cancers

Review

Epigenetic Regulation of MicroRNA Clusters and Families
during Tumor Development

Jana Gregorova 1'*, Petra Vychytilova-Faltejskova %' and Sabina Sevcikova !

check for

updates
Citation: Gregorova, J.;
Vychytilova-Faltejskova, P;
Sevcikova, S. Epigenetic Regulation
of MicroRNA Clusters and Families
during Tumor Development. Cancers
2021, 13, 1333. https://doi.org/
10.3390/ cancers13061333

Academic Editor: Nicoletta Sacchi

Received: 16 February 2021
Accepted: 14 March 2021
Published: 16 March 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

3,%

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University,

625 00 Brno, Czech Republic; j.gregorova@med.muni.cz

Department of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University,
625 00 Brno, Czech Republic; petra.vychytilova@ceitec.muni.cz

Department of Clinical Hematology, University Hospital Brno, 625 00 Brno, Czech Republic

*  Correspondence: sevcik@med.muni.cz

1t  These authors contributed equally to this paper.

Simple Summary: In this review, the history of RNA interference discovery and current knowledge
about microRNA biogenesis and post-transcriptional regulation of gene expression is summarized,
with a special focus on microRNA clusters and families. Further, strong interplay between microR-
NAs and basic epigenetic mechanisms, such as DNA methylation and histone modifications, are
introduced and associated with deregulated expression of microRNAs during tumor development.
Finally, novel strategies for epigenetic-based therapies are discussed.

Abstract: MicroRNAs are small non-coding single-stranded RNA molecules regulating gene ex-
pression on a post-transcriptional level based on the seed sequence similarity. They are frequently
clustered; thus, they are either simultaneously transcribed into a single polycistronic transcript or
they may be transcribed independently. Importantly, microRNA families that contain the same seed
region and thus target related signaling proteins, may be localized in one or more clusters, which are
in a close relationship. MicroRNAs are involved in basic physiological processes, and their deregu-
lation is associated with the origin of various pathologies, including solid tumors or hematologic
malignancies. Recently, the interplay between the expression of microRNA clusters and families and
epigenetic machinery was described, indicating aberrant DNA methylation or histone modifications
as major mechanisms responsible for microRNA deregulation during cancerogenesis. In this review,
the most studied microRNA clusters and families affected by hyper- or hypomethylation as well
as by histone modifications are presented with the focus on particular mechanisms. Finally, the
diagnostic and prognostic potential of microRNA clusters and families is discussed together with
technologies currently used for epigenetic-based cancer therapies.

Keywords: microRNA clusters; microRNA families; epigenetics; tumor development; DNA methyla-
tion; histone modifications; epigenetic therapy

1. History of microRNA Discovery

Twenty years ago, the classical dogma of molecular biology that DNA is transcribed
into RNA, which is subsequently translated into proteins, was well accepted. However,
with the development of whole-genome and transcriptome sequencing technologies, it
was determined that more than 90% of the genome is actively transcribed. Surprisingly,
less than 2% of the genome encodes proteins, while the rest of the transcriptome shows
an extensive non-coding RNA (ncRNA) expression [1]. Previously, these molecules were
considered to be “junk”, but it was found that most of them are involved in the majority of
cellular processes and functions [2].

Today, microRNAs (miRNAs) belong to the well-documented small ncRNAs that
are currently the subject of intensive translational research. The first described miRNA,
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lin-4, was discovered in Caenorhabditis elegans by Ambros et al. [3] and Ruvkun et al. [4] in
1993 as an essential regulator of control of developmental timing. In the December issue
of Cell, both Ambros and Ruvkun reported that small and non-protein-coding transcript
lin-4 regulates mRNA lin-14 through its 3’ UTR region. Downregulation of LIN-14 protein
was dependent on the transcription of l/in-4, which is not translated into a protein [3,4].
However, it was only in 2000 when the second miRNA was identified by Ruvkun et al. [5];
it was let-7—a heterochronic gene of C. elegans which controls the transition of larval
development through the binding to two closely spaced sites in lin-41 3’ UTR. Importantly,
the let-7 sequence is highly conserved across species from flies to humans [6]; the human
let-7 family comprises 12 miRNAs that share complete sequence identity at the seed region,
thus regulating the same targets [7]. These facts were significant for the study of miRNAs
in other organisms.

