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Supplementary Table S1: Search terms 

Database Hit

s 

Date Criterio

n 

Search terms 

Pubmed 945 14.05.2020   

   P "Kidney Neoplasms"[Mesh] OR 

"Carcinoma, Renal Cell"[Mesh] OR 

"Oncocytoma, renal"[Supplementary Concept] OR  

Kidney Neoplasm*[tiab] OR 

Renal Neoplasm*[tiab] OR 

Renal cell neoplasm*[tiab] OR 

Kidney Cancer*[tiab] OR 

Renal Cancer*[tiab] OR 

Renal Cell Cancer*[tiab] OR 

kidney tumor*[tiab] OR 

renal tumor*[tiab] OR 

renal cell tumor*[tiab] OR 



grawitz tumor*[tiab] OR 

kidney tumour*[tiab] OR 

renal tumour*[tiab] OR 

renal cell tumour*[tiab] OR 

grawitz tumour*[tiab] OR 

kidney carcinoma*[tiab] OR 

renal carcinoma*[tiab] OR 

renal cell carcinoma*[tiab] OR 

"grawitz carcinoma"[tiab] OR 

Hypernephroid Carcinoma*[tiab] OR 

"Cancer of the Kidney"[tiab] OR 

"Cancer of Kidney"[tiab] OR 

"Adenocarcinoma of Kidney"[tiab] OR 

"Tumor of kidney"[tiab] OR 

"tumour of kidney"[tiab] OR 

Renal Cell Adenocarcinoma*[tiab] OR 

Hypernephroma*[tiab] OR 

Collecting Duct Carcinoma*[tiab] OR  

Oncocytoma[tiab] OR 

Angiomyolipoma[tiab] 

   I "Image Processing, Computer-Assisted"[Mesh] OR  

Computer Assisted Image*[tiab] OR 

Image Reconstruction*[tiab] OR 

radiomics[tiab] OR  

textur*[tiab] OR  

    "Algorithms"[Mesh] OR  

Histogram*[tiab] OR 

Algorithm*[tiab] 

   C "Positron Emission Tomography Computed Tomography"[Mesh] OR 

"Tomography, X-Ray Computed"[Mesh] OR  

"computed tomography"[tiab] OR 

"Computerized Tomography"[tiab] OR  



"Computed X Ray Tomography"[tiab] OR 

"Computerized X Ray Tomography"[tiab] OR 

"Computer Assisted Tomography"[tiab] OR 

"Computerized Axial Tomography"[tiab] OR 

"Computer Axial Tomography"[tiab] OR 

"Computed Axial Tomography"[tiab] OR  

CT[tiab] OR 

CAT[tiab] OR 

    "Magnetic Resonance Imaging"[Mesh] OR  

"magnetic resonance"[tiab] OR 

MRI[tiab] OR 

MR[tiab] 

Cochrane Library 27 14.05.2020 P [mh "Kidney Neoplasms"] OR  

[mh "Carcinoma, Renal Cell"] OR  

("Kidney Neoplasm*"):ti,ab,kw OR  

("Renal Neoplasm*"):ti,ab,kw OR  

("Renal cell neoplasm*"):ti,ab,kw OR  

("Kidney Cancer*"):ti,ab,kw OR  

("Renal Cancer*"):ti,ab,kw OR  

("Renal Cell Cancer*"):ti,ab,kw OR  

("kidney tumor*"):ti,ab,kw OR  

("renal tumor*"):ti,ab,kw OR  

("renal cell tumor*"):ti,ab,kw OR  

("grawitz tumor*"):ti,ab,kw OR  

("kidney tumour*"):ti,ab,kw OR  

("renal tumour*"):ti,ab,kw OR  

("renal cell tumour*"):ti,ab,kw OR  

("grawitz tumour*"):ti,ab,kw OR  

("kidney carcinoma*"):ti,ab,kw OR  

("renal carcinoma*"):ti,ab,kw OR  

("renal cell carcinoma*"):ti,ab,kw OR  

("grawitz carcinoma"):ti,ab,kw OR  



("Hypernephroid Carcinoma*"):ti,ab,kw OR  

("Cancer of the Kidney"):ti,ab,kw OR  

("Cancer of Kidney"):ti,ab,kw OR  

("Adenocarcinoma of Kidney"):ti,ab,kw OR  

("Tumor of kidney"):ti,ab,kw OR  

("tumour of kidney"):ti,ab,kw OR  

("Renal Cell Adenocarcinoma*"):ti,ab,kw OR  

("Hypernephroma*"):ti,ab,kw OR  

("Collecting Duct Carcinoma*"):ti,ab,kw OR  

("Oncocytoma"):ti,ab,kw OR  

("Angiomyolipoma"):ti,ab,kw 

   I [mh "Image Processing, Computer-Assisted"] OR  

("Computer Assisted Image*"):ti,ab,kw OR  

("Image Reconstruction*"):ti,ab,kw OR  

("radiomics"):ti,ab,kw OR  

("textur*"):ti,ab,kw OR  

[mh "Algorithms"] OR  

("Histogram*"):ti,ab,kw OR  

("Algorithm*"):ti,ab,kw 

   C [mh "Positron Emission Tomography Computed Tomography"] OR  

[mh "Tomography, X-Ray Computed"] OR  

("computed tomography"):ti,ab,kw OR  

("Computerized Tomography"):ti,ab,kw OR  

("Computed X Ray Tomography"):ti,ab,kw OR  

("Computerized X Ray Tomography"):ti,ab,kw OR  

("Computer Assisted Tomography"):ti,ab,kw OR  

("Computerized Axial Tomography"):ti,ab,kw OR  

("Computer Axial Tomography"):ti,ab,kw OR  

("Computed Axial Tomography"):ti,ab,kw OR  

("CT"):ti,ab,kw OR  

("CAT"):ti,ab,kw OR  

[mh "Magnetic Resonance Imaging"] OR  



("magnetic resonance"):ti,ab,kw OR  

("MRI"):ti,ab,kw OR  

("MR"):ti,ab,kw 

Web of Science Core Collection 307 14.05.2020 P "Kidney Neoplasm*" OR  

"Renal Neoplasm*" OR  

"Renal cell neoplasm*" OR  

"Kidney Cancer*" OR  

"Renal Cancer*" OR  

"Renal Cell Cancer*" OR  

"kidney tumor*" OR  

"renal tumor*" OR  

"renal cell tumor*" OR  

"grawitz tumor*" OR  

"kidney tumour*" OR  

"renal tumour*" OR  

"renal cell tumour*" OR  

"grawitz tumour*" OR  

"kidney carcinoma*" OR  

"renal carcinoma*" OR  

"renal cell carcinoma*" OR  

"grawitz carcinoma" OR  

"Hypernephroid Carcinoma*" OR  

"Cancer of the Kidney" OR  

"Cancer of Kidney" OR  

"Adenocarcinoma of Kidney" OR  

"Tumor of kidney" OR  

"tumour of kidney" OR  

"Renal Cell Adenocarcinoma*" OR  

"Hypernephroma*" OR  

"Collecting Duct Carcinoma*" OR  

"Oncocytoma" OR  

"Angiomyolipoma" 



   I "Computer Assisted Image*" OR  

"Image Reconstruction*" OR  

"radiomics" OR  

"textur*" OR  

"Histogram*" OR  

"Algorithm*" 

   C "computed tomography" OR  

"Computerized Tomography" OR  

"Computed X Ray Tomography" OR  

"Computerized X Ray Tomography" OR  

"Computer Assisted Tomography" OR  

"Computerized Axial Tomography" OR  

"Computer Axial Tomography" OR  

"Computed Axial Tomography" OR  

"CT" OR  

"CAT" OR  

"magnetic resonance" OR  

"MRI" OR  

"MR" 

CINAHL 120 14.05.2020 P "Kidney Neoplasm*" OR  

"Renal Neoplasm*" OR  

"Renal cell neoplasm*" OR  

"Kidney Cancer*" OR  

"Renal Cancer*" OR  

"Renal Cell Cancer*" OR  

"kidney tumor*" OR  

"renal tumor*" OR  

"renal cell tumor*" OR  

"grawitz tumor*" OR  

"kidney tumour*" OR  

"renal tumour*" OR  

"renal cell tumour*" OR  



"grawitz tumour*" OR  

"kidney carcinoma*" OR  

"renal carcinoma*" OR  

"renal cell carcinoma*" OR  

"grawitz carcinoma" OR  

"Hypernephroid Carcinoma*" OR  

"Cancer of the Kidney" OR  

"Cancer of Kidney" OR  

"Adenocarcinoma of Kidney" OR  

"Tumor of kidney" OR  

"tumour of kidney" OR  

"Renal Cell Adenocarcinoma*" OR  

"Hypernephroma*" OR  

"Collecting Duct Carcinoma*" OR  

"Oncocytoma" OR  

"Angiomyolipoma" 

   I "Computer Assisted Image*" OR  

"Image Reconstruction*" OR  

"radiomics" OR  

"textur*" OR  

"Histogram*" OR  

"Algorithm*" 

   C "computed tomography" OR  

"Computerized Tomography" OR  

"Computed X Ray Tomography" OR  

"Computerized X Ray Tomography" OR  

"Computer Assisted Tomography" OR  

"Computerized Axial Tomography" OR  

"Computer Axial Tomography" OR  

"Computed Axial Tomography" OR  

"CT" OR  

"CAT" OR  



"magnetic resonance" OR  

"MRI" OR  

"MR" 

CCMed 1 14.05.2020 P Kidney Neoplasm OR  

Renal Neoplasm OR  

Nierentumor 

   I Computer Assisted Image OR  

Image Reconstruction OR  

radiomics OR  

textur OR  

Histogram OR  

Algorithm 

   C computed tomography OR  

Computerized Tomography OR  

Computed X Ray Tomography OR  

Computerized X Ray Tomography OR  

Computer Assisted Tomography OR  

Computerized Axial Tomography OR  

Computer Axial Tomography OR  

Computed Axial Tomography OR  

CT OR  

CAT OR  

magnetic resonance OR  

MRI OR  

MR 



Clinical Trial Gov 

http://www.clinicaltrials.gov/ 

16 14.05.2020 P "Kidney Neoplasm" OR  

"Renal Neoplasm" OR  

"Renal Cell Adenocarcinoma" OR  

"Hypernephroma" OR  

"Collecting Duct Carcinoma" OR  

"Oncocytoma" OR  

"Angiomyolipoma" 

   I "Computer Assisted Image" OR  

"Image Reconstruction" OR  

"radiomics" OR  

"textur" OR  

"Histogram" OR  

"Algorithm" 

   C "computed tomography" OR  

"Computerized Tomography" OR  

"Computed X Ray Tomography" OR  

"Computerized X Ray Tomography" OR  

"Computer Assisted Tomography" OR  

"Computerized Axial Tomography" OR  

"Computer Axial Tomography" OR  

"Computed Axial Tomography" OR  

"CT" OR  

"CAT" OR  

"magnetic resonance" OR  

"MRI" OR  

"MR" 

  

http://www.clinicaltrials.gov/


Supplementary Table S2: Summary of studies included in the qualitative synthesis (n = 113) 

Author  Year Journal Nr. 

