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Simple Summary: With the application of immunotherapy in patients with non-small-cell lung
cancer (NSCLC), we found that immunotherapy for some patients cannot achieve long-term effects.
Therefore, the purpose of this study is to explore the characteristics of these patients and make a
model that can effectively predict the prognosis of immunotherapy patients. The results of this study
will make it easier for clinicians to screen out NSCLC patients for immunotherapy.

Abstract: (1) Background: The immune checkpoint blockade (ICB) has shown promising efficacy in
non-small-cell lung cancer (NSCLC) patients with significant clinical benefits and durable responses,
but the overall response rate to ICBs is only 20%. The lack of responsiveness to ICBs is currently
a central problem in cancer immunotherapy. (2) Methods: Four public cohorts comprising 2986
patients with NSCLC were included in the study. We screened 158 patients with NSCLC with no
durable clinical benefit (NDB) to ICBs in the Rizvi cohort and identified NDB-related gene mutations
in these patients using univariate and multivariate Cox regression analyses. Programmed death-
ligand 1 (PD-L1) expression, tumor mutation burden (TMB), neoantigen load, tumor-infiltrating
lymphocytes, and immune-related gene expression were analyzed for identifying gene mutations. A
comprehensive predictive classifier model was also built to evaluate the efficacy of ICB therapy. (3)
Results: Mutations in FAT1 and KEAP1 were found to correlate with NDB in patients with NSCLC
to ICBs; however, the analysis suggested that only mutation in FAT1 was valuable in predicting
the efficacy of ICB therapy, and that mutation in KEAP1 acted as a prognostic but not a predictive
biomarker for NSCLC. Mutations in FAT1 were associated with a higher TMB and lower multiple
lymphocyte infiltration, including CD8 (T-Cell Surface Glycoprotein CD8)+ T cells. We established a
prognostic model according to PD-L1 expression, TMB, smoking status, treatment regimen, treatment
type, and FAT1 mutation, which indicated good accuracy by receiver operating characteristic (ROC)
analysis (area under the curve (AUC) for 6-months survival: 0.763; AUC for 12-months survival:
0.871). (4) Conclusions: Mutation in FAT1 may be a predictive biomarker in patients with NSCLC
who exhibit NDB to ICBs. We proposed an FAT1 mutation-based model for screening more suitable
NSCLC patients to receive ICBs that may contribute to individualized immunotherapy.

Keywords: non-small cell lung cancer; immunotherapy; KEAP1; FAT1; PD-1/PD-L1 inhibitors;
anti-PD1/PD-L1; anti-CTLA-4; no durable clinical benefit; NDB
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1. Introduction

Lung cancer is the most commonly diagnosed malignancy and the leading cause of
cancer-related deaths worldwide [1]. Non-small-cell lung cancer (NSCLC) accounts for
80-85% of all lung cancers [2], and targeted therapy is suitable only in a small propor-
tion of NSCLC patients with actionable driver gene mutations [3]. With the recent rapid
development in immunotherapy, immune checkpoint drugs—especially inhibitors of pro-
grammed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1)—have made
breakthroughs in the treatment of NSCLC, particularly in cases without targetable driver
mutations. A number of clinical trials have shown that immune checkpoint blockades
(ICBs) can benefit patients undergoing the first- and second-line treatment for advanced
NSCLC, consolidation treatment for locally advanced NSCLC, and neoadjuvant treatment
for early NSCLC [4,5].

The ICBs show promising efficacy in NSCLC patients with significant clinical benefits
and durable responses, but the overall response rate to anti PD-1/PD-L1 therapy is only
20-30% [4,5]. In particular, a heterogeneity of unique response pattern may be observed in
patients receiving ICBs, including pseudoprogression and hyperprogression. Pseudoprogres-
sion indicates that the tumor size or number of tumor lesions increases initially, followed by
a regression in tumor burden that would benefit the patients receiving ICBs treatment [6].
The lack of responsiveness to ICBs is currently a central problem in cancer immunotherapy.
Therefore, it is necessary to explore the characteristics of patients who do not benefit from
immunotherapy, to decrease medical costs, and allow individualized treatment.

Biomarkers such as PD-L1 expression [7,8], tumor mutation burden (TMB) [9], neoanti-
gen load [10], tumor infiltrating immune and stromal cells [11], and immune-regulatory
mRNA expression [12] may be suitable for clinical selection of patients receiving ICBs,
but the utility of each marker is limited. In the current study, we aimed to explore the
characteristics and underlying mechanisms of poor responsiveness in NSCLC patients who
have no durable clinical benefit (NDB) to treatment with ICBs through investigation of
public databases [13,14].