Since then, thousands of miRNAs have been identified in humans and other species.
According to the current version of miRBase database (version 22.1, October 2018; www.
mirbase.org), 38,589 hairpin precursors and 48,860 mature miRNAs from 271 different
organisms have been annotated. Concerning the human genome, 1917 hairpin precursors
and 2654 mature sequences are included [8]. Besides miRBase, several other miRNA online
databases, such as deepBase [9], microRNA.org [10], Rfam 14.4 [11], or miRGen v.3 [12],
together with miRNA target prediction tools and software, including TargetScan [13],
PicTar [14], TarBase [15], miRWalk [16], Diana-microT [17], or RNA22 [18], facilitate current
studies investigating miRNAs involvement in cellular networks.

1.1. Biogenesis of microRNAs

Genes for miRNAs are distributed on all chromosomes. Interestingly, the lowest
or no miRNA precursors are observed on the Y chromosome, while there are several
chromosomes with extremely high numbers of miRNA genes in all species, probably
due to clustering of miRNAs. In humans, chromosomes 1, 19, X, and 2 have the highest
number of miRNA genes and constitute almost 30% of all miRNAs [19]. Previously, it
was shown that miRNA genes are frequently located at fragile sites of chromosomes, in
close to human papilloma virus integration sites, inside or near homeobox clusters, and
in cancer-associated genomic regions commonly affected by deletions, amplifications, or
breakpoints [20].

Generally, miRNA genes may be divided into four subgroups: intergenic, intronic,
exonic, and others (3’ UTR, 5’ UTR, and combinations of any two from intron, exon, 3’ UTR,
and 5 UTR) depending on their location in the genome [21]. It seems that while the intronic,
exonic, and other miRNAs are the byproduct of transcription and post-transcriptional
processing of corresponding host protein-coding genes, intergenic miRNAs have their
own promoters and may be transcribed independently of protein-coding genes by RNA
polymerase II [22]. They are transcribed as long primary transcripts (pri-miRNAs) that
are capped and polyadenylated. The typical pri-miRNA consists of an imperfectly paired
stem of about 33 base pairs (bp), with a terminal loop [23]. The pri-miRNA is subsequently
recognized and cleaved by the so-called Microprocessor complex, which consists of the
double-stranded RNase III enzyme Drosha and its essential cofactor, the double-stranded
RNA-binding protein Di-George syndrome critical region 8 (DGCRS) [24]. This cleavage
results in precursor miRNA (pre-miRNA) with a typical stem-loop structure, which is about
70 nt long. The pre-miRNA is exported to the cytoplasm by exportin 5 (XPO5)/RanGTP
complex and further processed by Dicer (RNase IIl endonuclease). Dicer, together with its
partners TRBP (HIV-1 trans-activating response RNA-binding protein) and PACT (protein
kinase RNA activator), binds to the end of pre-miRNA and cuts both strands of the duplex,
resulting in 18-25 nt long miRNA duplex with 2-nucleotide 3’ overhangs [25]. One of the
strands (guide strand) is bound by the Argonaute proteins 1-4 (AGO1-4) and retained in
the miRISC (miRNA-induced silencing complex) to guide the complex to complementary
target mRNAs for post-transcriptional gene silencing. The second strand (passenger strand)
is cleaved by AGO?2 (Figure 1) [26].
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Figure 1. Canonical and non-canonical pathways of microRNA biogenesis. (A) Canonical pathway—microRNA gene is tran-
scribed by RNA polymerase II into primary microRNA (pri-miRNA), cleaved by microprocessor complex Drosha/DGCRS,
and precursor microRNA (pre-miRNA) is exported from the nucleus to the cytoplasm by Exportin 5 (XPO5) and further
processed by Dicer and its partners into 18-25 nucleotide long microRNA duplex with 2-nucleotide 3’ overhangs. Guide
strand is subsequently bound by the Argonaute proteins 1-4 (AGO1-4) and retained in the microRNA-induced silencing
complex to target mRNAs for post-transcriptional silencing. (B) Mirtrons—generated through mRNA splicing indepen-
dently of Drosha-mediated processing step. (C) Small nucleolar RNA-derived microRNAs—Drosha-independent pathway.
(D) Exportin 5-independent transport of pre-miRNAs from the nucleus to the cytoplasm has been described in the case of
miR-320 family. (E) Dicer-independent processing of miR-451—pre-miR-451 is directly loaded into AGO2, cleaved and
trimmed by poly(A)-specific ribonuclease PARN to produce mature miR-451. The figure was created with BioRender.com.