Pat. 

Modality Research question RQS 

[% (points)] 

Antunes [1] 2016 Trans Oncol 2 PET/MR Treatment response to antiangiogenic therapy 11.1 (4) 

Bagci [2] 2013 PLoS One 30 18F-

FDG-

PET 

Automated identification of different lesions (metastatic papRCC, 

cerebellar haemangioblastoma, NSCLC, neurofibroma, 

lymphomatoid granulomatosis, lung neoplasm, neuroendocrine 

tumor, soft tissue thoracic mass, nonnecrotizing granulomatous 

inflammation, RCC with papillary and cystic features, diffuse 

large B-cell lymphoma, metastatic alveolar soft part sarcoma, 

SCLC) and prediction of future morphological changes of lesions  19.4 (7) 

Bektas [3] 2019 Eur Radiol 53 CT Prediction of Fuhrman Grade: High versus low grade RCC 13.9 (5) 

Bharwani [4] 2014 Br J Cancer 20 MRI Treatment response to antiangiogenic therapy: Treatment-

associated texture changes under sunitinib and correlation with OS 22.2 (8) 

Bier [5] 2018 PLoS One 106 CT Prediction of tumor nuclear grade and prediction of peri- and 

postoperative complications and blood loss 15.3 (5.5) 

Boos [6] 2017 AJR Am J 

Roentgenol 

19 CT Treatment response to antiangiogenic therapy: Median versus 

mean attenuation in the response assessment (RECIST) in patients 

treated with VEGF TKI 0 (-3) 

Catalano [7] 2008 Radiology 50 CT Differentiation of AMLwvf from ccRCC 0 (-2) 

Chandarana 

[8] 

2012 Radiology 73 MRI Differentiation of ccRCC and papRCC 

1.4 (0.5) 

Chaudhry [9] 2012 AJR Am J 

Roentgenol 

64 CT Differentiation of AMLwvf and ccRCC and papRCC 

0 (0) 

Chen  [10] 2017 Abdom Radiol 

(NY) 

94 CT Differentiation of ccRCC from renal oncocytoma 

15.3 (5.5) 

Chen [11] 2015 Springerplus 61 CT Differentiation of ccRCC and papRCC 13.9 (5) 

Chen [12] 2018 Phys Med Biol 57 CT Prediction of the mutation status of ccRCC (VHL, PBRM1 and 

BAP 1) 4.2 (1.5) 

Coy [13] 2019 Abdom Radiol 

(NY) 

179 CT Differentiation of ccRCC and oncocytoma 

11.1 (4) 



Cui [14] 2019 Acta Radiol 171 CT Differentiation of AMLwvf from RCC 29.2 (10.5) 

Cui [15] 2020 Eur Radiol 460 CT and 

MRI 

Prediction of Fuhrman Grade: High versus low grade RCC 

31.9 (11.5) 

Deng [16] 2020 Clin Radiol 501 CT Differentiation of RCC and benign renal tumors (AML vs. RCC, 

Oncocytoma vs. chrRCC, benign vs. malignant) 0 (-1) 

Deng [17] 2019 Eur Radiol 290 CT Differentiation of ccRCC and papRCC and prediction of 

Fuhrmann grade: high versus low grade RCC 0 (-1) 

Ding [18] 2018 Eur J Radiol 206 CT Prediction of Fuhrman Grade: High versus low grade ccRCC 38.9 (14) 

Doshi [19] 2016 AJR Am J 

Roentgenol 

38 MRI Differentiation of papRCC type 1 and papRCC type 2 

9.7 (3.5) 

Dwivedi [20] 2018 Urology 6 MRI Implementation of a platform for co-localization of in vivo 

quantitative mpMRI features with ex vivo surgical specimen of 

renal masses using 3D-printed tumor molds 0 (-2.5) 

Erdim [21] 2020 Acad Radiol 79 CT Differentiation of benign and malignant renal tumors 19.4 (7) 

Feng [22] 2018 Eur Radiol 58 CT Differentiation of AMLwvf and RCC (multiple subtypes) 19.4 (7) 

Feng [23] 2019 Cancer 

Imaging 

131 CT Prediction of Fuhrman Grade: High versus low grade ccRCC 

0 (-0.5) 

Feng [24] 2020 Front Oncol 54 CT Prediction of BRCA1-associated protein 1 mutation status in 

ccRCC 19.4 (7) 

Gaing [25] 2015 Invest Radiol 44 MRI Differentiation of ccRCC, papRCC, chrRCC, oncocytoma and 

AML 33.3 (12) 

Ghosh [26] 2015 J Med Imaging 

(Bellingham) 

78 CT Prediction of BRCA1-associated protein 1 mutation status in 

ccRCC 13.9 (5) 

Gill [27] 2019 Abdom Radiol 

(NY) 

83 CT Differentiation of juxtatumoral perinephric fat surrounding high 

versus low grade (ISUP) ccRCC  0 (0) 

Gillingham 

[28] 

2019 J Comput Assist 

Tomogr 

27 MRI Discrimination of benign and malignant Bosniak IIF and III renal 

cysts 0 (0) 

Goh [29] 2011 Radiology 39 CT Treatment response to antiangiogenic therapy: Treatment-

associated texture changes under TKI and correlation with time to 

progression 0 (0) 

Goyal [30] 2019 Abdom Radiol 

(NY) 

33 MRI Differentiation of ccRCC versus non-ccRCC and high versus low 

grade RCC 13.9 (5) 



Haider [31] 2017 Cancer 

Imaging 

40 CT Treatment response to antiangiogenic therapy: Treatment-

associated texture changes under sunitinib and correlation with 

PFS and OS 8.3 (3) 

Han [32] 2019 Journal of 

Digital Imaging 

n.a. CT Discrimination of RCC subtypes (ccRCC, papRCC, chrRCC) 

0 (-1) 

He [33] 2020 Acad Radiol 227 CT Machine learning based on ANN for prediction of tumor grade: 

High versus low grade ccRCC 16.7 (6) 

He [34] 2019 Medicine 

(Baltimore) 

227 CT Prediction of tumor grade: High versus low grade ccRCC 

13.9 (5) 

Hoang [35] 2018 Abdom Radiol 

(NY) 

41 MRI Differentiation of benign and malignant renal masses (oncocytoma 

vs. ccRCC and papRCC) and between RCC subtypes (ccRCC vs. 

papRCC) 11.1 (4) 

Hodgon [36] 2015 Radiology 100 CT Differentiation of fpAML and RCC (multiple subtypes) 13.9 (5) 

Huhdanpaa 

[37] 

2015 Abdom Imaging 65 CT Prediction of Fuhrman Grade: High versus low grade ccRCC 

0 (-2) 

Khene [38] 2018 World J Urol 70 CT Prediction of adherent perinephric fat 12.5 (4.5) 

Kierans  [39] 2014 AJR Am J 

Roentgenol 

61 MRI Prediction of tumor grade: High versus low grade ccRCC 

18.1 (6.5) 

Kim [40] 2008 Radiology 144 CT Differentiation of AMLwvf and RCC (multiple subtypes) 0 (-2) 

Kim [41] 2019 AJR Am J 

Roentgenol 

286 CT Differentiation of low-attenuation RCC and benign renal cysts 

11.1 (4) 

Kocak [42] 2019 Acta Radiol 65 CT Prediction of protein BAP1 mutation status in ccRCC 13.9 (5) 

Kocak [43] 2019 Eur Radiol 47 CT Influence of segmentation margin (contour-focused and margin 

shrinkage of 2mm) in ccRCC to predict tumor grade (nuclear 

grade as reference standard to compare reproducibility and 

classification performance of segmentation with contour-focus 

versus with margin shrinkage of 2mm) 13.9 (5) 

Kocak [44] 2019 AJR Am J 

Roentgenol 

81 CT Prediction of tumor grade: High versus low grade ccRCC 

20.8 (7.5) 

Kocak [45] 2019 AJR Am J 

Roentgenol 

45 CT Prediction of PBRM1 mutation status in ccRCC 

20.8 (7.5) 



Kocak [46] 2019 AJR Am J 

Roentgenol 

30 CT Influence of Intra- and Interobserver Manual Segmentation 

Variability on Radiomic Feature Reproducibility (ccRCC) 30.6 (11) 

Kocak [47] 2018 Eur J Radiol 94 CT Differentiation of non-ccRCC versus ccRCC and ccRCC versus 

papRCC versus chrRCC 29.2 (10.5) 

Kunapuli [48] 2018 J Digit Imaging 150 CT Differentiation of benign and malignant renal lesions 15.3 (5.5) 

Lee [49] 2018 Med Phys 80 CT Differentiation of AMLwvf and ccRCC 8.3 (3) 

Lee [50] 2017 Med Phys 50 CT Differentiation of AMLwvf and ccRCC 15.3 (5.5) 

Lee [51] 2020 Cancers (Basel) 58 CT Prediction of post-operative metastases 38.9 (14) 

Leng [52] 2017 Abdom Radiol 

(NY) 

139 CT Differentiation of ccRCC and papRCC and AML 

12.5 (4.5) 

Li [53] 2018 AJR Am J 

Roentgenol 

92 MRI Differentiation of ccRCC, papRCC, chrRCC, AMLwvf and 

oncocytoma 0 (0) 

Li [54] 2019 Acad Radiol 140 MRI Differentiation of AMLwvf and ccRCC 0 (0) 

Li [55] 2019 Abdom Radiol 

(NY) 

61 CT Differentiation of chrRCC and oncocytoma 

16.7 (6) 

Li [56] 2019 Eur Radiol 255 CT Differentiation of ccRCC versus non-ccRCC and association of 

imaging features with VHL mutation 41.7 (15) 

Lin [57] 2019 Abdom Radiol 

(NY) 

231 CT Prediction of tumor grade: High versus low grade ccRCC 

2.8 (1) 

Linguraru 

[58] 

2009 Conf Proc 

IEEE Eng Med 

Biol Soc 

40 CT Differentiation of benign versus malignant renal masses and other 

subtypes 

16.7 (6) 

Linguraru 

[59] 