2. Materials and Methods
2.1. Data Sources

Whole-exome sequencing (WES) data of 1144 NSCLC cases from the Cancer Genome
Atlas (TCGA) cohort [14] was obtained through cBioPortal (http://www.cbioportal.org/,
accessed on 20 September 2020). The RNA-seq data of 515 LUAD and 501 LUSC were
downloaded from TCGA (https:/ /portal.gdc.cancer.gov/, accessed on 21 September 2020).
Additionally, we obtained the clinical data of the Zehir cohort [15] (n = 1567), Rizvi co-
hort [13] (1 = 240), and Naiyer cohort [16] (r = 35) from the Memorial Sloan Kettering Cancer
Center (MSKCC) using cBioPortal (http://www.cbioportal.org/, accessed on 20 September
2020). Detailed information for each cohort is shown in Table 1. The number of neoantigens
in the above-mentioned TCGA cohort was obtained from the Cancer Immunome Atlas
(https://tcia.at/home, accessed on 24 September 2020). Durable clinical benefit (DCB)
was defined as partial response/stable disease that lasted for >6 months. Patients with no
durable clinical benefit (NDB) were included in this study. The role of each cohort is shown
in Figure S1.
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Table 1. Clinical characteristics of the included cohorts.

- TCGA Cohort Rizvi Cohort # = 240 Naiyer Cohort  Zehir Cohort
Characteristic
n=1144 DCB NDB NA n=35 n = 1567
Male 673 (59%) 32 (13%) 79 (33%) 7 (3%) 16 (46%) 681 (43%)
Gender Female 468 (41%) 37 (15%) 79 (33%) 6 (3%) 19 (54%) 886 (57%)
Age >60 695 (71%) 39 (16%) 53 (22%) 12 (5%) 19 (54%) NA
<60 253 (26%) 30 (13%) 105 (44%) 1(0.4%) 16 (46%) NA
, Ever 976 (85%) 60 (26%) 123 (80%) 10 (4%) 30 (86%) 972 (62%)
Smoking Never 111 (10%) 9 (4%) 35 (20%) 3 (1%) 5 (14%) 334 (21%)
status Unknown 57 (5%) 0 0 0 0 261 (17%)
AD 660 (58%) 56 (23%) 124 (6%) 7 (3%) 30 (86%) 1268 (81%)
Histology sCC 484 (42%) 9 (4%) 22 (9%) 3 (1%) 4 (11%) 163 (10%)
Others 0 5 (2%) 12 (5%) 3 (1%) 1 (3%) 136 (9%)
[CBe PD1/PDL1 NA 53 (22%) 142 (59%) 11 (5%) 35 (100%) NA
Combination NA 16 (7%) 16 (7%) 2 (0.8%) 0 NA

2.2. Cox Proportional Hazards Models

We identified 158 patients with NSCLC from the Rizvi cohort who had no durable
clinical benefit (NDB) from immunotherapy. The NGS (next-generation sequencing) results
we obtained were processed level 3 data, and we extracted mutation data from MAF
(Mutation Annotation Format) files using Perl. The genes with high frequency mutation
(mutation ratio > 5%) were selected and analyzed by univariate Cox regression. Factors
with p < 0.2 were retained and corrected by multivariate Cox regression analysis (Table S1).
Finally, factors with p < 0.05 in multivariate Cox regression analysis were selected for further
study. Univariate Cox regression analysis was performed on the selected factors and some
common clinical indicators in the Rizvi cohort, such as age, gender, etc. (Table S2). The
factors for establishing a multivariate Cox regression model were determined. A calibration
curve of the nomogram was constructed for internal verification. The risk score was
calculated according to the regression coefficient. Patients were divided into low-risk and
high-risk score groups by median risk score. Another dataset, the Naiyer cohort, was used
as an external validation cohort to validate the model (Figure S2).

2.3. Propensity Score Matching and Survival Analysis

The “matchit” R package was used to match the Zehir cohort’s propensity score.
Matching was performed with the use of a 1:3 matching protocol. The patients were
divided into two groups by gene mutation or not, and then the baseline data of the two
groups were matched. “Survminer” R package was used to analyze the survival of the
matched patients, and a Kaplan-Meier plot was drawn.