While the biogenesis of most miRNAs is dependent on Drosha and Dicer, several
non-canonical pathways have been described thanks to the analysis of next-generation
sequencing (NGS) data. Non-canonical miRNAs have diverse origins, including introns,
endogenous short hairpin RNAs (endo-shRNAs), endogenous short interfering RNAs
(endo-siRNAs), tRNA precursors, and small nucleolar RNA (snoRNAs) (Figure 1) [27]. The
Drosha-independent pathway is a non-canonical pathway where the Drosha-mediated pro-
cessing step is bypassed. This pathway produces so-called mirtrons (short hairpin introns)
that are generated through mRNA splicing; the entire process was firstly described in 2007
by Okamura et al. [28] in Caenorhabditis elegans, Drosophila melanogaster, and mammals.
Other types of miRNAs produced by Drosha-independent pathway are miRNAs derived
from snoRNAs. The snoRNAs are a conserved group of small non-coding RNAs; they
associate with specific small nucleolar ribonucleoprotein (snoRNP proteins)—the complex
that guides the enzymatic modification of selected ribosomal RNA (rRNA) nucleotides.
Some snoRNAs are both the component of snoRNP and the source of miRNAs [29].

Another type of non-canonical pathway is the Dicer-independent pathway. Currently,
there is only one known miRNA, which undergoes this pathway—vertebrate-specific miR-
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451 regulating erythroid development [30]. Biogenesis of this miRNA does not require
Dicer and instead involves the catalytic activity of AGO2. Drosha cleaves pre-miR-451,
which is loaded directly into AGO2; it is responsible for 3’-end trimming and maturation of
pre-miR-451. Poly(A)-specific ribonuclease (PARN) trims down the 3’ end of AGO2-cleaved
pre-miR-451 to produce mature miR-451 [31]. Finally, XPO5 independent transport of pre-
miRNA from the nucleus to cytoplasm has been described in the case of miR-320 family,
as these miRNAs use the complex of XPO1 and PHAX (phosphorylated adaptor for RNA
export) proteins for their transport [32]. These results indicate high flexibility of the cells,
enabling them to produce mature miRNAs from a broad spectrum of primary transcripts
using diverse mechanisms independent of the key proteins of canonical biogenesis pathway
(Figure 1).

