since Judah Folkman'’s
visionary observation and pioneering work in the 1970s [3]. The boost in the angiogenesis
research field emerged a few years later with the isolation and identification of the two
best-known growth factors, vascular endothelial growth factor (VEGF) [4-7] and basic
fibroblast growth factor (bFGF or FGF2) [8], followed by the isolation of a series of heparin-
binding growth factors shortly after [3]. To date, VEGF’s isoforms and receptors have been
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the target for the majority of Food and Drug Administration-(FDA)-approved therapies
for tumor angiogenesis blockade [9]. Current anti-angiogenic therapies targeting VEGF
signaling pathways are classified as anti-VEGF monoclonal antibodies, VEGF-binding
proteins, and VEGEF receptor (VEGEFR) tyrosine kinase inhibitors (TKIs) [10].

Targeting the tumor microenvironment has been considered an attractive approach for
tumor therapy, because contrary to the very heterogeneous cancer cells, stromal cells are
considered relatively homogeneous [11]. Preclinical studies with anti-VEGF approaches
demonstrated promising results in tumor angiogenesis and permeability inhibition [12,13].
Shortly after, clinical trials with the anti-VEGF monoclonal antibody Bevacizumab as
monotherapy or combination therapy were initiated, highlighting the benefit of anti-
angiogenesis therapy as cancer treatment for many malignancies [14]. However, in most
cases this benefit was assessed in terms of disease-free survival and not overall survival.
Thus, with the exception of some indications, such as metastatic colorectal cancer, the final
outcome of clinical trials has not met the expectations [15-17]. Bevacizumab was FDA-
approved in February 2004 as a first line treatment for patients with metastatic carcinoma of
the colon and rectum (CRC) in combination with 5-fluorouracil-based chemotherapy, and
in 2006, it was approved as a second line treatment for patients with advanced or metastatic
CRC after irinotecan with 5-fluorouracil-based chemotherapy [18]. To date, more than ten
anti-angiogenic drugs, antibodies or tyrosine kinase inhibitors have been FDA-approved
for the treatment of a variety of cancers including glioblastoma, lung, colorectal, renal and
breast cancers [19]. However, despite the increasing number of anti-angiogenesis inhibitors
and the several years of clinical experience since the approval of bevacizumab, the response
to anti-VEGF therapies is still moderate and not outstanding. The reason is the ephemeral
effects of anti-angiogenic drugs with limited prolongation of overall survival, which is only
seen in some cancers [9].

There are several potential variants for the poor outcome of anti-angiogenic therapies
in clinical practice, such as the stage of the primary tumor, the level of vessel maturation,
differential VEGF expression, differentiated anti-angiogenic drug efficacy in the presence
of chemotherapy and the differential genetic identity of tumor endothelial cells, to name a
tew [9,16]. Apart from the VEGF family, several other growth factors either mediate distinct
functions of the angiogenic process or act synergistically [2]. One of the major reasons for
the limited outcome of anti-angiogenic therapies is “evasive resistance”, which refers to
the alternative pathways that are activated upon the blockade of a specific angiogenesis
pathway [20]. The outcome of evasive resistance, where the specific anti-angiogenic target
remains inhibited, is adaptive response, which differs from the traditional drug resistance
or intrinsic non-responsiveness, the other resistance mechanism, where the inhibition of
the anti-angiogenic target is not achieved due to mutational alteration of the target or
alterations in drug uptake and efflux [21].

Resistance to the VEGF/VEGER signaling inhibitors has been attributed to the acti-
vation of alternative pro-angiogenic signaling pathways in the tumor or tumor microen-
vironment. A variety of other cell types, such as bone marrow-derived cells, fibroblasts
and monocytes express a plethora of alternative angiogenic factors such as basic fibroblast
growth factor (bFGF), angiopoietins, platelet-derived growth factor (PDGF) and epidermal
growth factor (EGF), which can substitute for VEGE. Among these alternative growth fac-
tors, bFGF has been widely considered a major player in anti-angiogenic tumor resistance
mechanisms, with other growth factors to follow [11,16,21]. In this review, we will discuss
the role, preclinical, clinical evidence and molecular pathways triggered by bFGF-driven
resistance to anti-VEGF therapy.

2. Basic Fibroblast Growth Factor (bFGF): A Pro-Angiogenic Growth Factor

The FGF family in mammals consists of 18 secreted glycoproteins [22], which signal
through the FGF receptors (FGFRs). The FGFRs comprise four transmembrane receptor
tyrosine kinases FGFR1, FGFR2, FGFR3 and FGFR4 which get auto-phosphorylated upon
the binding of FGF members on different types of cells [23,24]. The extracellular domain of
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the FGFRs contains three immunoglobulin-like (Ig-like) domains, which present structural
variability and thus ligand binding specificity due to alternative splicing [25,26]. The role of
the FGF/FGFR family during development and adulthood is pivotal. During development
it regulates mesoderm patterning and organogenesis [27,28] and in adults it regulates
angiogenesis-related functions, such as wound healing [22]. Gain- or loss-of-function muta-
tions of the FGFR family are driving forces of several pathological conditions, highlighting
them as targets for pharmaceutical intervention [22]. In cancer, the FGF/FGFR family
regulates cellular proliferation, differentiation, apoptosis, angiogenesis and inflammation
through different mechanisms, including aberrant expression, mutation and gene amplifi-
cation [29-32]. The classical FGF signaling can be transduced by RAS/MAPK, PI3K/Akt,
Src tyrosine kinase and STAT pathways, which consist targets of current anti-cancer ap-
proaches [29,32,33].