2.4. Assessment of TMB

The TMB was defined as the number of somatic nonsynonymous variations, insertions,
and deletions in the examined coding regions of tumor tissues by whole exome sequencing
(WES) in TCGA cohort or next-generation sequencing (NGS) in the Rizvi cohort. In the Rizvi
cohort, 56 NSCLC samples underwent targeted NGS (i.e., integrated mutation profiling of
actionable cancer-related genes) with a customized panel of 341 genes, 164 samples were
analyzed with a panel of 410 genes, and 20 samples were analyzed with a panel of 468 genes.
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2.5. mRNA Expression Profiling Analysis

The response to ICBs is related to immune tumor microenvironments, including T-cell
effector, IFN(Interferon)-y-associated genes, T-cell receptors, and immune factors [17,18].
The associations between some gene mutations and relevant immune-regulatory mRNA
expression were analyzed in 1026 patients in TCGA, for whom both RNAseq and DNAseq
data were available. The immune gene list was mainly based on a published article that
summarized the genes related to activated T cells, immune cytolytic activity, and IFN-y
release [19]. A list of 47 immune-related genes is provided in Table S3.

2.6. Functional Enrichment Analysis

The “clusterProfiler” R package was utilized to perform Gene Set Enrichment Anal-
ysis (GSEA) to analyze the differences between the wild-type and FAT1/KEAP1 mu-
tation groups. FDR (False Discovery Rate) < 0.25 was considered statistically signif-
icant. XCell [20] cell type enrichment analysis from gene expression data for 64 im-
mune and stroma cell types in TCGA cohort was obtained through TIMER2.0 (http:
//timer.comp-genomics.org/, accessed on 20 September 2020).

2.7. Statistical Analyses

Analyses were performed using R version 3.6.2 (R Foundation for Statistical Com-
puting, Vienna, Austria). Package ggplot2, rms, foreign, survival ROC, and survival were
used for statistical and graphics analyses, and Package survival and Survminer were used
for survival analyses. An independent sample t-test was used for comparison between
two groups of samples, the Wilcoxon test was used for comparison between multiple
groups of samples, and Spearman correlation analysis was used to detect correlations. A
p-value < 0.05 was considered statistically significant.

3. Results
3.1. Clinical Characteristics of Cohorts

A total of four reported cohorts were included in this study. The baseline information
of the cohorts is shown in Table 1. In the Naiyer cohort, anti-PD-1 or anti-PD-L1 inhibitors
were administered in all the patients. In the Rizvi cohort, 206 and 34 NSCLC patients
were treated with anti-PD-1/PD-L1 and anti-PD-1/PD-L1 plus anti-CTLA-4, respectively
(Table 1). Additionally, there were 142 and 16 NSCLC patients who showed NDB after
treatment with anti-PD-1/PD-L1 and anti-PD1/PD-L1 plus anti-CTLA-4, respectively
(Table 1).

3.2. Identification of Immune NDB Related Genes

We used the Rizvi cohort to analyze NSCLC patients with NDB (n = 158). NDB refers
to progressive disease or partial response/stable disease that lasts for <6 months. The
genes with high mutation frequency (mutation ratio >5%) were selected and analyzed by
univariate Cox regression. Factors with p < 0.2 were retained and corrected by multivariate
Cox regression analysis. As shown in Figure 1A, mutations in KEAP1 and FAT1 were
significantly associated with a worse prognosis in NSCLC patients with NDB who received
ICBs, suggesting that these genes may be negative indicators or are involved in the primary
resistance to ICBs. Mutations in KEAP1, but not in FAT1, associate with a worse prognosis
in patients with NSCLC without immunotherapy (Figure 1B,C).
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Figure 1. (A) Cox propor
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tional hazard analysis to model association of mutations in KEAP1 and FAT1 with prognosis

in patients who showed no durable clinical benefit (NDB) to treatment with immune checkpoint blockade (ICB). (B) The

survival curve for OS (Overall Survival) according to the KEAP1 mutation status in the Zehir cohort. (C) The survival curve

for OS according to the FAT1 mutation status in the Zehir cohort.

3.3. Correlation of Immune Phenotypes in NSCLC with Mutations in KEAP1 and FAT1

To further explore the underlying mechanism of poor efficacy of ICBs in NSCLC
patients with mutations in KEAP1 and FAT1, TCGA cohort was used to compare the
differences in immune cell infiltration, neoantigens, TMB, PD-L1 expression, and immune-
regulatory mRNA expression between tumors harboring mutations in KEAP1 and FAT1,
and those with wild-type genes. The expression of PD-L1 in the KEAP1-mutant NSCLC
was significantly lower than that in KEAP1-wild-type NSCLC (p < 0.001, Figure 2A). The
TMB in NSCLC cases harboring mutations in both the genes was higher than that in
cases with wild-type genes (p < 0.001, Figure 2B). Moreover, we observed that the tumors
with mutation in KEAP1 exhibited more neoantigens than those with wild-type KEAP1
(p <0.001, Figure 2B). In terms of CD8+ T cells, cell infiltration in cases with NSCLC
harboring mutation in FAT1 was significantly lower than that in patients with wild-type
FAT1 (p = 0.005, Figure 2A). Mutations in FAT1 and KEAP1 generated several complex
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tumor antigens and higher TMB, but as the expression of many immune-related genes was
significantly lower, it may lead to immune escape or poor efficacy of ICBs.
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Figure 2. Correlation between gene mutation and status of common biological indicators in patients
treated with immune checkpoint blockade (ICB). (A) Left: mRNA expression of CD274, right: CD8+
T cell infiltration; (B) left: tumor mutation load, right: neoantigen load.