1.2. Regulation of Gene Expression by microRNAs

The regulation of gene expression on post-transcriptional level was first described
in 1998 by Andrew Z. Fire, Craig C. Mello, and their colleagues in Caenorhabditis elegans,
when they proved the potential of short double-stranded RNAs (dsRNAs) to suppress
mRNA translation based on sequence complementarity [33]. This process was termed RNA
interference (RNAI); in 2006, both scientists were awarded the Nobel Prize in Physiology
or Medicine for their discovery [34]. Today, several different short ncRNAs are known to
be involved in RNAI processes, including miRNAs. These molecules are able to modu-
late the expression of 30-60% of protein-coding genes based on their complementarity to
mRNA [35]. Importantly, a seed region represented by a conserved heptametrical sequence
mostly situated at position 2-7 from the miRNA 5’ end is essential for this binding and
commonly used for target predictions [36]. In addition, average miRNA has the poten-
tial to regulate approximately 100 target sites, while the expression of a particular gene
may be affected by the binding of several different miRNAs [37]. Recent studies proved
the potential of these molecules to bind not only the 3’ UTR regions but also the 5 UTR
regions [38] or coding sequences of target mRNAs [39]. Based on the degree of comple-
mentarity, the transcript undergoes degradation or its translation is silenced [40]. In 2010,
Guo et al. [41] used ribosome profiling to measure the overall effects of miRNAs on protein
production and mRNA levels. Their results showed that changes in mRNA levels closely
reflected the impact of miRNAs on gene expression and indicated that destabilization of
target mRNAs is the major mechanism responsible for reduced protein levels. Four years
later, these results were confirmed by an independent study concluding that although
translational repression is rapid, its effect is weak, while the effect of mRNA destabilization
dominates [42]. Recently, Djuranovic et al. [43] proved that miRNA-mediated gene silenc-
ing happens during the initiation or early elongation phase of protein synthesis, and this
inhibition is followed by mRNA deadenylation and decay. These findings could simplify
the future of in vitro and in vivo studies analyzing the effects of miRNAs on mRNA and
protein level changes.

In addition to mRNA repression, miRNAs have been also reported to activate gene
expression, especially during cell starvation or other stress conditions. Vasudevan et al. [44]
identified two proteins—AGO2 and FXR1 (Fragile X mental retardation gene 1)—activating
the mRNA translation during cell starvation in vitro. They bind to AU-rich elements at
3’ UTR region of TNF-« (tumor necrosis factor «). Importantly, this binding is facilitated
by miR-369-3. Similarly, let-7a and synthetic miRcxcr4 are able to activate the translation
of specific mRNA in senescence cells, while the mRNA-miR-206 complex functions as
a positive regulator of KLF4 (Kriippel-like factor 4) translation through its binding to
translational control element (TCE) in RK3E epithelial cells [45]. In 2008, miR-373 was
found to target the promoter of CDH1 (E-cadherin) and CSDC2 (cold-shock domain-
containing protein C2), thus inducing their expression [46]. Two years later, decoy activity
of miRNAs was described, when miR-328 was found to bind the hnRNP (heterogeneous
ribonucleoprotein) E2 independently of the seed region and thus prevent its interaction
with CEBPA (CCAAT enhancer-binding protein alpha) mRNA [47]. These findings reveal
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new mechanisms by which miRNAs may regulate gene expression. Nevertheless, post-
transcriptional upregulation by miRNAs seems to be selective, specific to the RNA sequence
context, cell type, and condition and associated with miRNP (miRNA ribonucleoprotein)
factors or other RNA-binding proteins [48].

2. MicroRNA Clusters and Families

While protein-coding polycistronic transcripts in humans are rare, miRNAs are fre-
quently clustered in genomes and transcribed as a single unit. Hence, multiple miRNAs
may be produced from the same primary transcript, and their expression is regulated
by the same factors, including epigenetic processes. Two or more miRNAs having close
physical distance (less than 10 kb) are then called miRNA gene cluster [49]. Usually, two
or three miRNAs are involved in a cluster, but larger clusters have also been described.
According to the latest miRBase version (release 22.1, October 2018) [8], approximately
25% of human miRNAs (481 sequences) are located in 159 different clusters (GRCh38).
The study of Guo et al. [49] from 2014 (135 clusters, 422 sequences) revealed that most
miRNAs are prone to cluster on chromosomes 8, 17, and X, while the largest clusters may
be found on chromosomes 19 (hsa-mir-512-1~1283-1 cluster, 46 members) and 14 (hsa-
mir-379~656 cluster, 42 members). However, most of the clusters had 2-8 members, and
68% of them were composed of two miRNA genes (73% according to the newest data [8]).
Interestingly, 19% of clusters were composed of multicopy miRNA genes. The multicopy
pre-miRNAs could yield the same mature miRNAs, but they might be located in different
genomic regions [49]. Importantly, clusters frequently contain representatives from differ-
ent miRNA families; it has been proposed that mRNA transcripts coding for proteins that
interact with each other are typically targeted by miRNAs from the same cluster [50]. As
a large proportion of clustered miRNAs resides in close proximity to the fragile sites or
cancer-associated genomic hotspots, their changed expression is commonly observed in
various tumor types [51].