Among the FGF family members, bFGF constitutes the prototypic and best char-
acterized pro-angiogenic factor. The expression of bFGEF is increased at sites of chronic
inflammation [34-36], after tissue injury [37], and in different types of human cancers [38].
Among the members of the FGF1 subfamily, FGF1 can bind all FGFRs whereas bFGF
has preference to the c isoforms of FGFR1, FGFR2 and FGFR3 [39,40]. Among the FGFRs,
FGFR1, FGFR3 and less frequently FGFR?2 are found in endothelial cells (ECs) with minimal
or no expression of FGFR4 [26,41]. Upon binding with its receptors on ECs, bFGF can di-
rectly promote angiogenesis in vitro and in vivo [22,42,43]. In vivo, bFGF is able to induce
neovascularization in a variety of animal models, such as the chick embryo chorioallantoic
membrane (CAM) assay, the rodent cornea assay, the subcutaneous matrigel plug assay in
mice, and the zebrafish yolk membrane assay [38,44]. bFGF can act on endothelial cells
via a paracrine mode of action released by tumor stromal and inflammatory cells and/or
by mobilization from the extracellular matrix (ECM). On the other hand, bFGF can also
be produced endogenously by ECs and induce angiogenesis via autocrine, intracrine or
paracrine manners [38,45]. However, bFGF deficiency, double FGF1 and bFGF deficiency,
as well as bFGF overexpression did not lead to lethality due to vascular defects, which can
be explained by the presence of compensatory mechanisms in the vascular system [22,38].

Several studies have confirmed the integration of angiogenesis and inflammation in
a number of physiological and pathological conditions, including cancer [46-49]. bFGF-
mediated angiogenesis can be promoted by inflammation [50]. Inflammatory cells can
express bFGF and inflammatory mediators can activate the endothelium to synthesize
and release bFGF, which in turn stimulates angiogenesis through an autocrine manner.
The inflammatory response can also increase bFGF production and release by causing
cell damage, fluid and plasma protein exudation, and hypoxia [51,52]. On the other
hand, bFGF can amplify the inflammatory and angiogenic response by interacting with
endothelial cells. Gene expression profiling has revealed a pro-inflammatory signature of
bFGF-stimulated murine microvascular endothelial cells characterized by the up-regulation
of pro-inflammatory cytokines/chemokines and their receptors, endothelial cell adhesion
molecules, and members of the eicosanoid pathway [51]. Macrophages are a source of bFGF
and express FGFRs. Monocytes/macrophages play a functional, non-redundant role in
bFGF-mediated angiogenesis revealed from early recruitment of mononuclear phagocytes
preceding blood vessel formation in bFGF-driven angiogenesis in the matrigel plug assay,
while in tumors, increased bFGF regulates macrophage polarization [51,53]. Apart from
the pro-inflammatory signature, bFGF also contributes to the increased expression of
a variety of pro-angiogenic growth factors in the endothelium, including itself, VEGF
and angiopoietin-2 (Ang2) [51,54-56]. Overall, bFGF contributes to the modulation of
the neovascularization process triggered by growth factors via activating an autocrine
loop of amplification of the angiogenic response and by paracrine activity exerted by
endothelium-derived cytokines/chemokines on inflammatory cells [57].



Cancers 2021, 13, 1422

40f18

3. bFGF in Cancer: A Prominent Resistance Mechanism upon Anti-Angiogenic Therapy

Targeting tumor-induced angiogenesis has mostly focused on the VEGEF signaling
pathway, and was implemented more than 15 years ago with the introduction of be-
vacizumab, a humanized, recombinant monoclonal antibody against VEGF-A [58]. By
binding to circulating, soluble VEGF-A, bevacizumab inhibits its interaction with VEGFR2
and the activation of the downstream signaling pathways. Thus, it provides anti-tumor
effectiveness by inhibiting angiogenesis and microvascular density, inducing the regression
of newly formed vessels. An important and more recent goal of antiangiogenic therapies is
vascular normalization. Normalizing the tumor vasculature renders the tumor susceptible
for anti-cancer therapy or immunotherapy [59,60]. Despite the encouraging preclinical data
for anti-VEGF therapy and the clinical success in other angiogenesis-related pathologies,
such as age-related macular degeneration [61], the clinical outcome in cancer treatments
did not meet the expectations. Bevacizumab has been approved since 2004 and is currently
marketed in 134 countries worldwide for a number of solid tumors [60], thus there is an
increasing number of studies denoting the upregulation of bFGF as an important resistance
mechanism, contributing to the ephemeral nature of anti-angiogenic results, important
examples of which we highlight below and are summarized in Table 1.

Table 1. Summary of clinical, preclinical and in vitro tumor studies demonstrating that anti-angiogenic inhibition induced

basic fibroblast growth factor (bFGF) expression. The cancer type, anti-angiogenic treatment, effect in bFGF expression and

observed outcomes of each study are presented. CD31: cluster of differentiation 31; SMA: smooth muscle actin; FGFR: FGF
receptors; MMPs: matrix metalloproteinases; SPARC: secreted protein acidic and rich in cysteine; TIMPs: tissue inhibitors of
metalloproteinases; PDGEF: platelet-derived growth factor; VEGF: vascular endothelial growth factor; RIP-Tag2: rat insulin

promoter-1 driven viral SV40 large T-antigen; HUVEC: human umbilical vein endothelial cells; PDGFR: platelet-derived

growth factor receptor.