In NSCLC cases with mutation in KEAPI, the infiltration levels of eight immune-
related lymphocytes were lower, except those of common lymphoid progenitor cells and
Th2 (T helper 2) CD4 (T-Cell Surface Glycoprotein CD4)+ T cells, which were higher than
levels in cases with wild-type KEAP1 (Figure 3B). In NSCLC cases with mutation in FAT1,
the infiltration degree of seven types of immune-related cells was lower than that in cases
with wild-type FAT1 (Figure 3B).

Moreover, to investigate the correlation between mutations in KEAP1 and FAT1 and
the immune-regulatory mRNA expression signature, we analyzed 1026 samples with both
RNAseq and DNAseq data in TCGA. Gene set enrichment analysis was conducted between
the wild-type and FAT1/KEAP1 mutation groups. The analysis suggested that cases with
mutation in FAT1 had concomitant downregulation of several immune-related pathways,
including chemokine signaling pathway, antigen processing and presentation, natural
killer cell-mediated cytotoxicity, leukocyte transendothelial migration, T-cell receptor sig-
naling pathway, and B-cell receptor signaling pathway (Figure 4A). In cases with mutation
in KEAP1, several immune-related pathways were also deregulated, including antigen
processing and presentation, TGF-beta(Transforming Growth Factor-3) signaling pathway,
leukocyte transendothelial migration, T-cell receptor signaling pathway, B-cell receptor
signaling pathway, toll-like signaling pathway, and cytokine—cytokine receptor interaction
(Figure 4B).
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immune microenvironment genes (upper); status of immune cell infiltration induced by mutation in FAT1 (lower).
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Figure 4. Gene Set Enrichment Analysis (GSEA). (A) GSEA between the wild-type and FAT1 mutation groups. (B) GSEA
between the wild-type and KEAP1 mutation groups.

Furthermore, the NSCLC cases with mutation in FAT1 demonstrated lower levels of
the following gene clusters than those in cases with wild-type FAT1: immune checkpoint
(CTLA-4, Figure 3A); tumor immune microenvironment (IL6, Figure 3A); T-cell effector
and IFN-y-associated signatures (EOMES, GZMA, GZMB, IRF1, and TBX21; Figure 5A);
and T-cell receptor (TCR)-related genes (CD3G, CD3D, CD4, CD8A, CD74, GRAP2, IKZF3,
LCK, and TIGIT; Figure 5B). In contrast, in cases with mutation in KEAP1, some gene
clusters demonstrated lower levels of mRNA expression than that in cases with wild-
type KEAP], including immune checkpoint (CD274, CTLA-4, HAVCR2, PDCD1LG2, and
VTCNT1,; Figure 3A); tumor immune microenvironment (IL1B, IL12A, NT5E, PTGS2, TNF;
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Figure 3B); T-cell effector and IFN-y-associated signatures (CXCL9, CXCL10, CXCL11,
GZMA, GZMB, IFENG, IRF1, PMSB9, and TAP1; Figure 5A); and T-cell receptor (TCR)-
related genes (CCL5, CD3G, CD3D, CD4, CD74, GRAP2, IKZF3, IL2RB, LCK, and TIGIT;
Figure 5B).
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Figure 5. Expression of immune-regulatory genes. (A) T-cell effector and IFN-y-associated gene signatures; (B) T-cell
receptor (TCR)-related genes.

3.4. Integration of FAT1 Mutation and Clinical Indicators to Predict Prognosis after Treatment
with ICBs

We selected six variables, including PD-L1, TMB, smoking status, treatment regimen,
treatment type, and FAT1 mutation status by univariate Cox regression, that were used
to establish a prognostic model (Figure 6A). The receiver operating characteristic (ROC)
analysis indicated a good accuracy of this model (area under the curve (AUC) for 6-month
survival: 0.763; AUC for 12-month survival: 0.871; Figure 6B). Furthermore, the calibration
curve for the nomogram was constructed for internal verification (Figure 6D). The survival
analysis showed that the patients with low-risk factors had a better progression-free
survival (PFS) than those with high-risk factors (2.5 months vs. 7.5 months, p < 0.001,
hazards ratio (HR): 2.595, 95% confidence interval (CI): 1.586—4.245; Figure 6C). Moreover,
we used the Naiyer cohort as an external validation cohort to test the prognosis model.
The ROC curve suggested that this immune signature was highly consistent with the ideal
model (AUC for 6-month survival: 0.769; AUC for 12-month survival: 0.774; Figure 6E).
The survival analysis showed that the low-risk group had a better PFS (3.3 months vs.
8.3 months, p = 0.023, HR: 2.754, 95% CI: 1.066-7.114; Figure 6F).
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Figure 6. Construction of an integrated prognostic classifier model. (A) A nomogram based on PD-L1 expression, tumor

mutation burden (TMB), smoking status, treatment regimen, treatment type, and FAT1 mutation status in the Rizvi cohort.