A miRNA gene family is defined as two or more miRNAs with high sequence simi-
larity. It is supposed that the same family miRNAs are derived from identical ancestors
in the phylogenetic tree [52]; at least a third of these families are highly conserved across
species [53]. A miRNA family may be located in one or more clusters, and members of dif-
ferent families tend to be located in related clusters with close functional relationships [49].
In addition, miRNAs with a high degree of sequence homology differing in one or two
nucleotides are annotated by adding a lowercase letter [54].

Currently, there are two major sources for miRNA family classification—-miRBase [8]
and Rfam database [11]. While miRBase classifies miRNAs into families based on sequence
similarities in seed regions using BLAST [55] with manual adjustment, Rfam families are
represented by multiple sequence alignment of known RNA sequences and a covariance
model that can be used to search for additional family members [11]. Importantly, miRBase
families have higher coverage but lower quality than Rfam miRNA families. In the current
release, Rfam (14.4, December 2020) contains 526 human miRNA families [11], while
miRBase (v.22.1, October 2018) annotated 2064 miRNA families [8]. Recently, several
other classification approaches have emerged, including miRClassify [52], miRFam [56], or
miROrtho [57]. Since mature miRNAs within one family share the same or very similar
seed sequences, they may regulate nearly the same targets. It was also shown that miRNA
families are involved in tumor development through the targeting of genes in cancer-related
signaling pathways. Interestingly, Wuchty et al. [58] observed that miRNA families miR-
27-3p, miR-181-5p, miR-124-3p.2/506-3p, and miR-200bc-3p /429 share similar pathway
interaction patterns, whereas their seed sequences differ extensively. Importantly, as many
predicted and literature-curated families are quite large, it is supposed that specific miRNA
subsets with the seed sequence similarities rather than whole miRNA families contribute
to the regulation of important signaling pathways associated with cancer development.
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3. The Interconnection between microRNAs and Epigenetics

Epigenetics is the study of processes that alter gene activity without changing the
DNA sequence; they may be heritable. Today, several different epigenetic processes are
known, including DNA methylation, histone modifications, and regulation by ncRNAs,
especially miRNAs.

DNA methylation is one of the most described epigenetic processes in tumor develop-
ment, which usually occurs in the promoter region of genes at the cytosine bases, which are
converted to 5-methylcytosine by different members of DNA methyltransferase (DNMT)
enzymes. In mammals, methylation was observed to be globally distributed throughout the
whole genome except for CpG islands, where high CpG contents are found. Importantly,
inappropriate methylation of these sequences may lead to the silenced expression of key
tumor suppressor genes in cancer cells [59]. Once established, DNA methylation patterns
are maintained through cell divisions. However, recent studies suggest that ten-eleven
translocation methylcytosine dioxygenases (TET1-TET3) may remove these methylation
marks [60].

Concerning histones, post-translational modifications of amino-terminal tails includ-
ing acetylation, methylation, phosphorylation, ADP ribosylation, or ubiquitination are
commonly observed. Histone acetylation is catalyzed by histone acetyltransferases (HATs)
that act as transcriptional co-activators. On the contrary, histone deacetylases (HDACs),
which remove acetyl group from acetyl-lysin, function as transcriptional co-repressors [61].
Besides that, polycomb repressive complexes 1 and 2 (PRC1 and PRC2) have been identi-
fied in mammals to regulate gene expression. While the PRC2 trimethylates histone H3
on lysine 27 (H3K27me3) using Enhancer of Zeste homolog 2 (EZH?2) catalytic subunit,
PRC1 ubiquitylates histone H2A and compact polynucleosomes by RING1A/B and a
Polycomb group ring finger protein, such as BMI-1 [62]. Interestingly, long non-coding
RNAs (IncRNAs), such as XIST [63], HOTAIR [64], or ANRIL [65] have been found to
be involved in PRCs recruitment and transcriptional repression. Finally, the SWI/SNF
(SWltch/Sucrose Non-Fermentable) complexes that use the energy of ATP hydrolysis
to remodel nucleosomes play an essential role in chromatin remodeling. Their catalytic
activity is associated with BRG1 (SMARCA4) or BRM (SMARCA?2) proteins; they have been
shown to interact with other chromatin regulators, including HDACs [66] and PRCs [67].
Importantly, mutations in members of SWI/SNF complexes were detected in nearly 25% of
human cancers [68].