2011 Med Phys 43 CT Differentiation of renal lesions associated with VHL, BHD, 

hereditary papRCC and hereditary leiomyomatosis and renal 

cancers 13.9 (5) 

Liu [60] 2017 Int J Clin Exp 

Med 

44 CT Differentiation of renal primary undifferentiated pleomorphic 

sarcoma and RCC (ccRCC, papRCC, chrRCC) 13.9 (5) 

Lubner [61] 2016 AJR Am J 

Roentgenol 

157 CT Association of texture features with histologic subtype (ccRCC, 

papRCC and chrRCC), nuclear grade, pathologic stage, and 

clinical outcome (time to disease recurrence and death due to 

disease) 12.5 (4.5) 

Ma [62] 2020 Abdom Radiol 84 CT Differentiation of fpAML and ccRCC 19.4 (7) 



Mains [63] 2018 Br J Radiol 69 CT Correlation with OS and PFS under various treatments 20.8 (7.5) 

Marigliano 

[64] 

2019 Technol Cancer 

Res Treat 

20 CT Correlation of texture analysis with the expression of selected 

oncogenic microRNAs 0 (0) 

Nazari [65] 2020 Radiol Med 71 CT Prediction of Fuhrman Grade: High versus low grade ccRCC 33.3 (12) 

Nie [66] 2020 Eur Radiol 99 CT Differentiation of AMLwvf and ccRCC 38.9 (14) 

Paschall [67] 2018 Abdom Radiol 

(NY) 

55 MRI Differentiation of ccRCC versus papRCC and oncocytoma 

0 (-1.5) 

Picard [68] 2019 J Comput Assist 

Tomogr 

n.a. CT Discrimination of renal cysts and RCC 

0 (-1) 

Purkayastha 

[69] 

2020 Sci Rep n.a. MRI Prediction of Fuhrman Grade: High versus low grade RCC 

40.3 (14.5) 

Raman [70] 2014 Acad Radiol 99 CT Differentiation of ccRCC, papRCC, oncocytomas and renal cysts 19.4 (7) 

Ramesh [71] 2018 J Clin Diagn 

Res 

188 CT Differentiation of normal renal tissue, benign and malignant renal 

masses 0 (-3) 

Reynolds [72] 2018 PLoS One 12 MRI Prediction of treatment response after SABR 15.3 (5.5) 

Said [73] 2020 Abdom Radiol 

(NY) 

125 MRI Differentiation of benign renal lesions versus RCC and 

characterization of RCC subtypes (ccRCC and papRCC) 19.4 (7) 

Sasaguri [74] 2015 AJR Am J 

Roentgenol 

166 CT Differentiation of oncocytoma versus RCC (papRCC and ccRCC 

and other subtypes) 19.4 (7) 

Schieda [75] 2018 AJR Am J 

Roentgenol 

37 CT Prediction of tumor grade: High versus low grade chrRCC 

15.3 (5.5) 

Schieda [76] 2015 AJR Am J 

Roentgenol 

35 CT Differentiation of sarcomatoid RCC and ccRCC 

15.3 (5.5) 

Scrima [77] 2019 Abdom Radiol 

(NY) 

249 CT Differentiation of histologic subtype (ccRCC versus non-ccRCC), 

prediction of nuclear grade and correlation of texture analysis with 

DNA-expression levels 8.3 (3) 

Simpfendorfer 

[78] 

2009 AJR Am J 

Roentgenol 

36 CT Differentiation of AMLwvf and RCC 

9.7 (3.5) 

Shu [79] 2018 Eur J Radiol 260 CT Prediction of Fuhrman Grade: High versus low grade ccRCC 29.2 (10.5) 

Shu [80] 2019 Eur J Radiol 271 CT Prediction of ISUP Grade: High versus low grade ccRCC 19.4 (7) 

Soma [81] 2018 Int J Urol 126 CT and 

MRI 

Differentiation of fpAML and RCC 

0 (-2) 



Stanzione [82] 2020 J Digit Imaging 32 MRI Prediction of Fuhrman Grade: High versus low grade ccRCC 38.9 (14) 

Sun [83] 2019 Medicine 

(Baltimore) 

227 CT Prediction of Fuhrman Grade: High versus low grade ccRCC 

26.1 (13) 

Sun [84] 2020 AJR Am J 

Roentgenol 

290 CT Differentiation of histologic RCC subtypes (ccRCC from papRCC 

and chrRCC) and differentiation of ccRCC from fpAML and 

oncocytoma and differentiation of papRCC and chrRCC from 

fpAML and oncocytomas 22.2 (8) 

Takahashi 

[85] 

2015 AJR Am J 

Roentgenol 

153 CT Differentiation of AMLwvf and RCC  

13.9 (5) 

Takahashi 

[86] 

2016 Abdom Radiol 

(NY) 

112 CT Differentiation of AML and RCC 

0 (-3) 

Tanaka [87] 2011 Int J Urol 41 MRI Differentiation of AMLwvf and RCC 0 (-2.5) 

Tanaka [88] 2020 AJR Am J 

Roentgenol 

159 CT Differentiation of malignant and benign renal masses 

11.1 (4) 

Tang [89] 2020 AJR Am J 

Roentgenol 

115 CT Differentiation of fpAML and RCC 

9.7 (3.5) 

Uhlig [90] 2020 Medicine 

(Baltimore) 

94 CT Differentiation of malignant and benign renal masses 

20.8 (7.5) 

Varghese [91] 2018 AJR Am J 

Roentgenol 

174 CT Differentiation of malignant and benign renal masses (various 

subtypes) 16.7 (6) 

Varghese [92] 2018 Br J Radiol 156 CT Differentiation of malignant and benign renal masses (various 

subtypes) 0 (-0.5) 

Vendrami [93] 2018 AJR Am J 

Roentgenol 

41 MRI Differentiation of papRCC type 1 and type 2 

15.3 (5.5) 

Wang [94] 2016 Sci Rep 21 MRI Reproducibility of histogram parameters 18.1 (6.5) 

Wang [95] 2020 Eur Radiol 77 MRI Differentiation of RCC subtypes (ccRCC, papRCC and chrRCC) 0 (0) 

Xi [96] 2018 Eur Radiol 16 MRI Prediction of ISUP Grade: High versus low grade ccRCC 19.4 (7) 

Xi [97] 2020 Clin Cancer 

Res 

n.a. MRI Differentiation of malignant and benign renal masses 

38.9 (14) 

Yan [98] 2015 Acad Radiology 50 CT Differentiation of ccRCC, papRCC and AML 13.9 (5) 

Yang [99] 2019 Mol Imaging 56 CT Differentiation of fpAML and chrRCC 19.4 (7) 

Yang [100] 2020 Eur Radiol 163 CT Differentiation of AMLvwf and RCC 18.1 (6.5) 



Yap [101] 2018 Urology 150 CT Differentiation of malignant and benign renal masses 0 (-1) 

Yasar [102] 2020 Abdom Radiol 

(NY) 

77 CT Differentiation of histologic subtype (ccRCC versus non-ccRCC), 

Fuhrman grade and TNM stage 0 (-2) 

Yin [103] 2018 Clin Radiol 8 PET/MRI Differentiation of molecular subtypes ccA and ccB of ccRCC 22.2 (8) 

Yin [104] 2017 Sci Rep 9 PET/MRI Differentiation of expressions of angiogenesis and VEGF 11.1 (4) 

You [105] 2019 Clin Radiol 67 CT Differentiation of AMLvwf and ccRCC 8.3 (3) 

Yu [106] 2017 Abdom Radiol 

(NY) 

119 CT Differentiation of ccRCC, papRCC, chrRCC and oncocytoma 

0 (-0.5) 

Zabihollahy 

[107] 

2020 Eur Radiol 315 CT Differentiation of benign and malignant RCC 

16.7 (6) 

Zabihollahy 

[108] 

2020 Med Phys 315 CT Automated localization of renal masses 

36.1 (13) 

Zabihollahy 

[109] 

2020 IEEE Access 315 CT Differentiation from benign renal cysts and solid renal masses 

13.9 (5) 

Zhang [110] 2019 Clin Radiol 127 CT Differentiation of RCC subtypes (ccRCC versus non-ccRCC 

(papRCC and chrRCC)) 19.4 (7) 

Zhang [111] 2019 J South Med 

Univ 

66 CT Detection of renal tumors in patients with hydronephrosis and 

calculi 19.4 (7) 

Zhang [112] 2015 AJR Am J 

Roentgenol 

46 MRI Prediction of Fuhrman Grade: High versus low grade ccRCC 

0 (-1) 

Zhou [113] 2019 Trans Oncol 192 CT Differentiation of malignant and benign renal masses 38.9 (14) 

Abbreviations: RQS = radiomics quality score, papRCC = papillary renal cell carcinoma, RCC = renal cell carcinoma, NSCLC = non-small cellular 

lung carcinoma, SCLC = small cell lung carcinoma, OS = overall survival, RECIST = Response evaluation criteria in solid tumors, VEGF = vascular 

endothelial growth factor, TKI = tyrosine kinase inhibitor, AMLwvf = angiomyolipoma without visible fat, ccRCC = clear-cell renal cell carcinoma, 

VHL = Von-Hippel-Lindau, PBRM1 = polybromo-1, BAP 1 = BRCA1 associated protein-1, AML = angiomyolipoma, chrRCC = chromophobe renal 

cell carcinoma, mpMRI = multiparametric magnetic resonance tomography, ISUP = International Society of Urologic Pathologists, PFS = progression 

free survival, ANN = artificial neural networks, pfAML = fat-poor angiomyolipoma, BHD = Birt-Hogg-Dubé, SABR = stereotactic ablative 

radiotherapy. 

 

 



Supplementary Table S3: RQS [points] over time 

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 All 

Number 

of studies 

[n (%)] 

2 (1.8) 2 (1.8) 0 3 (2.7) 2 (1.8) 1 (0.9) 3 (2.7) 10 

(8.8) 

5 (4.4) 8 (7.1) 24 

(21.2) 

30 

(26.5) 

23 

(20.4) 

113 

(100) 

Mean -2.0 4.75 - 0.83 0.25 7 7.17 4.65 3.10 3.0 4.19 4.97 7.76 4.88 

Median -2.0 4.75 - 0.0 0.25 7 7.0 5.0 4.0 4.25 5.50 5.0 7.0 5.0 

SD 0.0 1.77 - 3.82 0.35 n.a. 0.76 3.90 3.60 3.12 4.52 4.56 4.97 4.60 

Minimum -2.0 3.5 - -2.5 0.0 7 6.5 -2.0 -3.0 -3.0 -3.0 -1.0 -2.0 -3.0 

Maximum -2.0 6.0 - 5.0 0.5 7 8.0 12.0 6.50 5.50 14 15.0 14.5 15.0 

IQR -2.0 –   

-2.0 

3.5 – 

n.a. 