(B) Receiver operating characteristic (ROC) curves for predicting progression-free survival (PFS) using the nomogram for

the Rizvi cohort. (C) The PFS curve with the nomogram for the Rizvi cohort. The risk score is calculated according to the

regression coefficient. According to the risk score, the cohort is divided into low-risk and high-risk score groups for Kaplan

Meier survival analysis. (D) Calibration plot of the nomogram to determine the probability of PFS at 6 months (right) and
12 months (left) in the Rizvi cohort. (E) ROC curves for predicting PFS of the nomogram in the Naiyer cohort. (F) The
survival curve for PFS with the nomogram according to the risk score in the Naiyer cohort.

4. Discussion

In this study, we identified mutations in NSCLC patients with NDB from treatment
with immune checkpoint blockade using several cohorts in public databases. The analyses
demonstrated that mutation in FAT1 could be used as a predictive indicator for efficacy
of ICBs, while mutation in KEAP1 acted as a prognostic but not predictive biomarker in
NSCLC patients receiving treatment with ICB. According to a previous study, TMB, PD-L1
expression, neoantigen, CD8+ T-cell infiltration, and immune-regulatory mRNA expression
may influence the efficacy of immunotherapy [21]. Therefore, to analyze the mechanism of
worst response to ICB in NSCLC patients with NDB, we systematically explored multiple
indicators related to immunophenotypes in patients with NSCLC harboring mutations in
KEAP1 and FAT], including TMB, PD-L1 expression, neoantigen, immune cell infiltration,
and immune-regulatory mRNA expression. We found that NSCLC cases with mutation
in KEAP1 had lower PD-L1 expression than those with wild-type KEAP1. Cases with
mutations in KEAP1 and FAT1 tended to have higher TMB and neoantigen loads but a
lower expression of immune-related genes and tumor-infiltrating CD8+ cells than cases
with wild-type genes. The lack of CD8+ T-cell infiltration and low expression of immune-
related pathway genes could have led to the poor therapeutic effect of immunotherapy.
Therefore, patients with NSCLC should be cautiously treated with ICB.

In the study of H. Rizvi et al. [13], they reported that STK11 mutations were signif-
icantly clustered in NDB patients compared to the DCB patients. They also found that
the elevation of TMB would result in a higher probability of DCB, suggesting that STK11
mutations, and a low TMB, could be a potential cause of NDB. However, in our study, we
analyzed the mutations of genes with high mutation frequency (mutation rate >5%) in NDB
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patients and found that STK11 mutation has no significant relationship with the prognosis
of NSCLC patients with NDB who received ICBs. We only found that KEAP1 and FAT1
were significantly associated with a worse prognosis in NSCLC patients with NDB who
received ICBs, suggesting that these genes may be negative indicators or are involved
in the primary resistance to ICBs. However, further analysis indicated that mutations in
KEAP1, but not in FAT1, associate with a worse prognosis in patients with NSCLC without
immunotherapy in our study. These data confirmed the report from 2020 ESMO Open
that KEAP1, as well as the STK11, were the prognostic but not predictive biomarkers of
immunotherapy or chemotherapy in NSCLC. In the study of Naiyer Rizvi et al. [16], they
also reported that TMB would result in a higher probability of DCB, suggesting that a low
TMB could be a potential cause of NDB. This is similar to the study of H. Rizvi et al. In our
study, our purpose is to explore the potential causes of worse prognosis in patients with
NDB. Therefore, the subjects of our study are the NDB patients. This is different from the
studies of H. Rizvi et al. and Naiyer Rizvi et al. Skoulidis et al. [22] reported comparable
findings that patients with NSCLC harboring mutation in KEAP1 had a shorter PFS and
overall survival (OS) than those without mutation in KEAP1. Further analysis revealed
that there was no enhanced clinical benefit in patients with mutations in KEAP1 receiving
immunotherapy and chemotherapy than those receiving chemotherapy alone [23]. This
indicated that mutation in KEAP1 was a prognostic biomarker in NSCLC regardless of the
type of treatment administered, although it could not predict the efficacy of immunother-
apy. However, a recent study suggested that FAT1-mutated NSCLC exhibited a more
durable clinical benefit and better objective response rate to anti-PD-L1 therapy [24], which
is inconsistent with analysis in the current study. This discrepancy may be ascribed to the
different patient populations in the current and previous studies. We focused on NSCLC
with NDB to ICBs, while previous studies recruited all patients with NSCLC receiving
ICBs. Moreover, a recent study proposed that deletion of FAT1 may cause upregulated
EMT (Epithelial Mesenchymal Transition) status, tumor stemness, and metastatic ability in
lung squamous cell carcinoma [25]. This may also explain the poor efficacy of NSCLC to
ICB treatments.