Genes for miRNAs may be epigenetically regulated by DNA methylation and/or
histone modifications what results in their overexpression or downregulation in numerous
pathologies, including cancer. According to recent studies, almost half of miRNA genes are
associated with CpG islands and almost 12% of them were prone to epigenetic inactivation
by methylation in 23 different types of tumors. In addition, the long arms of chromosomes
1,7, 11, 14, and 19 were found to be enriched by such genes [69]. Further, methylation
was found to be involved in the regulation of expression of miRNA biogenesis genes [70],
while multiple miRNAs can be also deregulated as a result of aberrant expression of
specific epigenetic regulators, such as HDACs or PRCs. Scott et al. [71] proved that
inhibition of HDACs results in transcription changes in 40% of miRNAs in SKBr3 cells. In
turn, several miRNAs called epi-miRNAs were recognized to target enzymes involved in
epigenetic modulation. It was observed that epigenetic regulators are strongly enriched
among miRNAs predicted targets, indicating the importance of these small molecules in
pluripotency, development, and cell reprogramming [72]. Recent studies also suggest that
miRNAs may have direct epigenetic functions by recruiting specific protein complexes
to genomic DNA [73]. These observations indicate the existence of a regulatory circuit
between miRNAs and epigenetic modulation. Its disruption contributes to various diseases,
including cancer.
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4. Epigenetic Regulation of microRNA Clusters and Families during Tumor Development

Global hypomethylation is a well-established epigenetic modification observed in
various tumors. Researchers have reported hypomethylation of several important miRNA
clusters, independently of non-specific global hypomethylation, associated with the re-
activation of corresponding miRNAs [74-76]. On the contrary, site-specific DNA hyperme-
thylation of promoter-associated CpG islands that leads to silencing of tumor-suppressive
miRNA clusters is a hallmark of many human cancers [77]. Sometimes, the entire miRNA
family is located in the same cluster, thus changed methylation pattern may result in
deregulated expression of all target genes containing the corresponding seed region as
miRNAs from such families. Thus, it is highly probable that aberrant DNA methylation is
a major mechanism responsible for miRNA deregulation during tumor development. In
addition, histone modifications have been previously described to be involved in epigenetic
regulation of miRNAs expression (Figure 2) [78-80]. In the following paragraphs, the most
studied miRNA clusters and families affected by hyper- or hypomethylation as well as by
histone modifications are presented with the focus on particular mechanisms.
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Figure 2. Epigenetic regulation of microRNA clusters and expression of families by DNA methylation and histone
modifications. Aberrant DNA methylation and various histone modifications together with long non-coding RNAs
(IncRNAs) are associated with deregulated microRNA expression in human cancers. The whole microRNA family may be
located in the same cluster (homo-cluster) or in different clusters together with microRNAs from other families (hetero-
cluster). MicroRNAs within one family share the same or very similar seed sequence, thus regulating the same targets.
Me—methylation, Ac—acetylation, RNA Pol II—RNA polymerase II, TET1-3—ten-eleven translocation methylcytosine
dioxygenases, MeCP2—methyl-CpG binding protein 2, MBD1-4—methyl-CpG-binding domain protein 1-4, DNMT—DNA
methyl transferase, EZH2—enhancer of zeste homolog 2, KAT2A /B—histone acetyltransferases, HDAC1-4—histone
deacetylases 1-4, JARID1/2—Jumonji/ ARID1 B histone demethylase, SUV39H1/2—histone lysine N-methyltransferase.
The figure was created with BioRender.com.