- -2.5 – 

n.a. 

0.0 – 

n.a. 

7 – 7  6.5 – 

n.a. 

3.5 – 

5.88 

0.25 – 

5.50 

0.38 – 

5.38 

-0.38 – 

7.0 

0 – 

7.13 

5.0 – 

13.0  

0.25 – 

7.0 

Abbreviations: RQS = radiomics quality score, SD = standard deviation, IQR = interquartile range  



Supplementary Table S4: Summary of studies investigating the dignity of renal masses (n = 52) and reasons for exclusion from the meta-analysis 

Study Year Title Number 

of 

patients 

Modality Gold 

standard  

Research question and summary of 

methods 

Main results and conclusions Reasons for exclusion 

from the meta-analysis 

Differentiation of angiomyolipoma from RCC 

Catalano [7] 2008 Pixel distribution analysis: 
can it be used to distinguish 

clear cell carcinomas from 

angiomyolipomas with 
minimal fat? 

50 CT Histology 
(not further 

specified if 

surgical or 
bioptic) 

Differentiation of AMLwvf from ccRCC: 
Lesions were measured, and a histogram 

(number of pixels with each attenuation) 

was calculated electronically within a 
central ROI. The percentage of pixels 

below the attenuation thresholds -20 HU 

and 10 HU was calculated in both cohorts. 
The average percentage of subthreshold 

pixels at each threshold was compared.   

No significant difference for all thresholds 
<0 HU could be found between both 

cohorts.  

 

Chaudry [9] 2012 Histogram analysis of small 
solid renal masses: 

differentiating minimal fat 

amgiomyolipoma from renal 
cell carcinoma. 

64 CT Histology 
(surgical or 

bioptic) 
 

Differentiation of AMLwvf from ccRCC 
and papRCC: Using attenuation 

measurement histogram analysis, two 

blinded radiologists determined the 
percentage of negative pixels within each 

renal mass. The percentages of negative 

pixels below different attenuation 
thresholds were recorded. Radiologists 

and different cohorts were compared. 

No significant difference in the percentage 
of negative pixels was found between 

AMLwvf versus ccRCC and AMLwvf and 

papRCC at any of the selected attenuation 
thresholds for either radiologist was found. 

 

Cui [14] 2019 Differentiation of renal 

angiomyolipoma without 

visible fat from renal cell 

carcinoma by machine 
learning based on whole-

tumor computed 

tomography features. 

171 CT Histology 

(surgical) 

Differentiation of AMLwvf from RCC: 

Texture features were extracted from 

whole-tumor images in three phases. A 

support vector machine with the recursive 
feature elimination method based on 

fivefold cross-validation with the synthetic 

minority oversampling technique 
(SMOTE) was utilized to establish 

classifiers for differentiation of cohorts. 

The performance of the classifiers based 
on three-phase and single-phase images 

were compared with each other and 

morphological interpretations. 

A machine learning classifier achieved the 

best performance in differentiating 

AMLwvf from all RCC, ccRCC, and non-

ccRCC. Morphological interpretations 
achieved lower performance. 

Data augmentation using 

SMOTE (no true numbers 

given, only sensitivity and 

specificity for augmented 
cases). 

Deng (1) [16] 2020 Usefulness of CT texture 

analysis in differentiating 

benign and malignant renal 

tumors. 

501 CT Histology 

(not further 

specified if 

surgical or 
bioptic) 

Differentiation of RCC and benign renal 

tumors: A ROI was drawn encompassing 

the largest cross-section of the tumor on 

venous phase axial CT. Different texture 
analysis parameters were compared 

between cohorts. 

Differences in entropy were helpful in 

differentiation RCC from AMLwvf, and 

chrRCC from oncocytoma. 

 

Feng [22] 2018 Machine learning-based 
quantitative texture analysis 

of CT images of small renal 

masses: Differentiation of 

58 CT Histology 
(surgical) 

Differentiation of AMLwvf and RCC 
(multiple subtypes): Texture features were 

extracted from the largest possible 

tumorous ROIs by manual segmentation. 

16 features showed significant intergroup 
differenced and had good interobserver 

agreement. An optimal feature subset 

including 11 features was further selected 

 



angiomyolipoma without 

visible fat from renal cell 

carcinoma.” 

The support vector machine with recursive 

feature elimination (SVM-RFE) and 

synthetic minority oversampling technique 
(SMOTE) were adopted to establish 

classifiers, and the performance of 

classifiers was assessed. 

by the SVM-RFE method. The SVM-

RFE+SMOTE classifier achieved the best 

performance in discriminating AMLwvf and 
RCC. 

Gaing (1) [25] 2015 Subtype differentiation of 

renal tumors using voxel-

based histogram analysis of 
intravoxel incoherent 

motion parameters 

44 MRI Histology 

(surgical) 

Differentiation of ccRCC, papRCC, 

chrRCC, oncocytoma and AML: Voxel-

based histogram analysis of intravoxel 
incoherent motion imaging (IVIM) 

parameters. A biexponential model was 

fitted to the diffusion signal data using a 

segmented algorithm to extract different 

IVIM parameters for each voxel. 

Two IVIM parameters differentiated 8 of 15 

pairs of renal tumors. Histogram analysis of 

IVIM parameters differentiated 9 of 15 
subtype pairs. Intravoxel incoherent motion 

imaging parameters with inclusion of 

histogram measures of heterogeneity can 

help differentiate malignant from benign 

lesions as well as various subtypes of RCC. 

Insufficient disclosure of the 

results: No AUC, sensitivity 

or specificity given, only 
comparison of histogram 

distribution parameters 

(perfusion fraction, tissue 

diffusivity, 

pseudodiffusivity). 

Hodgdon [36] 2015 Can Quantitative CT 
Texture Analysis be Used to 

Differentiate Fat-poor Renal 

Angiomyolipoma from 
Renal Cell Carcinoma on 

Unenhanced CT Images? 

100 CT Histology 
(not further 

specified if 

surgical or 
bioptic) 

Differentiation of AMLwvf and RCC 
(multiple subtypes): Axial unenhanced CT 

images were manually segmented. Texture 

features related to the gray-level 
histogram, gray-level occurrence, and run-

length matrix statistics were evaluated. 

The most discriminative features were 
used to generate support vector machine 

(SVM) classifiers. Heterogeneity of the 

lesions was subjectively graded on a five-
point scale. 

There was lower lesion homogeneity and 
higher lesions entropy in RCCs. A model 

incorporating several texture features 

resulted in a high performance. Each of the 
three textural-based classifiers was more 

accurate than radiologists’ subjective 

heterogeneity ratings.  

 

Kim [40] 2008 CT histogram analysis: 

differentiation of 

angiomyolipoma without 
visible fat from renal cell 

carcinoma at CT imaging. 

144 CT Histology 

(not further 

specified if 
surgical or 

bioptic) 

Differentiation of AMLwvf and RCC 

(multiple subtypes): The percentage of 

voxels and pixels of unenhanced CT 
histograms were compared in the two 

groups according to the CT number 

categories. 

The percentages of voxels and pixels with a 

CT number less than -30 HU, less than -20 

HU, less than -10 HU, and less than 0 HU 
were greater in the AMLwvf group. CT 

histogram analysis may be useful for 

differentiating AMLwvf from RCC. 

 

Lee [49] 2018 Deep feature classification 

of angiomyolipoma without 

visible fat and renal cell 
carcinoma in abdominal 

contrast-enhanced CT 

images with texture image 
patches and hand-crafted 

feature concatenation. 

80 CT Histology 

(not further 

specified if 
surgical or 

bioptic) 

Differentiation of AMLwvf and ccRCC 

and development of an automatic deep 

feature classification method for 
distinguishing AMLwvf from RCC: First, 

hand-crafted features were extracted from 

the tumor contours. Second, deep features 
were extracted from the ImageNet 

pretrained deep learning model with the 

SRM image patches. In deep feature 

extraction, texture image patches (TIP) 

were proposed. Finally, the two featured 

were concatenated and the random forest 
classifier was trained on these 

concatenated features to classify the tumor 

subtypes. 

The proposed shape features and TIPs 

improved the hand-crafted features and deep 

features, and the feature concatenation 
further enhanced the quality of features for 

differentiating AMLwvf from ccRCC. 

Multiple publications 

deriving from one study. 

Only the one with better 
methodological quality 

according to the RQS was 

included (Lee 2017). 

Lee [50] 2017 Differentiation of fat-poor 

angiomyolipoma from clear 

50 CT Histology 

(not further 

Differentiation of AMLwvf and ccRCC 

and development of a computer-aided 

From three selection methods, three 

histogram features were jointly selected as 

 



cell renal cell carcinoma in 

contrast-enhanced MDCT 

images using quantitative 
feature classification. 

specified if 

surgical or 

bioptic) 

classification system to differentiate 

AMLwvf from ccRCC: Tumors were 

manually segmented, quantitative image 
features were extracted, a number of 

feature selection methods were applied, 

and finally, the feature classifiers were 
trained. 

key features to distinguish two types of 

renal masses. In feature classification, two 

classifiers demonstrated with one type of 
feature selection demonstrated the best 

performance. 

Leng [52] 2017 Subjective and objective 

heterogeneity scores for 
differentitating small renal 

masses using contrast 

enhanced CT 

139 CT Histology 

(surgical) 

Differentiation of ccRCC and papRCC 

and AML: A representative contrast-
enhanced CT image for each mass was 

selected, a largest possible ROI was 

manually drawn from which three 

objective heterogeneity indices were 

calculated. Objective heterogeneity indices 

were also calculated after images were 
processed with a denoising algorithm. 

Two radiologists also subjectively scored 

each mass according to their subjective 
heterogeneity. 

Both subjective and objective heterogeneity 

indices can differentiate ccRCC from 
papRCC and AML. Noise reduction 

improved differentiation of ccRCC from 

papRCC, but not differentiation of AML 

from ccRCC. 

Insufficient disclosure of the 

results: AUC given, but no 
sensitivity or specificity. 

Li (1) [114] 2018 Subtype Differentiation of 

Small (<= 4 cm) Solid Renal 
Mass Using Volumetric 

Histogram Analysis of DWI 

at 3-T MRI. 

92 MRI Histology 

(surgical) 

Differentiation of ccRCC, papRCC, 

chrRCC, AMLwvf and oncocytoma: 
Volumetric ADC maps were generated 

using all sliced of reduced-FOV DW 

images to obtain different histogram 
parameters. 

ADC histogram parameters differentiated 

eight of 10 pairs of renal tumors.  