Using the Cox regression analysis, we confirmed that FAT1 had a significant predictive
effect for ICB treatment in patients with NSCLC. Therefore, we integrated PD-L1 expression,
TMB, smoking status, treatment regimen, treatment type, and FAT1 mutation status to
establish a clinical prognostic model for ICB treatment, which was further validated using
another independent cohort. Furthermore, a nomogram was constructed based on this
multivariate Cox regression model. This predictive model showed that the AUC for 12-
month ROC curve was 0.871, indicating very good accuracy of the model for predicting
long-term PFS. The median of the risk scores calculated from the risk coefficients of this
model divided the population into low-risk and high-risk groups, and patients in the low-
risk group had a significantly longer PFS than those in high-risk group. This nomogram
could help clinicians predict the efficacy of ICBs for the treatment of NSCLC.

However, this study has some limitations. First, as a retrospective study based on
public databases, some information such as performance status, treatments prior to ICB,
and rescue treatment after disease progression are unavailable, which may cause study
bias. Second, the sample size of the included cohorts was relatively small. Finally, not all
gene mutations were involved in the analysis because the gene panel was analyzed by
targeted NGS rather than WES, and we only focused on high-frequency gene mutations
(more than 5%) according to the previous study.

5. Conclusions

In conclusion, mutation in FAT1 may be a potential biomarker in NSCLC patients
who exhibit NDB to ICB. We propose an FAT1 mutation-based model for screening NSCLC
patients who may benefit from treatment with ICB, which may contribute to individual-
ized immunotherapy.



Cancers 2021, 13, 1397 11 of 12

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2072-669
4/13/6/1397/s1, Figure S1: Flow chart of the study, Figure S2: Flow chart of clinical prognosis model
for immune checkpoint blockade (ICB), Table S1: List of immune-related genes, Table S2: Univariate
Cox regression analysis to identify mutation in genes that may be related to worse prognosis in
patients with NDB, Table S3: Univariate Cox regression analysis to identify the prognostic factors
of ICBs.

Author Contributions: Conceptualization, G.Z. and D.R.; methodology, X.L.; software, X.L.; valida-
tion, S.Z., R.S., and N.Z.; formal analysis, D.R.; investigation, L.Z.; resources, G.Z.; data curation,
G.Z.; writing—original draft preparation, G.Z.; writing—review and editing S.X.; visualization, J.C.;
supervision, R.A.D.M.; project administration, S.X.; funding acquisition, S.X., J.C. All authors have
read and agreed to the published version of the manuscript. Please turn to the CRediT taxonomy for
term explanations.

Funding: This study was funded by the National Natural Science Foundation of China (No. 81772464
and No.82072595) and the Tianjin Science and Technology Plan Project (19ZXDBSY00060).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The Zehir cohort, Rizvi cohort, and Naiyer cohort can be obtained
from cBioPortal (http:/ /www.cbioportal.org/, accessed on 20 September 2020). TCGA cohort can be
downloaded from the Cancer Genome Atlas (https://portal.gdc.cancer.gov/repository, accessed on
21 September 2020). The data of neoantigens in TCGA cohort can be downloaded from the Cancer
Immunome Atlas (https://tcia.at/home, accessed on 24 September 2020).

Conflicts of Interest: There are no conflict of interest.