Cancer Type Model Used Treatment Effect on bFGF Observed Outcomes References
1 Vessel density/no
. . difference
1 bFGF in pericytes, g .
Clinical Bevacizumab endothelial and T CD3I( )/Tsl\l\/ill\[}[g;) pericytes [62,63]
tumor cells 1 VEGFR1
J Akt
Glioblastoma 1 Vascularity, cell
Preclinical (U87) Bevacizumab 1 bFGF after 7 weeks proliferation [64]
1 HIF-2a, CA IX
1 Cell invasion
1 MMP-2, MMP-9, MMP-12
. . 1 bFGF in U87 and 1 Collagen IV, CXCL9 )
In vitro Bevacizumab NCS23 tumor cells 1 SPARC, TIMPS [64]
J Laminin, integrin (35,
MMP-1
- Sustained angiogenesis
Head and neck
squamous cell Preclinical (Tul38) Bevacizumab 1 bFGEF, FGFR1-3 T PLCg2, FZD4, CX3CL1 [30]
rcinom T ERK
carcmoma J Endothelial apoptosis
1+ TWIST
Clinical/ | FGFRP1 1 CYP2C19, TFF3, PLA2G2A
Preclinical (MKN45)/ Pazopanib (in vitro) } EGLN2, MIR590, [65]
In vitro J LCN2, TET1
M h 1 ph
Gastric cancer T Mesenchymal phenotype
Preclinical
(GXF97, MKN-45, 1 bFGF in
MKN-28, 4-15T, Bevacizumab bevacizumab- 1 Vessel density [66]
SC-08-JCK, cvacizuma resistant tumor 1 Tumor volume
SC-09-JCK, SCH, cells

SC-10-JCK, NCI-N87)
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Table 1. Cont.

Cancer Type Model Used Treatment Effect on bFGF Observed Outcomes References
Bevacizumab,
fluorouracil,
Clinical leucovorin, 1 Plasma bFGF levels 1 Resistance [67]
Col 1 . irinotecan
olorectal carcinoma (FLORFIRI+B)
VEGF 1 bFGF in endothelial
In vitro RNAiBevacizumab cells from colon 1 ANG1 [68]
tumors
| Vessel density
Pancreatic cancer Preclinical VEGFR2-blocking 1 bFGF in endothelial 1 Tumor hypoxia, HIF-1x [69]
creatic cance (RIP-Tag2 model) antibodies and tumor cells 1 FGF1, ANG1
1 EphAl, EphA2
Preclinical (H22)/ Potential bFGF .
Liver cancer In vitro (HUVEC, Sorafenib increase (higher T TP 113];’_ I(j[ LA-4, T}m—3 [70]
HEPG2) lenvatinib efficacy) expression
.. - 1 HGF, IL-6, IL-8
Clinical Sunitinib 1 Plasma bFGF levels + PDGF1, ANG1 [71,72]
Renal cell carcinoma T bFGF effi
. - efficacy, . .
In vitro (HUVEC) Sunitinib FGFR activation T Angiogenesis [73]
1 bFGF in
Preclinical adlpo;}e,z:;r}lliz?yt amer T1IL-6, IL-12, CXCL1, TNFo
(E0771, MCalV) Anti-VEGF antibody % bFGF in J Tumor vascglature [74]
. 1 Hypoxia
Breast cancer cancer-associated
fibroblasts
Preclinical Tet-regulated VEGF
(T-47D) expression 1 bFGF 1 Tumor growth [75]
J bFGF in J PDGFR
Cervical carcinoma Preclinical Imatinib cancer-associated 1 Angiogenesis [76]
fibroblasts | Epithelial proliferation
Prostate cancer Clinical VEGEF inhibitors T FC;FJ;EoGrIZR m T Angiogenic pathways [10,77]

3.1. Glioblastoma

Bevacizumab in combination with temozolomide has been approved for newly di-
agnosed and recurrent malignant glioma in the United States and other countries and
provides the clinically meaningful prolongation of progression-free survival (PFS) and non-
detrimental increase in overall survival (OS) [60,78]. In a case study, this treatment led to
dramatic but transient tumor reduction, and tumor analysis upon recurrence demonstrated
VEGEF signaling blockade but upregulation of matrix metalloproteinases (MMPs) and sus-
tained p44/42 phosphorylation, denoting the activation of compensatory mechanisms [62].
Immunohistochemical staining in four autopsied malignant gliomas showed increased pro-
liferation in CD31(-)/SMA(+) pericytes around tumor vessels after bevacizumab treatment
and no significant changes in the number of tumor vessels in initial and autopsied tumor
vessels before and after bevacizumab administration. VEGF-A was present in all tumors
at the initial surgery, but its expression was reduced after bevacizumab administration.
Interestingly, bFGF and PDGF expression was increased in the endothelial cells, pericytes
and tumor cells upon bevacizumab treatment, indicating that the inhibition of VEGF alone
is not sufficient to maintain the inhibition of neovascularization due to resistance by bFGF
and pericyte coverage by PDGF. The molecular mechanism of bFGF upregulation upon
bevacizumab treatment, although not delineated, was speculated to be a result of negative
feedback due to the continuous inhibition of the VEGF-driven angiogenic pathway [63].