Insufficient disclosure of the 

results: No AUC, sensitivity 
or specificity given, only 

comparison of histogram 

distribution parameters 
(ADC). 

Li [54] 2019 Whole-Tumor Quantitative 

Apparent Diffusion 

Coefficient Histogram and 
Texture Analysis to 

Differentiation of Minimal 

Fat Angiomyolipma from 
Clear Cell Renal Cell 

Carcinoma. 

140 MRI Histology 

(not further 

specified if 
surgical or 

bioptic) 

Differentiation of AMLwvf and ccRCC: 

Whole-tumor ROIs were drawn on all 

sliced of diffusion-weighted imaging to 
obtain histogram and texture parameters, 

which were compared between groups. 

Some of the parameters differed 

significantly between groups (lower mean 

ADC, median ADC, 10th, 25th, 75th, 90th 
percentiles ADC, and skewness). 

 

Ma [62] 2020 Can whole-tumor radiomics-
based CT analysis better 

differentiate fat-poor 

angiomyolipoma from clear 
cell renal cell carcinoma 

compared with conventional 

CT analysis? 

84 CT Histology 
(surgical) 

Differentiation of AMLwvf and ccRCC: 
Whole-tumor ROIs were contoured, 

radiomic features were dimensionally 

reduced, and four radiomics logistic 
classifiers were built. After collecting the 

qualitative and quantitative conventional 

CT characteristics, the conventional CT 

analysis logistic classifier and radiomics-

based logistic classifier were constructed.  

Whole-tumor radiomics-based CT analysis 
was superior to conventional CT analysis. 

Cyst degeneration, pseudo capsule, and sum 

rad-score were the most significant factors. 

Insufficient disclosure of the 
results: AUC given, but no 

sensitivity or specificity. 

Nie [66] 2020 A CT-based radiomics 
normogram for 

differentiation of renal 

angiomyolipoma without 
visible fat from 

99 CT Histology 
(surgical) 

Differentiation of AMLwvf and ccRCC: 
The cohort was divided into a training and 

a validation set. A radiomics signature was 

constructed and a radiomics score (Rad-
score) was calculated. Demographics and 

CT findings were assessed to build a 

The CT-based radiomics normogram 
demonstrated favorable predictive efficacy 

for differentiating AMLwvf from ccRCC. 

 



homogeneous clear cell 

renal cell carcinoma. 

clinical factors model. Combined with the 

Rad-score and independent clinical 

factors, a radiomics normogram was 
constructed. 

Simpfendorfer [78] 2009 Attenuation Pixels Aid 

Diagnosis? 

36 CT Histology 

(surgical) 

Differentiation of AMLwvf and RCC: 

Three radiologists counted the number of 
pixels with attenuation less than -10, -20, 

and -30 HU. Analysis of the number of 

pixels at each cutoff was performed. 

CT findings of more than 20 pixels with 

attenuation less than -20 HU and more than 
5 pixels with attenuation less than -30 HU 

have a positive predictive value of 100% in 

detection AML, but most AMLwvf cannot 
be reliably identified on the basis of an 

absolute pixel count. 

 

Soma [81] 2018 Potential for computer-aided 

diagnosis using a 

convolutional neural 

network algorithm to 
diagnose fat-poor 

angiomyolipoma in 

enhanced computed 
tomography and T2-

weighted magnetic 

resonance imaging 

126 CT and 

MRI 

Histology 

(surgical or 

bioptic) 

Differentiation of AMLwvf and RCC via 

the use of computer-aided diagnosis 

(CAD) with a convolutional neural 

network (CNN) algorithm: The contrast 
information was converted to information 

using a histogram smoothing algorithm. 

Segmentation was manually conducted, 
resized, and normalized. Patients were 

divided into test and training dataset 

without data augmentation. LeNet was 
used, a seven-level convolutional network 

for reproducible simple structure for 

prototyping. 

The CAD system that uses CNNs for 

AMLwvf showed potential to provide 

reproducible interpretation, and a greater 

level of standardization and consistency. 

Insufficient disclosure of the 

results: No numbers given. 

Takahashi [85] 2015 Small (< 4 cm) Renal 
Masses: Differentiation of 

Angiomyolipoma Without 

Visible Fat From Renal Cell 
Carcinoma Using 

Unenhanced and Contrast-

Enhanced CT. 

153 CT Histology 
(surgical) 

Differentiation of AMLwvf and RCC: 
Assessment of demographic data and size, 

shape, CT attenuation, and heterogeneity 

of the renal mass on unenhanced and 
contrast-enhanced CT. Development of 

different models including different 

demographic and various CT findings for 
contrast-enhanced CT and unenhanced 

CT. 

Combination of various CT and 
demographic findings allowed 

differentiation of AML from RCC. 

Sensitivity for differentiation of AML from 
RCC was better for the combined 

unenhanced and contrast-enhanced CT-

based model compared to the contrast-
enhanced based model. 

 

Takahashi [86] 2016 CT negative attenuation 
pixel distribution and texture 

analysis for detection of fat 

in small angiomyolipoma on 
unenhanced CT. 

112 CT Histology 
(surgical) 

Differentiation of AML and RCC: A ROI 
was manually placed over a renal mass on 

unenhanced CT. In-house software 

generated multiple overlapping small-
ROIs of various sized within whole-lesion 

ROI. Maximal number of pixels under cut-

off attenuation values in the multiple 

small-ROIs was calculated. Skewness of 

CT attenuation histogram was calculated 

from whole-lesion-ROI. Presence of fat 
was evaluated subjectively. Performance 

of subjective and objective methods for 

identifying fat was compared. 

CT negative attenuation pixel distribution 
did not identify fat in AML beyond 

subjective evaluation. Addition of skewness 

by texture analysis improved identifying fat 
in AML. 

Multiple publications 
deriving from one study. 

Only the one with better 

methodological quality 
according to the RQS was 

included (Takahashi 2015). 

Tanaka [87] 2011 Diffusion-weighted 

magnetic resonance imaging 

41 MRI Histology 

(surgical) 

Differentiation of AMLwvf and RCC: The 

signals of the tumors on DW-MRI were 

Most of the ccRCC exhibited a 

heterogenous signal on DW-MRI and 

Insufficient disclosure of the 

results: No AUC, sensitivity 



in the differentiation of 

angiomylipoma with 

minimal fat from clear cell 
renal cell carcinoma. 

analyzed subjectively and the ADC values 

and histograms were assessed objectively. 

several peaks in the ADC value histogram, 

whereas most of the AMLwvf exhibited a 

homogeneous signal on DW-MRI and a 
single prominent peak in the histogram. The 

standard deviations of the ADC values were 

smaller for AMLwvf than for ccRCC. 

or specificity given, only 

comparison of histogram 

distribution parameters 
(ADC). 

Tang [89] 2020 Quantitative Analysis of 

Multiphase Contrast-

Enhanced CT Images: A 
Pilot Study of Preoperative 

Prediction of Fat-Poor 

Angiomyolipoma and Renal 

Cell Carcinoma. 

115 CT Histology 

(surgical) 

Differentiation of AMLwvf and RCC: 

Division of the cohort into train and test 

set after data augmentation. High-
dimensional histogram-based features, 

texture-based features, and Laws features 

were extracted from CT and combined as 

different combination sets to construct a 

prediction model based on the least 

absolute shrinkage and selection operator 
procedure for the prediction of AMLwvf 

and RCC. In addition, the effects of 

different gray-scales of quantitative 
features on prediction performance was 

investigated. 

Histogram-based features, histogram-based 

features and texture-based features, 

histogram-based features and Laws features, 
and histogram-based features, texture-based 

features, and Laws features achieved 

satisfying performances in the test set. The 

different quantitative gray-scales did not 

have an obvious effect on prediction 

performances. 

Data augmentation: each 

ROI split into two samples 

to create training and 
validation set. 

Varghese (1) [91] 2018 Differentiation of 
Predominantly Solid 

Enhancing Lipid-Poor Renal 

Cell Masses by Use of 
Contrast-Enhanced CT: 

Evaluating the Role of 

Texture in Tumor 
Subtyping. 

174 CT Histology 
(surgical) 

Differentiation of malignant and benign 
renal masses (various subtypes): Whole 

lesions were manually segmented and 

coregistered from the multiphase contrast-
enhanced CT (CECT) scans. CECT 

images of the renal masses were used as 

inputs to a CECT texture analysis panel 
comprising 31 texture metrics derived 

with six texture methods.  Stepwise 

logistic regression analysis was used to 
select the best predictor from each of the 

texture methods and performance was 

assessed.  

Entropy, entropy of fast-Fourier transform 
magnitude, mean, uniformity, information 

measure of correlation 2, and sum of 

averages were among the texture predictors 
aiding renal mass subtyping. The overall 

CECT-based tumor texture model was 

accurate for differentiating benign from 
malignant solid enhancing lipid-poor renal 

masses. 

Insufficient disclosure of the 
results: AUC given, but no 

sensitivity or specificity. 

Varghese (1) [92] 2018 Differentiating solid, non-
macroscopic fat containing, 

enhancing renal masses 

using Fourier analysis of 
multiphase CT. 

156 CT Histology 
(surgical) 

Differentiation of malignant and benign 
renal masses (various subtypes): Whole 

lesions were manually segmented using 

Synapse 3D (Fujifilm, CT) and co-
registered from the multiphase CT 

acquisitions for each tumor to test the 
feasibility of two-dimensional fast Fourier 

transforms (FFT)-based imaging metrics 

for differentiating solid, non-macroscopic 
fat containing, enhancing renal masses in 

contrast-enhanced CT images. Matlab 

function, FFT2 was used to perform the 
image to frequency transformation.  

FFT-based metrics were different between 
1. benign versus malignant renal masses, 2. 

oncocytoma versus ccRCC, and 3. 

oncocytoma versus AMLwvf.  

Insufficient disclosure of the 
results: AUC given, but no 

sensitivity or specificity. 



Yan [98] 2015 Angiomyolipoma with 

minimal fat: differentiation 

from clear cell renal cell 
carcinoma and papillary 

renal cell carcinoma by 

texture analysis on CT 
images. 

50 CT Histology 

(surgical or 

bioptic) 
 

Differentiation of ccRCC, papRCC and 

AML: Unenhanced and contrast-enhanced 

CT images were analyzed and classified 
with a texture analysis software (MaZda).  

Tumor attenuation values and 

enhancement degree was determined by a 
ROI. Texture classification was performed 

for AMLwvf versus ccRCC, AMLwvf 

versus papRCC, and ccRCC versus 
papRCC.  

Texture analysis enabled a reliable method 

for the discrimination of all three groups 

(AMLwvf, ccRCC, and papRCC). A trend 
toward better classification was observed 

with precontrast phase CT for the 

discrimination for AMLwvf versus ccRCC. 