References

1.  Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA A Cancer J. Clin. 2021, 71, 7-33. [CrossRef] [PubMed]

2. Sher, T,; Dy, GK,; Adjei, A.A. Small Cell Lung Cancer. Mayo Clin. Proc. 2008, 83, 355-367. [CrossRef]

3. Hirsch, ER;; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J.; Wu, Y.-L.; Paz-Ares, L. Lung cancer: Current therapies and
new targeted treatments. Lancet 2017, 389, 299-311. [CrossRef]

4. Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al.
Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. ]. Med. 2015, 373, 1627-1639.
[CrossRef]

5. Herbst, R;; Baas, P,; Perez-Gracia, J.; Felip, E.; Kim, D.-W.; Han, J.-Y.; Molina, J.; Kim, ].-H.; Arvis, C.D.; Ahn, M.-]; et al. Use of
archival versus newly collected tumor samples for assessing PD-L1 expression and overall survival: An updated analysis of
KEYNOTE-010 trial. Ann. Oncol. 2019, 30, 281-289. [CrossRef]

6.  Chiou, V.L,; Burotto, M. Pseudoprogression and Immune-Related Response in Solid Tumors. J. Clin. Oncol. 2015, 33, 3541-3543.
[CrossRef]

7.  Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Cs6szi, T.; Fiilop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al.
Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823-1833.
[CrossRef] [PubMed]

8.  Herbst, R.S,; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, ].L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-]; et al.
Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010):
A randomised controlled trial. Lancet 2016, 387, 1540-1550. [CrossRef]

9.  Carbone, D.P; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.-E.; Badin, F;
et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. |. Med. 2017, 376, 2415-2426. [CrossRef]

10. Hugo, W.; Zaretsky, ].M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.; Chmielowski, B.; Cherry,
G.; et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 2016, 165, 35-44.
[CrossRef]

11. Diem, S.; Ali, O.H.; Ackermann, C.]J.; Bomze, D.; Koelzer, V.H.; Jochum, W.; Speiser, D.E.; Mertz, K.D.; Flatz, L. Tumor infiltrating
lymphocytes in lymph node metastases of stage III melanoma correspond to response and survival in nine patients treated with
ipilimumab at the time of stage IV disease. Cancer Immunol. Immunother. 2017, 67, 39-45. [CrossRef]

12. Ribas, A.; Robert, C.; Hodi, ES.; Wolchok, ]J.D.; Joshua, A.M.; Hwu, W.-].; Weber, ].S.; Zarour, H.M.; Kefford, R.; Loboda,
A.; et al. Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an
interferon-inflammatory immune gene signature. J. Clin. Oncol. 2015, 33, 3001. [CrossRef]

13. Rizvi, H.; Sanchez-Vega, F,; La, K; Chatila, W.; Jonsson, P; Halpenny, D.; Plodkowski, A.; Long, N.; Sauter, ].L.; Rekhtman, N.;

et al. Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1


https://www.mdpi.com/2072-6694/13/6/1397/s1
https://www.mdpi.com/2072-6694/13/6/1397/s1
http://www.cbioportal.org/
https://portal.gdc.cancer.gov/repository
https://tcia.at/home
http://doi.org/10.3322/caac.21654
http://www.ncbi.nlm.nih.gov/pubmed/33433946
http://doi.org/10.4065/83.3.355
http://doi.org/10.1016/S0140-6736(16)30958-8
http://doi.org/10.1056/NEJMoa1507643
http://doi.org/10.1093/annonc/mdy545
http://doi.org/10.1200/JCO.2015.61.6870
http://doi.org/10.1056/NEJMoa1606774
http://www.ncbi.nlm.nih.gov/pubmed/27718847
http://doi.org/10.1016/S0140-6736(15)01281-7
http://doi.org/10.1056/NEJMoa1613493
http://doi.org/10.1016/j.cell.2016.02.065
http://doi.org/10.1007/s00262-017-2061-4
http://doi.org/10.1200/jco.2015.33.15_suppl.3001

Cancers 2021, 13, 1397 12 of 12

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

(PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. J. Clin.
Oncol. 2018, 36, 633—-641. [CrossRef]

Campbell, ].D.; Alexandrov, A.; Kim, J.; Wala, J.; Berger, A.H.; Pedamallu, C.S.; Shukla, S.A.; Guo, G.; Brooks, A.N.; Murray, B.A;
et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016,
48, 607-616. [CrossRef]

Zehir, A.; Benayed, R.; Shah, R.H.; Syed, A.; Middha, S.; Kim, H.R,; Srinivasan, P.; Gao, J.; Chakravarty, D.; Devlin, S.M.; et al.
Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 2017, 23,
703-713. [CrossRef] [PubMed]

Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, ].].; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S,; et al.
Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124-128. [CrossRef]
Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols,
M.C,; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3,
open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255-265. [CrossRef]

Llosa, N.J.; Cruise, M.; Tam, A.; Wicks, E.C.; Hechenbleikner, E.M.; Taube, ].M.; Blosser, R.L.; Fan, H.; Wang, H.; Luber, B.S,; et al.
The Vigorous Immune Microenvironment of Microsatellite Instable Colon Cancer Is Balanced by Multiple Counter-Inhibitory
Checkpoints. Cancer Discov. 2015, 5, 43-51. [CrossRef]