4.1. Let-7-5p/98-5p Family, miR-125-5p Family, miR-99-5p/100-5p Family

One of the largest miRNA families, let-7, including let-7a-g-5p, let-7i-5p, miR-98-5p,
miR-4458, and miR-4500, is localized in six different clusters on chromosomes 9, 11, 19,
21, 22, and X in the human genome together with miR-99a, miR-99b, miR-100, miR-125a,
miR-4763, and miR-10526. Interestingly, miR-99a, miR-99b, and miR-100 constitute another
family as they contain the same seed region [8]. The first papers describing the role of
DNA methylation in let-7 family expression were published in 2007. Lu et al. [81] found
the association between the downregulated levels of tumor-suppressive let-7a-3 and its ele-
vated methylation. This methylation further affected the expression of insulin-like growth
factor-II (IGF-II) and the survival of ovarian cancer (OC) patients. Similarly, hypermethyla-
tion of promoter region of let-7a-3/let-7b cluster was confirmed in acute lymphoblastic
leukemia (ALL) [82,83]. Using 5-aza-2’-deoxycytidine (5-Aza-CdR), the levels of let-7b
increased significantly, inhibited proliferation of MOLT-4 cells and arrested the cells in
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G1 phase [83]. In contrast, hypomethylation of the same promoter was observed in lung
adenocarcinomas [84] and myelodysplastic syndrome (MDS). Reactivation of the let-7a-3
expression was connected to oncogenic changes in lung transcription profiles [84] and
shorter overall survival (OS) of MDS patients [85]. Concerning the let-7 family, let-7e is
expressed from chromosome 19 in a cluster together with miR-99b and miR-125a. Hyper-
methylation of let-7e was detected in breast cancer (BC); decreased levels of this miRNA
were associated with elevated cell proliferation, lower apoptosis, and poor prognosis [86].
Similarly, hypermethylation-associated silencing of miR-125a was observed in multiple
myeloma (MM) [87], colorectal cancer (CRC) [88], or gastric cancer (GC) [89]. Interestingly,
histone methyltransferase SUV39H1was identified as a target gene of this miRNA in GC;
it was further confirmed that epigenetically silenced miR-125a-5p can be self-activated
through targeting of this methyltransferase [89]. Finally, decreased levels of miR-98 in
glioma tissues and cell lines were associated with increased DNA methylation and subse-
quently with a more aggressive tumor phenotype, increased invasion, and shorter survival
of patients [90].

Concerning histone modifications, Mitra et al. [91] demonstrated epigenetic repression
of let-7e in BC by binding of the histone demethylase Jumonji/ ARID1 B (JARID1B) to its
promoter region and removal of the H3K4me3 histone mark associated with active gene
expression. Two years later, cytotoxin-associated gene A (CagA) of Helicobacter pylori (H.
pylori) was identified to enhance the expression of c-myc, DNMT3B, enhancer of zeste
homolog 2 (EZH?2), and to attenuate the expression of miR-26a and miR-101, which resulted
in the inhibition of let-7 expression through histone and DNA methylation in H. pylori-
related gastritis and GC [92]. In lung cancer (LC), protein arginine methyltransferase 5
(PRMTS5) was found to be overexpressed and to repress transcription of the miR-99 family
by symmetrical dimethylation of histone H4R3, which increased fibroblast growth factor
receptor 3 (FGFR3) expression, activated ERK1/2 and AKT, and in turn facilitated cell
proliferation and metastases [93] (Table 1).
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Table 1. Epigenetically regulated expression of let-7-5p /98-5p family, miR-125-5p family, and miR-99-5p /100-5p family.