Insufficient disclosure of the 

results: No AUC, sensitivity 

or specificity given, only 
comparison of histogram 

distribution parameters 

(ADC). 

Yang [99] 2019 Contrast-Enhanced CT 

Texture Analysis for 

Distinguishing Fat-Poor 

Renal Angiomyolipoma 

From Chromophobe Renal 
Cell Carcinoma. 

56 CT Histology 

(not further 

specified if 

surgical or 

bioptic) 

Differentiation of AMLwvf and chrRCC: 

Texture features were extracted from 2D 

and 3D regions in triphasic CT images. 

The 2D and 3D texture analysis models 

were constructed with the least absolute 
shrinkage and selection operator algorithm 

and texture scores were calculated. The 

diagnostic performance of the models was 
evaluated with respect to calibration, 

discrimination, and clinical usefulness. 

Five features 2D features and eight 3D 

features were selected to build the 

respective models. Both models showed 

good discrimination and calibration. The 3D 

model was better compared to the 2D model 
regarding clinical usefulness. 

 

Yang [100] 2020 Radiomics of small renal 
masses on multiphasic CT: 

accuracy of machine 

learning-based classification 
models for the 

differentiation of renal cell 

carcinoma and 
angiomyolipoma without 

visible fat. 

163 CT Histology 
(not further 

specified if 

surgical or 
bioptic) 

Differentiation of AMLvwf and RCC: 
Manual segmentation of the ROI and 

feature extraction was performed on a 

representative slice with the largest lesion 
area on each phase of four-phase CT 

images. Features were fed into multiple 

classification models (built with classifiers 
and feature selection methods) and 

classification performances of the 

discriminative models were compared. 

Image features extracted from the 
unenhanced phase CT image demonstrated 

dominant classification performances over 

features from other three phases. Two 
discriminative models (SVM + t_score and 

SVW + relief) achieved the highest 

classification performance.  

 

You [105] 2019 The value of quantitative CT 
texture analysis in 

differentiation of 

angiomylipoma without 
visible fat from clear cell 

renal cell carcinoma on 

four-phase contrast-
enhanced CT images.” 

67 CT Histology 
(not further 

specified if 

surgical or 
bioptic) 

Differentiation of AMLvwf and ccRCC: 
The histogram, grey-level co-occurrence 

matrix, and grey-level run length matrix 

were evaluated on four-phase CT images. 
Sequential feature selection (SFS) and 

support vector machine (SVM) classifier 

with leave-one-out cross validation were 
used. 

Using the SFS and SVM classifiers, five 
texture features were selected. Diagnostic 

performance for discrimination of AMLwvf 

from ccRCC of the five selected texture 
features for both unenhanced and contrast-

enhanced CT phases was high. 

 

Differentiation of oncocytoma from RCC 

Chen [10] 2017 Voxel-based whole-lesion 

enhancement parameters: a 
study of its clinical value in 

differentiating clear cell 

renal cell carcinoma from 
renal oncocytoma 

94 CT Histology 

(surgical) 

Differentiation of ccRCC from renal 

oncocytoma: Multiphase CT images were 
transferred to a three-dimensional 

workstation and whole lesion ROIs were 

manually segmented. Whole lesion 
enhancement and histogram distribution 

parameters skewness, kurtosis, standard 

deviation, and interquartile range were 
calculated. Whole lesion enhancement 

Whole lesion enhancement alone did not 

demonstrate an advantage in discriminating 
between ccRCC and oncocytoma, but when 

combined with histogram distribution 

parameters, it did demonstrate a slight 
improvement. 

Insufficient disclosure of the 

results: AUC given, but no 
sensitivity or specificity. 



parameters were compared to single ROI-

based enhancement. 

Coy [13] 2019 Deep learning and 
radiomics: the utility of 

Google TensorFlowTM 

Inception in classifying clear 
cell renal cell carcinoma and 

oncocytoma on multiphasic 

CT. 

179 CT Histology 
(not further 

specified if 

surgical or 
bioptic) 

Differentiation of ccRCC and 
oncocytoma: The renal mass was 

contoured in each of four CT phases, 

resulting in a 3D volume of interest (VOI). 
Different approaches to convert the 

acquired VOI data into a set of images that 

adequately represented each tumor were 
investigated and used to train the final 

layer of the neural network model. 
 

The best classification results was obtained 
in the excretory phase among thirteen 

classification methods tested.  

 

Deng (2) [16] 2020 Usefulness of CT texture 

analysis in differentiating 

benign and malignant renal 
tumors. 

501 CT Histology 

(not further 

specified if 
surgical or 

bioptic) 

Differentiation of RCC and benign renal 

tumors: A ROI was drawn encompassing 

the largest cross-section of the tumor on 
venous phase axial CT. Different texture 

analysis parameters were compared 

between cohorts. 

Differences in entropy were helpful in 

differentiation RCC from AMLwvf, and 

chrRCC from oncocytoma. 

 

Gaing (2) [25] 2015 Subtype differentiation of 

renal tumors using voxel-

based histogram analysis of 
intravoxel incoherent 

motion parameters 

44 MRI Histology 

(surgical) 

Differentiation of ccRCC, papRCC, 

chrRCC, oncocytoma and AML: Voxel-

based histogram analysis of intravoxel 
incoherent motion imaging (IVIM) 

parameters. A biexponential model was 

fitted to the diffusion signal data using a 
segmented algorithm to extract different 

IVIM parameters for each voxel. 

Two IVIM parameters differentiated 8 of 15 

pairs of renal tumors. Histogram analysis of 

IVIM parameters differentiated 9 of 15 
subtype pairs. Intravoxel incoherent motion 

imaging parameters with inclusion of 

histogram measures of heterogeneity can 
help differentiate malignant from benign 

lesions as well as various subtypes of RCC. 

Insufficient disclosure of the 

results: No AUC, sensitivity 

or specificity given, only 
comparison of histogram 

distribution parameters 

(perfusion fraction, tissue 
diffusivity, 

pseudodiffusivity). 

Hoang [35] 2018 Assessment of multiphasic 
contrast-enhanced MR 

textures in differentiating 

small renal mass subtypes 

41 MRI Histology 
(surgical) 

Differentiation of benign and malignant 
renal masses (oncocytoma vs. ccRCC and 

papRCC) and between RCC subtypes 

(ccRCC vs. papRCC): Texture features 
were extracted from entire cross-sectional 

tumoral region in three consecutive slices 

containing the largest cross-sectional area 
from each of the four phases. The change 

in imaging feature between precontrast 

imaging and each postcontrast phase was 
calculated. Data dimension reduction and 

feature selection were performed by 

conducting followed by modified false 

discovery rate adjustment, and Lasso 

regression. Mutlivariate modeling 

incorporating the selected features was 
performed. 

Histogram imaging features were 
informative variables in differentiating 

between benign and malignant masses, 

while texture imaging features were of 
added value in differentiating between 

subtypes of RCCs.  

 

Li (2) [114] 2018 Subtype Differentiation of 

Small (<= 4 cm) Solid Renal 

Mass Using Volumetric 

92 MRI Histology 

(surgical) 

Differentiation of ccRCC, papRCC, 

chrRCC, AMLwvf and oncocytoma: 

Volumentric ADC maps were generated 
using all sliced of reduced-FOV DW 

ADC histogram parameters differentiated 

eight of 10 pairs of renal tumors.  

Insufficient disclosure of the 

results: No AUC, sensitivity 

or specificity given, only 
comparison of histogram 



Histogram Analysis of DWI 

at 3-T MRI. 

images to obtain different histogram 

parameters. 

distribution parameters 

(ADC). 

Li [55] 2019 Value of radiomics in 
differential diagnosis of 

chromophobe renal cell 

carcinoma and renal 
oncocytoma. 

61 CT Histology 
(surgical) 

Differentiation of chrRCC and 
oncocytoma: Volumes of interest (VOIs), 

including lesions on the images, were 

manually delineated using the RadCloud 
platform. A LASSO regression algorithm 

was used to screen the image features 

extracted from all VOIs. Five machine 
learning classifications were trained to 

distinguish chrRCC from oncocytoma by 

using a fivefold cross-validation strategy. 

The performance of the classifier was 

evaluated. 

1029 features were extracted from all CT 
phases in total. The LASSO regression 

algorithm was used to screen out the best 

features for the different CT phases and for 
combined CT phases. All five classifiers 

had good diagnostic performance, the 

support vector machine classifier showed 
the best performance. 

 

Paschall [67] 2018 Differentiating papillary 
type I RCC from clear cell 

RCC and oncocytoma: 

application of whole-lesion 
volumetric ADC 

measurement. 

55 MRI Histology 
(not further 

specified if 

surgical or 
bioptic) 

Differentiation of ccRCC versus papRCC 
and oncocytoma: Whole lesion 

measurements were performed and mean, 

median, skewness, kurtosis, and every 5th 
percentile ADCs were determined from 

the whole lesion histogram. Linear mixed 

models that accounted for within-subject 
correlation of lesion were used to ADCs 

among RCC subtypes. ROC curve analysis 

with optimal cutoff points was used to test 
the ability to the different groups. 

Whole-lesion ADC values were 
significantly different between papRCC and 

ccRCC, and between papRCC and 

oncocytoma, demonstrating strong ability to 
differentiate subtypes across the quantiles. 

Best percentile RAC analysis demonstrated 

best AUC values for ccRCC versus papRCC 
and oncocytoma versus papRCC. 

 

Raman (1) [70] 2014 CT texture analysis of renal 

masses: pilot study using 

radom forest classification 
for prediction of pathology 

99 CT Histology 

(surgical) 

Differentiation of ccRCC, papRCC, 

oncocytomas and renal cysts: ROIs were 

drawn around each mass on multiple slices 
in different phases of contrast-enhanced 

CT images. Unfiltered images and spatial 

band-pass filtered images were analyzed to 
quantify heterogeneity. A predictive 

model using quantitative parameters was 

constructed and externally validated. 

Various renal masses (oncocytomas, 

ccRCC, cysts, and papRCC) were 

accurately classified using quantitative 
information derived from routine scans. 

 

Sasaguri [74] 2015 Small (< 4 cm) Renal Mass 

Differentiation of 

Oncocytoma From Renal 
Cell Carcinoma on Biphasic 

Contrast-Enhanced CT 

166 CT Histology 

(surgical) 

Differentiation of oncocytoma versus RCC 

(papRCC and ccRCC and other subtypes): 

Patient demographics and CT tumor 
characteristics were evaluated. A 

multinomial logistic regression model was 

then constructed for differentiating 

oncocytoma from ccRCC and other 

subtype RCCs from papRCC, The 

probability of each group was calculated 
from the model. Diagnostic performance 

among three pairwise diagnoses and 

between oncocytoma and any RCC were 
assessed by AUC values.  