In vitro, although bevacizumab was capable of sequestering the majority of the au-
tocrine secretion of the highly VEGF-expressing U87 glioblastoma and NCS23 glioma stem
cells, it induced invasion in a concentration dependent manner [64]. Moreover, it led to
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bFGF mRNA and protein upregulation in vitro and in vivo, which indicates the potential
of glioblastoma cells to escape from antiangiogenic treatment. Consistent with this pheno-
type, further upregulation of invasion-related proteins, such as matrix metalloproteinases
(MMP-2, MMP-9, MMP-12), secreted protein acidic and rich in cysteine (SPARC) and
tissue inhibitors of metalloproteinases (TIMPs), allowed the cancer cells to invade into
surrounding brain areas in the in vivo glioblastoma xenograft model. The upregulation of
bEGEF in the glioblastoma xenograft model was further responsible for the rapid increase
in vascularity and cellular proliferation, denoting resistance development after the long-
term antiangiogenic treatment. Mechanistically, bFGF upregulation was hypoxia-driven,
since the hypoxia markers hypoxia-inducible factor 2a (HIF-2a) and carbonic anhydrase
IX (CA IX) were also increased. In the U87 xenograft model, after short term (4 weeks)
VEGEF blockade, bFGF levels were not increased and microvessel density was significantly
reduced, but as VEGF blockade continued (7 weeks) bFGF levels increased, similar to the
in vitro study, along with microvessel density and tumor cell proliferation, indicating the
reactivation of angiogenesis [64].

3.2. Head and Neck Squamous Cell Carcinoma (HNSCC)

bFGF upregulation appears to be an important resistance mechanism upon beva-
cizumab treatment in head and neck squamous cell carcinoma (HNSCC). Through an
HNSCC xenograft model of acquired resistance to bevacizumab, it was demonstrated
that bevacizumab-resistant tumors maintained angiogenesis and prevented endothelial
apoptosis, despite the sequestration of VEGF. Whole genome microarray analysis revealed
the upregulation of angiogenesis-related genes including bFGF, FGFR1-3, PLCg2, FZD4,
CX3CL1 and CCLS5 in the bevacizumab-resistant tumor cells. The fact that bevacizumab
led to the overexpression of several members of the FGF/FGFR family, including bFGF
and FGFR1-3, as well as the activation of downstream signaling effectors including PLCg],
PLCg2, AKT and ERK, strengthens the involvement of the FGF axis in bevacizumab-
associated resistance in the HNSCC xenograft model. Co-targeting of the VEGF and FGF
pathways led to the restoration of sensitivity to anti-VEGF therapy in bevacizumab-resistant
tumors, demonstrating that the upregulation of FGF/FGFR autocrine signaling plays a
crucial role in circumventing VEGF inhibition in bevacizumab-resistant tumor cells [30].

3.3. Gastric Cancer

In human gastric cancer xenograft models, bFGF expression was proposed as a
biomarker for antitumor activity of bevacizumab. Refractory to bevacizumab treatment
models presented high bFGF levels and the VEGF/bFGF ratio provided a more accurate
correlation of sensitivity to bevacizumab, than VEGF expression itself [66]. Irrespective
from its role in the vascular system, the deregulation of the FGFR pathway, through point
mutations, gene fusions or ligand overexpression, has been recently considered an onco-
genic driver for gastrointestinal stromal tumors [79]. It was recently reported that the
higher response of MKN45 than SNUS gastric cancer cells to Pazopanib, a tyrosine kinase
inhibitor that targets VEGFR1-3, PDGFRe, 3, c-KIT, FGFR1-4 and CSF1R, was due to the
higher FGFR2 and FGFR3 expression. The sensitivity of MKN45 cells was higher in the
in vivo compared to the in vitro settings, which was attributed to the lower expression
of FGE-binding protein 1 (FGFBP1) in the in vitro setting. FGFBP1 mediates the release
of bFGF from the extracellular matrix, thus highlighting the FGF signaling as an impor-
tant mediator for pazopanib treatment. Although the MKIN45 xenografts were initially
responsive to pazopanib, they later transitioned to a mesenchymal-like phenotype, be-
coming more invasive and developing resistance, which led to tumor regrowth after drug
withdrawal [65].

3.4. Colorectal Carcinoma

The stimulating role of bFGF on colorectal carcinoma cell invasion is long estab-
lished [80]. Cytokine analysis in metastatic colorectal cancer patients undergoing a phase
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11 [67] clinical trial of bevacizumab and FLORFIRI+B treatment regimen revealed an incre-
ment of bFGF levels in the plasma of a subset of patient population during the emergence
of resistance. The FLORFIRI+B regimen contained bevacizumab, irinotecan, bolus fluo-
rouracil and leucovorin, followed by infusion of fluorouracil. Although the mean bFGF
levels decreased after one cycle of FLORFIRI+B, they increased before and at the time of
disease progression [67], indicating the participation of bFGF in resistance mechanisms.
VEGF downregulation in endothelial cells isolated from tumors of colon cancer patients
led to significant bFGF upregulation, further highlighting the impact of the tumor vascular
endothelium in bFGF-dependent compensatory mechanisms [68].

3.5. Pancreatic Cancer

In a murine model of islet cell carcinogenesis, qRT-PCR analysis from total tumor
mRNA revealed the upregulation of several FGF members, including bFGF, upon VEGFR2-
blocking treatment, which was further confirmed by ELISA. Although bFGF was upreg-
ulated both in tumor cells and tumor endothelial cells, expression of FGFR1 and FGFR2
was not affected in this model. The trigger for bFGF upregulation was the increased levels
of tumor hypoxia after VEGFR?2 inhibition, which was also confirmed in the RIP-Tag2
tumor-derived BTC3 cell line under hypoxia in vitro. In the same model, and contrary to
the in vivo data, the FGF1 levels remained unaffected [69].