Dong, Z.-Y.; Zhong, W.-Z.; Zhang, X.-C.; Su, ]J.; Xie, Z.; Liu, S.-Y.; Tu, H.-Y,; Chen, H.-].; Sun, Y.-L.; Zhou, Q.; et al. Potential
Predictive Value of TP53 and KRAS Mutation Status for Response to PD-1 Blockade Immunotherapy in Lung Adenocarcinoma.
Clin. Cancer Res. 2017, 23, 3012-3024. [CrossRef]

Sturm, G.; Finotello, F; Petitprez, F.; Zhang, ].D.; Baumbach, J.; Fridman, W.H.; List, M.; Aneichyk, T. Comprehensive evaluation
of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 2019, 35, i436—1445. [CrossRef]
[PubMed]

Wang, Z.; Zhao, J.; Wang, G.; Zhang, F.; Zhang, Z.; Zhang, Y.; Dong, H.; Zhao, X.; Duan, ].; Bai, H.; et al. Comutations in DNA
Damage Response Pathways Serve as Potential Biomarkers for Immune Checkpoint Blockade. Carncer Res. 2018, 78, 6486—-6496.
[CrossRef] [PubMed]

Skoulidis, F; Byers, L.A.; Diao, L.; Papadimitrakopoulou, V.A.; Tong, P.; 1zzo, ].G.; Behrens, C.; Kadara, H.; Parra, E.R.; Canales,
J.R.; et al. Co-occurring Genomic Alterations Define Major Subsets of KRAS-Mutant Lung Adenocarcinoma with Distinct Biology,
Immune Profiles, and Therapeutic Vulnerabilities. Cancer Discov. 2015, 5, 860-877. [CrossRef]

Skoulidis, F.; Arbour, K.C.; Hellmann, M.D.; Patil, P.D.; Marmarelis, M.E.; Awad, M.M.; Murray, J.C.; Hellyer, J.; Gainor, J.F.;
Dimou, A.; et al. Association of STK11/LKB1 genomic alterations with lack of benefit from the addition of pembrolizumab to
platinum doublet chemotherapy in non-squamous non-small cell lung cancer. J. Clin. Oncol. 2019, 37, 102. [CrossRef]

Fang, W.; Ma, Y,; Yin, ].C.; Hong, S.; Zhou, H.; Wang, A.; Wang, F.; Bao, H.; Wu, X.; Yang, Y.; et al. Comprehensive Genomic
Profiling Identifies Novel Genetic Predictors of Response to Anti-PD-(L)1 Therapies in Non-Small Cell Lung Cancer. Clin. Cancer
Res. 2019, 25, 5015-5026. [CrossRef] [PubMed]

Pastushenko, I.; Mauri, E; Song, Y.; De Cock, F; Meeusen, B.; Swedlund, B.; Impens, F; Van Haver, D.; Opitz, M.; Thery, M.; et al.
Fatl deletion promotes hybrid EMT state, tumour stemness and metastasis. Nat. Cell Biol. 2021, 589, 448-455. [CrossRef]


http://doi.org/10.1200/JCO.2017.75.3384
http://doi.org/10.1038/ng.3564
http://doi.org/10.1038/nm.4333
http://www.ncbi.nlm.nih.gov/pubmed/28481359
http://doi.org/10.1126/science.aaa1348
http://doi.org/10.1016/S0140-6736(16)32517-X
http://doi.org/10.1158/2159-8290.CD-14-0863
http://doi.org/10.1158/1078-0432.CCR-16-2554
http://doi.org/10.1093/bioinformatics/btz363
http://www.ncbi.nlm.nih.gov/pubmed/31510660
http://doi.org/10.1158/0008-5472.CAN-18-1814
http://www.ncbi.nlm.nih.gov/pubmed/30171052
http://doi.org/10.1158/2159-8290.CD-14-1236
http://doi.org/10.1200/JCO.2019.37.15_suppl.102
http://doi.org/10.1158/1078-0432.CCR-19-0585
http://www.ncbi.nlm.nih.gov/pubmed/31085721
http://doi.org/10.1038/s41586-020-03046-1

	Introduction 
	Materials and Methods 
	Data Sources 
	Cox Proportional Hazards Models 
	Propensity Score Matching and Survival Analysis 
	Assessment of TMB 
	mRNA Expression Profiling Analysis 
	Functional Enrichment Analysis 
	Statistical Analyses 

	Results 
	Clinical Characteristics of Cohorts 
	Identification of Immune NDB Related Genes 
	Correlation of Immune Phenotypes in NSCLC with Mutations in KEAP1 and FAT1 
	Integration of FAT1 Mutation and Clinical Indicators to Predict Prognosis after Treatment with ICBs 

	Discussion 
	Conclusions 
	References