Patient age, tumor CT attenuation values 

and skewness in both the corticomedullary 

and nephrogenic phases, and subjective 
tumor heterogeneity were significant 

variables in the multinomial logistic 

regression analysis. The logistic regression 

model using the variables showed the best 

AUC for the discrimination of oncocytomas 

from papRCCs. 

 



  

Varghese (2) [91] 2018 Differentiation of 

Predominantly Solid 

Enhancing Lipid-Poor Renal 
Cell Masses by Use of 

Contrast-Enhanced CT: 

Evaluating the Role of 
Texture in Tumor 

Subtyping. 

174 CT Histology 

(surgical) 

Differentiation of malignant and benign 

renal masses (various subtypes): Whole 

lesions were manually segmented and 
coregistered from the multiphase contrast-

enhanced CT (CECT) scans. CECT 

images of the renal masses were used as 
inputs to a CECT texture analysis panel 

comprising 31 texture metrics derived 

with six texture methods.  Stepwise 
logistic regression analysis was used to 

select the best predictor from each of the 

texture methods and performance was 

assessed.  

Entropy, entropy of fast-Fourier transform 

magnitude, mean, uniformity, information 

measure of correlation 2, and sum of 
averages were among the texture predictors 

aiding renal mass subtyping. The overall 

CECT-based tumor texture model was 
accurate for differentiating benign from 

malignant solid enhancing lipid-poor renal 

masses. 

Insufficient disclosure of the 

results: AUC given, but no 

sensitivity or specificity. 

Varghese (2) [92] 2018 Differentiating solid, non-

macroscopic fat containing, 
enhancing renal masses 

using Fourier analysis of 

multiphase CT. 

156 CT Histology 

(surgical) 

Differentiation of malignant and benign 

renal masses (various subtypes): Whole 
lesions were manually segmented using 

Synapse 3D (Fujifilm, CT) and co-

registered from the multiphase CT 
acquisitions for each tumor to test the 

feasibility of two-dimensional fast Fourier 

transforms (FFT)-based imaging metrics 
for differentiating solid, non-macroscopic 

fat containing, enhancing renal masses in 

contrast-enhanced CT images. Matlab 
function, FFT2 was used to perform the 

image to frequency transformation.  

FFT-based metrics were different between 

1. benign versus malignant renal masses, 2. 
oncocytoma versus ccRCC, and 3. 

oncocytoma versus AMLwvf.  

Insufficient disclosure of the 

results: AUC given, but no 
sensitivity or specificity. 

Yu [106] 2017 Texture analysis as a 
radiomic marker for 

differentiating renal tumors. 

119 CT Histology 
(surgical) 

Differentiation of ccRCC, papRCC, 
chrRCC and oncocytoma: Images were 

manually segmented, and texture analysis 

of the segmented tumors was performed. 
A support vector machine (SVM) method 

was also applied to classify tumor types. 

Texture analysis results were compared to 
the various tumors and AUCs were 

calculated. Similar calculations were 

performed with the SVM data. 

Excellent discriminators of tumors were 
identified among the histogram-based 

features noting features skewness and 

kurtosis for differentiating ccRCC from 
oncocytoma. Histogram feature median 

demonstrated a high AUC for differentiating 

papRCCC from oncocytoma and other 
tumors. Machine learning further improved 

the results achieving very good to excellent 

discrimination of tumor subtypes. The 
ability of machine learning to distinguish 

ccRCC from other tumors was excellent. 

Insufficient disclosure of the 
results: AUC given, but no 

sensitivity or specificity. 



Differentiation of not further specified benign renal tumors from RCC 

Deng (3) [16] 2020 Usefulness of CT texture 
analysis in differentiating 

benign and malignant renal 

tumors. 

501 CT Histology (not further 
specified if surgical or 

bioptic) 

Differentiation of RCC and benign renal tumors: 
A ROI was drawn encompassing the largest 

cross-section of the tumor on venous phase axial 

CT. Different texture analysis parameters were 
compared between cohorts. 

Differences in entropy were helpful in 
differentiation RCC from AMLwvf, 

and chrRCC from oncocytoma. 

 

Erdim [21] 2020 Prediction of Benign and 

Malignant Solid Renal 
Masses: Machine 

Learning-Based CT 

Texture Analysis. 

79 CT Histology (surgical) Differentiation of benign and malignant renal 

tumors (various subtypes) by 8 machine learning 
algorithms after manual segmentation of the 

ROI. Feature selection was performed using a 

nested-approch, results were compared to the 
respective area under the curve (AUC). 

CT texture analysis via machine 

learning algorithms using a variety of 
features can differentiate RCC from 

benign masses with good 

reproducibility 

 

Gillingham [28] 2019 Bosniak IIF and III Renal 

Cysts: Can Apparent 

Diffusion Coefficient-
Derived Texture Features 

Discriminate Between 

Malignant and Benign IIF 
and III Cysts? 

27 MRI Histology (not further 

specified if surgical or 

bioptic) 

Discrimination of benign and malignant Bosniak 

IIF and III renal cysts using diffusion coefficient 

maps on MRI scans. After manual segmentation 
renal cystic lesions were evaluated by 8 different 

diffusion derived features. 

MRI-diffusion coefficient-derived 

texture measures aid in predicting 

malignancy in Bosniak IIF and III 
cystic lesions. 

Insufficient disclosure of 

the results: No AUC, 

sensitivity or specificity 
given, only comparison of 

histogram distribution 

parameters. 

Kim [41] 2019 Utility of CT Texture 

Analysis in Differentiating 
Low-Attenuation Renal 

Cell Carcinoma From 

Cysts: A Bi-Insitutional 
Retrospective Study 

286 CT Histology (not further 

specified if surgical or 
bioptic) + fulfillment of 

predefined, radiographic 

criteria for benign cysts 

Differentiation of low-attenuation RCC and 

benign renal cysts using CT texture analysis. ROI 
was automatically defined by a commercially 

available texture analysis program after 

preselecting a single section depicting the 
lesions’ largest diameter. Results were compared 

to 2 novice and 2 expert readers. 

Best results in differentiating RCC 

from cysts were derived by a combined 
model including mean gray-level 

attenuation, coarse entropy and 

kurtosis. 

 

Kunapuli [48] 2018 A Decision-Support Tool 
for Renal Mass 

classification. 

150 CT Histology (surgical) Differentiation of benign and malignant renal 
lesions applying relational gradient boosting 

compared to standard machine-learning 

algorithms. Extensive feature reduction was 
performed to include 10 out of 204 radiomics 

features in the analysis. 

Specialized relational machine learning 
algorithms succeeds in accurately 

predict malignancy in renal masses. 

Insufficient disclosure of 
the results: AUC given, 

but no sensitivity or 

specificity. 

Li (3) [114] 2018 Subtype Differentiation of 

Small (<= 4 cm) Solid 
Renal Mass Using 

Volumetric Histogram 

Analysis of DWI at 3-T 
MRI. 

92 MRI Histology (surgical) Differentiation of ccRCC, papRCC, chrRCC, 

AMLwvf and oncocytoma: Volumentric ADC 
maps were generated using all sliced of reduced-

FOV DW images to obtain different histogram 

parameters. 

ADC histogram parameters 

differentiated eight of 10 pairs of renal 
tumors.  

 

Linguraru [58] 2009 Computer-aided renal 

cancer quantification and 
classification from contrast 

enhanced CT via 

histograms of curvature-
related features.” 

40 CT Histology (not further 

specified if surgical or 
bioptic) 

Differentiation of benign versus malignant renal 

masses and other subtypes using curvature-
related features after computer-assisted 

segmentation in portal venous phase. 

Enhancement in different phases was used to 
discriminate between tumor subtypes. 

Computer-assisted evaluation of renal 

lesions is a promising tool for 
diagnosis of renal tumor subtype 

differentiation. 

 

Picard [68] 2019 Combined Qualitative and 

Quantitative Assessment of 

Low-Attenuation Renal 
Lesions Improves 

n.a. CT Histology (surgical) Discrimination of renal cysts and RCC using 

non-contrast CT images. A comparison of 

qualitative (3 readers, differing in level of 
experience) and quantitative (commercially 

Combination of qualitative and 

quantitative analysis of non-contrast 

CT scans showed best performance in 
diagnosis of RCC. 

 



Identification of Renal 

Malignancy on 

Noncontrast Computed 
Tomography.” 

available texture analysis software) assessment 

was conducted. 

Raman (2) [70] 2014 CT texture analysis of renal 

masses: pilot study using 
radom forest classification 

for prediction of pathology 

99 CT Histology (surgical) Differentiation of ccRCC, papRCC, oncocytomas 

and renal cysts: ROIs were drawn around each 
mass on multiple slices in different phases of 

contrast-enhanced CT images. Unfiltered images 

and spatial band-pass filtered images were 
analyzed to quantify heterogeneity. A predictive 

model using quantitative parameters was 

constructed and externally validated. 

Various renal masses (oncocytomas, 

ccRCC, cysts, and papRCC) were 
accurately classified using quantitative 

information derived from routine scans. 

 

Ramesh [71] 2018 Assessment of primary 

solid renal mass using 

texture analysis of CT 
images of kidney by active 

contour method: A novel 

method.” 

188 CT Histology (surgical or 

bioptic) 

Differentiation of normal renal tissue, benign and 

malignant renal masses from CT scans. 

Segmentation was performed using active 
contour method, data extraction based on co-

occurrence matrices was analyzed by MATLAB 

software. Results were compared between 
intervention and control group. 

Using radiomics features entropy, 

energy, sum average, sum variance, 

inertia and low gray level emphasis is a 
promising tool in differentiating the 

texture composition of renal masses. 

Insufficient disclosure of 

the results: No AUC, 

sensitivity or specificity 
given, only comparison of 

histogram distribution 

parameters. 

Said [73] 2020 Characterization of solid 

renal neoplasms using 

MRI-based quantitative 
radiomics features. 

125 MRI Histology (surgical) Differentiation of benign renal lesions versus 

RCC and characterization of RCC subtypes 

(ccRCC and papRCC) via machine-learning 
algorithms on MRI-based radiomics features. 

Qualitative assessment was conducted by 2 

radiologists and results compared to quantitative 
analysis. Radiomics software MATLAB was 

developed extracting 50 histogram and 140 

texture features per lesion. 

Diagnosis of renal masses can be aided 

by machine-learning algorithms using 

texture analysis on MRI-scans. 