3.6. Liver Cancer

Hepatocellular carcinoma is the most common type of liver cancer and occurs fre-
quently in patients with liver cirrhosis or chronic liver diseases. Anti-VEGF treatment
increases survival and is the standard-of-care for hepatocellular carcinoma (HCC), with
sorafenib (VEGFR2, PDGFR, Rafl inhibitor), lenvatinib (VEGFR, FGFR, c-Kit and RET
inhibitor) and regorafenib (VEGFR2, Tie2 inhibitor) being common treatments [81,82].
The plasma levels of VEGF and bFGF in hepatocellular carcinoma patients are increased
with the progression of the disease, upregulating PD-1 expression and inducing immune
suppression [70].

Tumor vessel normalization, a major goal of anti-angiogenic treatments, was achieved
in liver cancer with the combined inhibition of VEGFR and FGFR pathways. An elegant
study demonstrated that combined VEGFR and FGFR inhibition potentiated the efficacy of
anti-PD-1 treatment, inducing vessel normalization and antitumor efficacy [70].

3.7. Renal Cell Carcinoma

Renal cell carcinoma (RCC) is a highly vascularized tumor, thus tumor angiogenesis
plays a critical role in the development of metastatic RCC. Several anti-angiogenic drugs
have been approved for RCC treatment in the United States, including bevacizumab, suni-
tinib, pazopanib and sorafenib [19,83,84]. While angiogenesis targeting via VEGF blockade
is the standard of care in metastatic RCC, around 20% of the patients do not respond
to the treatment. For the rest, although they gain initial benefits from anti-angiogenic
therapy, they eventually develop resistance between 6 and 15 months of treatment, which
is attributed to revascularization, driven by the tumor microenvironment [85]. Sunitinib
treatment of RCC patients led to an increase in serum bFGF levels, irrespective of the
treatment outcome, although patients with no response to sunitinib presented higher bFGF
levels than the ones with a temporary clinical benefit or a better response [71]. These data
are consistent with previous clinical findings demonstrating that bFGF is responsible for
sunitinib resistance, indicating the necessity of targeting both VEGF and bFGF pathways
simultaneously [72,73]. Patients under anti-VEGF therapy can still present beneficial out-
come by a multi-kinase inhibitor, such as sorafenib. When sunitinib-resistant patients were
treated with sorafenib the overall survival was improved, revealing both the importance of
the proper timing and order of each targeted approach [72,86].
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3.8. Breast Cancer

In breast cancer cells, the role of VEGF is indispensable for the initial tumor growth,
but bFGF upregulation can compensate for the VEGF downregulation at later stages.
This was elegantly demonstrated by Tet-regulated VEGF expression in the T-47D breast
cancer cells. VEGF downregulation was detrimental for tumor inoculation or early tumor
growth, however, upon VEGF suppression at later stages, bFGF expression was upregulated
without affecting tumor growth. bFGF was not detectable in tumors of the same size
overexpressing VEGF during the entire experimental period [75].

Tumor growth directly depends on the tumor microenvironment, and obesity, as a
systemic condition associated with hypoxic adipose tissues, affects the tumor microenvi-
ronment, regulating tumor growth and outcome of anti-cancer therapeutic approaches.
It was recently shown that the plasma concentration of bFGF is higher in obese breast
cancer patients. Adipose tissue size inversely correlated with vascular density and bFGF
overexpression was particularly abundant in adipose-rich tissues based on the immunohis-
tochemical observation of human breast tumor samples from obese patients. Additionally,
obesity has been inversely correlated with the response to anti-VEGF treatment. Similarly,
the baseline bFGF levels were higher in untreated obese compared to untreated lean mice
and anti-VEGF treatment increased them further. bFGF overexpression was identified in
the adipocyte-rich tumor periphery and in activated cancer-associated fibroblasts, which is
consistent with bFGF localization in adipocyte-rich human breast cancer. In two syngeneic
breast cancer tumor models, it was demonstrated that tumors were less vascularized and
more hypoxic and anti-VEGF therapy was less potent in reducing vessel density in obese,
compared to lean mice. FGF receptor blockade with AZD4547, a pan-FGFR inhibitor,
improved tumor responsiveness to anti-VEGF treatment in obese mice, not in lean mice,
but showed toxicity [74]. Instead, metformin, a safe and popular anti-diabetic drug, pre-
viously shown to reduce cellular bFGF expression and with anti-cancer effect in obese
settings [87,88], reduced vessel density and re-sensitized to anti-VEGF therapy in obese
mice. Mechanistically, metformin treatment reduced bFGF mRNA and protein expression
and inhibited bFGF downstream signaling pathways, such as AKT, S6, ERK and STAT3 [74].

3.9. Cervical Carcinoma

The role of pericytes is equally important to the one of endothelial cells in angiogenesis,
as they provide survival signaling to endothelial cells and play an important functional
role in mediating blood flow and endothelial cell permeability [89]. Similarly, in tumors,
the inhibition of VEGF signaling leads to the reduction in immature (without pericyte
coverage) tumor microvasculature with an increase in the percentage of vessels with
pericyte coverage (mature vessels) [89,90]. The PDGF/PDGER signaling is the predominant
mediator of pericyte migration and proliferation [91]. bFGF shared the same expression
pattern with the PDGF receptor in stromal fibroblasts in a genetically engineered model of
cervical carcinogenesis and their expression was increased in cancer-associated fibroblasts
(CAFs), but not in other cell types. Moreover, bFGF was demonstrated to be a downstream
effector in PDGF signaling, as its expression was decreased upon treatment with the
selective PDGFR inhibitor imatinib in cervical carcinoma [76]. Therefore, bFGF plays a
key regulating role in PDGF-induced angiogenesis and in acquired resistance induced by
VEGF-targeted therapy [76,89].