 

Sun [84] 2020 Radiologic-Radiomic 

Machine Learning Models 

for Differentiation of 
Benign and Malignant 

Solid Renal Masses: 

Comparison With Expert-
Level Radiologists. 

227 CT Histology (surgical) Differentiating malignant from benign renal 

masses using machine learning algorithms in 

comparison to experienced radiologist raters. 
Semi-automated segmentation and manual 

identification of the ROI was conducted to 

design a 3D volume of interest. A variety of first-
order intensity, shape and gray-level features 

were extracted and a support vector machine was 

applied to train for machine learning.e4for 
machine learning.e4 

Qualitative assessment by expert 

radiologists showed a high interrater 

variability in discriminating malignant 
and benign renal masses, while 

machine learning may contribute to 

diagnostic accuracy. 

 

Tanaka [88] 2020 Differentiation of Small 

(<= 4 cm) Renal Masses on 

Multiphase Contrast-

Enhanced CT by Deep 

Learning. 

159 CT Histology (surgical or 

bioptic) 

Differentiation of malignant and benign renal 

masses (not further specified) was analyzed using 

convolutional neural network (CNN) model as 

deep learning tool. The study population was 

divided into training and validation groups and 
data augmentation was applied. Logistic 

regression models determined the predictive 

value of CNN models compared to patient data. 

Coricomedullary phase image data 

allowed best prediction of malignancy 

in small renal masses using deep 

learning models. 

Insufficient disclosure of 

the results: Data was 

divided randomly into 5 

subsets (4 for 

augmentation and training, 
1 for testing), total of 136 

malign and 32 benign 

lesions, no numbers given 
for test dataset. 



Uhlig [90] 2020 Discrimination malignant 

and benign clinical T1 

masses on computed 
tomography: A pragmatic 

radiomics and machine 

learning approach 

94 CT Histology (surgical) The study aimed at differentiation of malignant 

and benign T1 renal masses by CT-texture 

analysis with the help of machine learning 
algorithms. Segmentation was performed 

manually and a total of 120 radiomics features 

was derived from the image data. Results were 
compared to qualitative assessment by 2 

radiologists. Receiver-operating characteristic 

curves and respective area under the curve 
present the extent of accuracy. 

Compared to qualitative assessment 

radiomics combined with machine 

learning algorithms enables higher 
diagnostic accuracy in discriminating 

between malignant and benign renal 

lesions. 

 

Varghese (3) [91] 2018 Differentiation of 

Predominantly Solid 

Enhancing Lipid-Poor 

Renal Cell Masses by Use 

of Contrast-Enhanced CT: 
Evaluating the Role of 

Texture in Tumor 

Subtyping. 

174 CT Histology (surgical) Differentiation of malignant and benign renal 

masses (various subtypes): Whole lesions were 

manually segmented and coregistered from the 

multiphase contrast-enhanced CT (CECT) scans. 

CECT images of the renal masses were used as 
inputs to a CECT texture analysis panel 

comprising 31 texture metrics derived with six 

texture methods.  Stepwise logistic regression 
analysis was used to select the best predictor 

from each of the texture methods and 

performance was assessed.  

Entropy, entropy of fast-Fourier 

transform magnitude, mean, 

uniformity, information measure of 

correlation 2, and sum of averages 

were among the texture predictors 
aiding renal mass subtyping. The 

overall CECT-based tumor texture 

model was accurate for differentiating 
benign from malignant solid enhancing 

lipid-poor renal masses. 

Insufficient disclosure of 

the results: AUC given, 

but no sensitivity or 

specificity. 

Varghese (3) [92] 2018 Differentiating solid, non-

macroscopic fat containing, 

enhancing renal masses 
using Fourier analysis of 

multiphase CT.” 

156 CT Histology (surgical) Differentiation of malignant and benign renal 

masses (various subtypes): Whole lesions were 

manually segmented using Synapse 3D (Fujifilm, 
CT) and co-registered from the multiphase CT 

acquisitions for each tumor to test the feasibility 

of two-dimensional fast Fourier transforms 
(FFT)-based imaging metrics for differentiating 

solid, non-macroscopic fat containing, enhancing 

renal masses in contrast-enhanced CT images. 
Matlab function, FFT2 was used to perform the 

image to frequency transformation.  

FFT-based metrics were different 

between 1. benign versus malignant 

renal masses, 2. oncocytoma versus 
ccRCC, and 3. oncocytoma versus 

AMLwvf.  

Insufficient disclosure of 

the results: AUC given, 

but no sensitivity or 
specificity. 

Xi [97] 2020 Deep Learning to 

Distinguish Benign from 
Malignant Renal Lesions 

Based on Routine MR 

Imaging.” 

n.a. MRI Histology (surgical) A deep learning model namely residual 

convolutional neural network (ResNet) is used to 
differentiate malignant and benign renal masses 

on routine MRI-scans. Study population was 

divided into training, validation and test groups 
and deep learning was applied. Results were 

compared to qualitative assessment by a 
radiologist and a standard radiomics model. 

Deep learning methods inherit a high 

diagnostic accuracy in determining 
malignancy of renal masses on MR 

Imaging, even compared to expert or 

standard radiomics assessment. 

 

Yap [101] 2018 Quantitative Contour 

Analysis as an Image-

based Discriminator 
Between Benign and 

Malignant Renal Tumors. 

150 CT Histology (surgical) Differentiation of malignant and benign renal 

masses by contour assessment on CT images. On 

the basis of manually segmented tumors 3D 
models were created using MATLAB software. 

Morphological data was evaluated in its 

diagnostic potential. 10 parameters of shape 
description were included in the analysis. 

Morphometry can be applied for 

discriminating benign and malignant 

renal masses in terms of convex hull 
perimeter ration and elliptic 

compactness. No other tumor shape 

descriptors proved statistically 
significant in predicting malignancy. 

Insufficient disclosure of 

the results: No AUC, 

sensitivity or specificity 
given, only comparison, 

only comparison of shape 

descriptors. 



Abbreviations: AMLwvf = angiomyolipoma without visible fat, ccRCC = clear-cell renal cell carcinoma, papRCC = papillary renal cell carcinoma, 

RCC = renal cell carcinoma, chrRCC = chromphobe renal cell carcinoma. 

  

Zabihollahy [107] 2020 Automated classification of 

solid renal masses on 

contrast-enhanced 
computed tomography 

images using convolutional 

neural network with 
decision fusion 

315 CT Histology (surgical) Differentiation of benign and malignant RCC in 

contrast-enhanced CT imaging with the help of 

deep learning algorithms. Convolutional neural 
network was combined with decision-fusion 

testing semi- and fully-automated segmentation 

and renal tumor evaluation. Thirdly, a 3D model 
was established. For each model accuracy, 

precision and recall was measured. 

Highest diagnostic accuracy was 

achieved by semi-automated machine 

learning models using CNN 
algorithms. 

Insufficient disclosure of 

the results: AUC given, 

but no sensitivity or 
specificity. 

Zabihollahy [109] 2020 Patch-Based Convolutional 
Neural Network for 

Differentiation of Cyst 

From Solid Renal Mass on 

Contrast-Enhanced 

Computed Tomography 

Images. 

315 CT Histology (surgical) Differentiation of benign renal cysts and solid 
renal masses by applying automatic 

convolutional neural network (CNN) to contrast-

enhanced CT imaging. Segmentation was 

performed manually, and patches were labelled 

according to cystic or solid differentiation. For 

final diagnosis CNN evaluation was combined 
with majority voting system algorithms 

according to detected Hounsfield Units. Training 

population contained 40 datasets and data 
augmentation was applied.  

Convolutional neural network is a deep 
learning model applicable to accurate 

discrimination between cystic and solid 

renal lesions. 

 Insufficient disclosure of 
the results: AUC given, 

but no sensitivity or 

specificity. 

Zhou [113] 2019 A Deep Learning-based 

radiomics model for 
differentiating benign and 

malignant renal tumors 

192 CT Histology(surgical) Differentiation of malignant and benign renal 

masses combining radiomics with deep learning 
algorithms.  The study population was divided 

into a training and testing group. 1 Image-level 

model and 2 patient-level models including 3D-
datasets were established for each dataset to 

evaluate and cross-validate diagnostic accuracy.  

Highest diagnostic accuracy for renal 

mass discrimination was achieved by 
patient-level deep learning models 

incorporating 3D data reconstruction. 

 



Supplementary Table S5: Studies investigating treatment response assessment using radiomics (n = 6) 

Study Treatment ROI Endpoint Features Treatment 

related 

changes 

recognized 

Treatment 

related 

changes not 

recognized 

Total 

number of 

included 

patients 

Antunes 

2016 [1] 

sunitinib Primary 

tumor 

Treatment-related changes in 

multiple radiomics features after 

early sunitinib treatment via FLT-

PET/MRI 

SUV, ADC energy, 

T2w difference 

average 

2 0 2 

Bharwani 

2014 [4] 

sunitinib Primary 

tumor 

Changes in histogram parameters 

(ADC and AUC low (proportion 

of the tumor with ADC values 

below the 25th percentile of the 

ADC histograms)) and correlation 

with OS (baseline (n=26) and 

treatment related changes in 

surviving patients (n=20)) 

whole tumor mean 

ADC 

9 11 20 

Boos 

2017 [6] 

TKI (sunitinib 

n =18, 

sorafenib n=1) 

A 

measurable 

soft tissue 

lesion 

Change in CT intensity 

distribution curves 

mean and median 

lesion attenuation 

(HU) 

11 8 19 

Goh 2011 

[29] 

TKI (sunitinib 

n=26, cedirinib 

n=6, pazopanib 

n=4, 

regorafenib 

n=3) 

metastases Changes in histogram parameters 

(entropy and uniformity) and 

correlation of texture parameters 

with Time to Progression 

Entropy and 

uniformity 

n.a. n.a. 87 

Haider 

2017 [31] 

Sunitinib A 

measurable 

lesion 

Correlation of texture parameters 

with OS and PFS  

Entropy following 

treatment, 

normalized 

standard deviation 

n.a. n.a. 87 



prior to and 

following treatment 

Mains 

2018 [63] 

Various 

treatments (not 

specified) 

A large 

artery 

Association between OS and PFS 

with functional CT parameters 

Blood volume, 

blood flow and 

standardized 

perfusion 

n.a. n.a. 69 

Abbreviations: ST = systemic therapy, ROI = region of interest, FLT-PET/MRI = F 18 fluorothymidine-positron emission tomography/magnetic 

resonance imaging, SUV = standardized uptake value, ADC = apparent diffusion coefficient, AUC = area under the curve, OS = overall survival, CT 

= computed tomography, HU = Hounsfield units, PFS = progression free survival.  
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