3.10. Prostate Cancer

Prostate cancer is considered one of the resistant cancers to anti-angiogenic treatments
and one of the reported reasons is the involvement of the FGF-FGFR family in transfor-
mation and angiogenesis [10]. VEGF overexpression and microvessel density have been
associated with tumor growth, poor prognosis and increased metastatic potential. In phase
II clinical trials of castration-resistant advanced prostate cancer, anti-angiogenic therapy
improved relapsed-free survival and led to disease stabilization, whereas in phase III trials,
no significant outcome was identified in terms of overall survival. Instead, anti-angiogenic
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treatment caused increased toxicity and greater incidence of treatment-related death [92].
The trials included anti-VEGF antibodies, such as bevacizumab, decoy receptors, such
as aflibercept, as well as tyrosine kinase inhibitors, such as sunitinib (targeting VEGFR?2,
PDGEFRSB, c-Kit and RET) [77,92,93]. bFGEF, along with interleukin-6 (IL-6) are known con-
tributors of androgen ablation, chemotherapy resistance and metastatic dissemination of
prostate cancer cells. It was further shown that bFGF triggers IL-6 and prostate-specific
membrane antigen (PSMA) expression, markers of chronic inflammation and prostate can-
cer prostate cancer progression in advanced stages [94]. Finally, the high FGFR expression
levels of the prostate cancer cells have been taken into consideration for the design of tumor
cell- and tumor endothelial cell-specific liposomes for improved doxorubicin delivery, with
promising results [95,96].

4. Mechanisms of bFGF Release or Upregulation with Angiogenic Potential

The origin and release mechanisms of the bFGF pool driving angiogenesis has been
well-reported (Figure 1). Most of the endothelial-synthesized bFGF remains cell-associated,
however, a portion of the bFGF pool is sequestered in the subendothelial extracellular
matrix (ECM) for deposit [97]. Like the other FGFs, bFGF is a heparin-binding molecule,
bound to heparan sulfate, which constitutes more than 90% of the subendothelial ECM
glycosaminoglycan side chains and serves as a sink to concentrate and stabilize bFGF,
protecting it from degradative enzymes. The endothelial cells also synthesize secreted or
cell membrane- and extracellular matrix (ECM)-associated heparan sulfate proteoglycans
(HSPGs) [98,99]. HSPGs and heparan sulfate protect bFGF from thermal denaturation
and proteolytic degradation and further modulate bFGF activity. Moreover, bFGF binding
to HSPGs serves as a reservoir, from which FGFs can be released in response to specific
triggering events [98,100,101]. The interaction of bFGF with HSPG modulates FGF ac-
tivity by increasing its receptor binding affinity with the establishment of stable growth
factor-receptor complexes and the facilitation of FGFR dimerization with subsequent acti-
vation [102,103]. Release from the ECM storage takes place after injury, mild perturbation
of endothelial cells or release of proteases, further stimulating the autocrine proliferation
of adjacent endothelial cells and leading to angiogenesis [97,104]. One of the drivers of
diseases characterized by aberrant angiogenesis, such as choroidal neovascularization, is
the increased ECM cleavage and subsequent release of bFGF [105]. During tumor-induced
angiogenesis, the release of bFGF is partly regulated by the activity of tumor-derived
heparan sulfate-degrading enzymes, which release bFGF in the capillary basement mem-
brane [104,106].

One group of these enzymes are the MMPs, a family of soluble and membrane-
anchored proteolytic enzymes which can degrade components of ECM. It is well-established
that MMPs are important regulators of angiogenesis, as they break down matrix compo-
nents and thus clear the path for migrating ECs during angiogenesis. Additionally, MMPs
can also switch on angiogenesis by liberating matrix-bound bFGF [105,107,108]. MMP-2
expression has been correlated with the de novo formation of small capillaries in tumors.
Bevacizumab treatment led to increased expression and enzymatic activity of MMP-2 and
MMP-9, common metalloproteinases associated with neovascularization of tumors, in
glioblastoma cells both in vitro and in vivo [64,109]. Bevacizumab treatment also resulted
in the upregulation of bFGF and of the MMP inhibitors TIMP-1 and TIMP-2, as a potential
response to MMP upregulation in U87 and NSC23 glioblastoma cells, suggesting that
tumors can overcome anti-VEGF treatment via the release of bFGFs from ECM with the
help of MMPs, supporting an autocrine pattern of bFGF signal transduction that results in
neovascularization [64].
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Figure 1. Pathways of bFGF-induced compensation upon anti-VEGF treatment. Bevacizumab or
anti-VEGF treatment leads to vascular regression, inducing hypoxia in the surrounding tissues.
Hypoxia drives the expression of carbonic anhydrase IX and activates HIF-1A and HIF-2A, increasing
bEGF levels. Metformin treatment blocks bFGF mRNA and protein levels. A similar increase in bFGF
levels is achieved upon anti-VEGF treatment in cancer cells, via the upregulation of PLCg1,2, FDZ4
and CX3CL1 (ligand of CX3CR1) with a subsequent ERK activation. PDGFR activation in smooth
muscle cells leads to FGFR1 expression. HIF-2A activation induces the expression of MMP-2, -9 and
-12, releasing bFGF molecules via extracellular matrix (ECM) degradation.

There is an intimate, but well-characterized crosstalk between bFGF and the different
members of the VEGF family during angiogenesis, lymphangiogenesis and vasculogenesis.
Among the members of the VEGF family, VEGF-A /VEGFR2 appears to play a major role in
blood vessel angiogenesis and VEGF-C and VEGF-D are involved in lymphangiogenesis by
interacting with VEGFR3 [38,110,111]. Previous studies have the reported synergistic and
complementary activity of bFGF with VEGF and PDGF-BB [112-114]. bFEGF upregulates
PDGEFR expression to increase the responsiveness to PDGF-BB in endothelial cells and
PDGEF-BB-treated vascular smooth muscle cells may contribute to the increased respon-
siveness to bFGF by upregulating FGFR1 expression [114,115]. In turn, bFGF can also
contribute to the increased expression of other proangiogenic factors, highlighting the
complex compensatory mechanisms that regulate angiogenic processes and contributing
to resistance upon anti-VEGF treatment [11,69].

The most common and widely accepted mechanism of bFGF upregulation upon
VEGEF inhibition is related to the induction of tumor hypoxia. Antiangiogenic therapy in
different tumor types induces the elevation of hypoxia markers HIF-1A, HIF-2A and CA
IX, followed by increased bFGF expression [10,64]. In bevacizumab-resistant HNSCCs,
bFGF upregulation was mediated by ERK, which was induced due to higher expression of
upstream activator genes including phospholipase C (PLCg?2), frizzled receptor-4 (FDZ4),
chemokine C-X3-C motif (CX3CL1), and chemokine C-C motif ligand 5 (CCL5). This was
confirmed by the decreased activation of ERK and the corresponding decrease in bFGF
levels upon the downregulation of each of these genes [30].

5. Targeting Anti-VEGF Resistance: Combinatorial Therapies

As bFGF is a prominent factor in anti-VEGF therapy resistance, experimental evidence
suggests that targeting bFGF in addition to VEGF may provide synergistic outcome and
prove beneficial for the treatment of angiogenesis-related diseases, including cancer. Differ-
ent chemical structures and mechanisms of action of several bFGF inhibitors have been
described (Figure 2). One soluble pattern recognition receptor long-pentraxin-3 (PTX3),
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which binds with bFGF with high affinity and specificity, has been shown to antagonize
bFGF activity. This interaction leads to the inhibition of the angiogenic activity of bFGF, as
it can no longer bind with FGFRs, ultimately blocking bFGF-mediated tumor angiogenesis
and growth. PTX3 has a unique N-terminal extension which has been identified as a bFGF
binding domain. PTX3-derived synthetic peptides have shown significant anti-angiogenic
activity in vitro and in vivo, with potential implications in cancer therapy [57].
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(VEGFR1-3, PDGFRa,B, c-Kit)

Figure 2. Inhibitors targeting combination of angiogenesis pathways either blocking ligand interac-
tion (VF-Trap) or downstream signaling pathways. The parenthesis below each inhibitor highlight
the growth factor receptors targeted by each inhibitor.

Growing evidence suggests that the dual inhibition of VEGFR and FGFR in preclinical
models can overcome anti-VEGF therapy resistance. Pancreatic islet carcinogenesis was one
of the first models where the FGF family of ligands was identified to be among the primary
resistance mechanisms [69,89]. Treatment with an anti-VEGFR2-blocking monoclonal
antibody decreased the vascular density after 10 days in the RIP-Tag2 mouse model of islet
cell carcinogenesis. However, an angiogenic rebound in tumors at 4 weeks of treatment
was noted, which was associated with an increase in bFGF expression. The concomitant
blockade of VEGF signaling with the VEGFR2-blocking monoclonal antibody and FGF
signaling by adenovirus-delivered soluble form of FGFR2 (FGF-trap) significantly reduced
tumor burden and vessel density compared to the anti-VEGFR2 alone [69]. Co-targeting
VEGF by bevacizumab and FGFRs by the small molecule inhibitor PD173074 abrogated
tumor growth in the bevacizumab-resistant HNSCC xenograft model by inhibiting tumor
angiogenesis [30].

A novel chimeric decoy receptor VF-Trap fusion protein that binds both VEGF and
bFGF was developed by Li et al. to simultaneously block activity of both VEGF and
bFGF pathways and achieve an additive anti-tumor effect. In vitro, VE-trap blocked VEGEF-
and bFGF-induced vascular endothelial cell proliferation and migration, while in vivo,
combined VEGF and bFGF sequestration resulted in a significant inhibition of renal and
lung xenograft tumor growth compared to the single VEGF inhibition [116].

The efforts for the combined blockade of VEGF and FGF pathways have led to the de-
velopment of tyrosine kinase inhibitors, which unlike the antibodies, target the downstream
signaling pathways of VEGEF, FGF and other growth factors, with brivanib and E-3810 being
characteristic examples. Brivanib is a tyrosine kinase inhibitor that targets VEGFR2, FGFR1
and FGFR2 [117,118]. In preclinical studies, brivanib administration demonstrated encour-
aging results in different cancer models, but it mostly led to tumor inhibition rather than
tumor regression and its efficacy depended on endogenous bFGF expression [117,118]. In
the clinical setting, brivanib in combination with standard chemotherapy and monoclonal
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antibodies demonstrated moderate and manageable side effects and provided encouraging
results for hepatocellular carcinoma and colorectal cancer, increasing progression-free
survival [118]. Unfortunately, in a phase III clinical trial for unresectable hepatocellular car-
cinoma, brivanib in combination with chemotherapy failed to improve overall survival. In
fact, this multinational study was terminated earlier, when two other phase III studies with
brivanib on advanced HCC patients failed to meet their overall survival objectives [119].
Interestingly, in a recent case report, brivanib demonstrated excellent antitumor efficacy
for an HCC patient as second-line therapy, bringing up the possibility of a better clinical
outcome of brivanib after HCC resection, with long-term treatment and the delayed onset
of administration. Specifically, brivanib was administrated as a monotherapy to a patient
who had developed lung metastases one year after HCC resection, and after sorafenib treat-
ment for three months failed to hinder disease progression. A period of 2.5 months after
brivanib treatment, lung metastases decreased or disappeared and lymph node metastases
decreased, a trend that continued at later evaluations. The total duration of brivanib treat-
ment was 11 months due to grade 2 thrombocytopenia, but with tolerable side effects, and
4 months after the end of treatment the patient remained in good condition without signs
of deterioration. This could suggest that brivanib may be more effective with long-term
treatment in a delayed-onset fashion [120]. In a meta-analysis, the efficacy of brivanib in
combination with cetuximab and chemotherapy was found to be better than the efficacy
of the combination of cetuximab with chemotherapy or sorafenib with chemotherapy,
although it presented toxicity. The superiority of this combination could be explained due
the simultaneous inhibition of VEGF-induced angiogenesis in the endothelial cells with the
EGER signaling blockade in the tumor cells [121]. E3810 is a tyrosine kinase inhibitor that
targets VEGFR1, VEGFR2, VEGFR3, FGFR1 and FGFR2 and retrieves responses in tumors
that are not responsive to other small inhibitors, such as sunitinib. In preclinical studies,
E3810 showed tumor regression and significantly delayed tumor growth, although tumors
resumed their growth when treatment was suspended [122].

Sorafenib and sunitinib are other prominent members of this group, that have been
tested, shown to increase progression free survival in a variety of cancers and are FDA-
approved. Sorafenib targets VEGFR2, PDGFRf and Rafl kinase activity and sunitinib
targets VEGFR2, PDGFRp, c-Kit and RET [20]. Even these, however, have not increased
the overall survival significantly [16,20]. Similarly, nintedanib, a tyrosine kinase inhibitor
that blocks the VEGF, FGF and PDGF pathways has been approved for non-small-cell lung
cancer and recently for idiopathic pulmonary fibrosis [123-125], while pazopanib, a small
molecule multi-kinase inhibitor that blocks VEGEF, FGF, PDGF pathways and c-Kit and has
been approved for advanced soft-tissue sarcoma and renal cell carcinoma [126]. Orantinib
(SU6668) is another small molecule inhibitor that binds and inhibits the phosphorylation of
VEGFR2, FGFR1 and PDGFR-3, thus blocking the signal transduction of the corresponding
ligands. In vivo, it inhibited the growth of glioma, melanoma, lung, colon, ovarian and
epidermoid tumor xenografts and suppressed tumor angiogenesis, by inhibiting tumor
endothelial cell survival directly (apoptosis of endothelial and tumor cells) or via inhibition
of pericyte coverage [127,128]. In a phase III clinical trial of hepatocellular carcinoma,
orantinib increased the time to progression but did not improve the overall survival [129].
Lenvatinib, a VEGFR1-3, FGFR1-4, PDGFR«, c-Kit and RET inhibitor, is one of the six
approved systemic therapies for hepatocellular carcinoma, the most common form of liver
cancer [130,131].

In terms of tumor vessel normalization, the information existing regarding the efficacy
of these inhibitors is still limited. It was demonstrated that the effect of lenvatinib with
anti-PD-1 treatment was superior to the outcome of single sorafenib or FGFR treatment
and improved anti-cancer activity. This was due to inhibition of immunosuppressive
effects and the induction of vessel normalization, opening up the potential of combined
anti-angiogenic treatments and tumor vascular normalization for immunotherapy [70].
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6. Conclusions and Perspectives

The last few decades, intense scientific efforts on anti-angiogenic therapies have pro-
vided beneficial outcome in the clinical setting for some diseases, while they are still far
from the desired therapeutic outcome in others, including cancer. Contrary to the clas-
sical notion of vascular regression, the main goal of current anti-angiogenic treatments
is tumor vascular normalization and maturity, which provides increased tumor access
to chemotherapeutic drugs and higher efficacy of cancer immunotherapy. The variety of
cytokines and growth factors, the complexity of their signaling pathways and the interplay
and compensation among them have hindered the generation of potent therapies. Target-
ing several growth factors with combinatory therapies, downstream signaling adaptors,
where different growth factor pathways converge, important endothelial functions, such as
metabolism, and the induction of vascular normalization remain promising areas that drive
the common efforts towards novel anti-angiogenic therapies and cancer treatment. The
compensatory mechanisms triggered upon anti-angiogenic monotherapies have driven
the establishment of the current multitargeting anti-angiogenic inhibitors in the clinical
practice. The identification and potent inhibition of downstream kinases and key signaling
molecules where many angiogenic pathways converge could overcome current issues
driven by the diversity of angiogenic ligands and receptors and should be the focus of
future research. Moreover, the combination of current or future broad-spectrum anti-
angiogenic inhibitors with immunotherapy in different cancers bears high potential to
significantly advance the outcome of anticancer treatments and provides a promising field
for clinical research.
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