DNA Methylation
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LC let-7a-3 let-7a-3~let-7b (chr22) HyperMet DNMT1/3B lleet ,[__7761_)?;5) //9988__531:1? gﬁgégié Proliferation, cell adhesion [84]
ocC let-7a-3 let-7a-3~let-7b (chr22) HypoMet - lfett77a53}f’ // 9988_'535 gﬁgégf:é IGF2, 0S [81]
BC let-7e mir-99b~125a (chr19) HyperMet . e t_lﬁfé;e/'ggﬁp opoares o cell Vizbziﬁg’, ?%Os‘fﬂfﬁi;’p MAPRL - gse)
Gliomas miR-98 let-7£-2~98 (chrX) HyperMet - lleett'ﬁgg’ // 9988_'53;’ Ve Migr:gﬁ;‘;; ;?‘:’:‘If:;;‘ St [90]
MM miR-125a mir-99b~125a (chr19) HyperMet - nr:lllRR-_llZzSSa_-S?g) géggggé - [87]
ALL let-7b let-7a-3~let-7b (chr22) HyperMet - lleet ;_7721_5?5 //998%_53; gﬁgégﬁé Apoptosis, cell cycle [83]
MDS let-7a-3 let-7a-3~let-7b (chr22) HypoMet - lleet ,[__7761;3) //9988__5? gﬁgégié Age, survival [85]
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Table 1. Cont.

Histone Modifications

Cnrtype  maa  TENACwe M e mRARE s ATl
BC let-7a-3 Jet-7a-3~let-7b (chr22) H3K27me3 - lleetf;%’ //9988_'5?)9 gﬁgégié - [94]
let-7b Jet-7a-3~let-7b (chr22) H3K27me3 ; lfet;;‘;]f // 9988_'531:{’ gﬁgégié ; [94]
let-7e mir-99b~125 (chr19) H3K4me3 JARIDIB 1et.17e.tél7oe/_g§.5p gﬁgéﬁig Proliferation, CCND1 [91]
LC miR-99a mir-99a~let-7c (chr21) H4R3me2 PRMT5 minggziz_ng-Sp iéggggg el grov::;}aléf,clﬂli\l?]i/(%etaﬁasjs, [93]
miR-99b mir-99b~125a (chr19) H4R3me2 PRMT5 minrg‘igl_‘;%fgo_Sp ﬁéggggg cell grovz::égilg{g,(r)r;’etastasis, (93]
R
HCC let-7¢ mir-99a~let-7c (chr21) H3K27me3 EZH?2 e t_ffélzc/';’gﬁp gggégié Liver metastasis [95]

GC—gastric cancer, CRC—colorectal cancer, LC—lung cancer, OC—ovarian cancer, BC—breast cancer, MM—multiple myeloma, ALL—acute lymphoblastic leukemia, MDS—myelodysplastic syndrome,
HCC—hepatocellular carcinoma, HyperMet—hypermethylation, HypoMet—hypomethylation, H3K27me3—histone 3 lysine 27 trimethylation, H3K4me3—histone 3 lysine 4 trimethylation, H4R3me2—histone
4 arginine 3 dimethylation, DNMT—DNA methyltransferase, JARID1B—Jumonji/ARID1B, PRMT5—protein arginine methyltransferase 5, EZH2—enhancer of zeste homolog 2, OS—overall survival,
IGF2—insulin-like growth factor 2, MAPK1—mitogen-activated protein kinase 1, SALL4—sal-like protein 4, CCND1—cyclin D1, FGFR3—fibroblast growth factor receptor 3, LNP—Ilymph node positivity; # the
bold sequence indicates the mature miRNA used for in vitro/in vivo experiments (-3p or -5p).
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4.2. miR-34-5p/449-5p Family, miR-34b-5p/449c-5p Family

Although the sequence of seed region for miR-34s and miR-449s differs only in one
nucleotide, these miRNAs are categorized into two different families—one consisting
of miR-34a, miR-34c, miR-449a, and miR-449b, while the second one includes miR-34b,
miR-449¢, and miR-2682. Interestingly, miR-449a-c are localized together in one clus-
ter on chromosome 5, while miR-34b and miR-34c¢ are clustered on chromosome 11 [8].
MiR-34s are considered to be important tumor-suppressive miRNAs; they are the most
studied miRNAs in various tumors concerning epigenetic regulation [96]. In 2008, inac-
tivation of miR-34a by CpG methylation was described in prostate, breast, lung, colon,
kidney, and pancreatic carcinoma cell lines; re-expression of this miRNA induced senes-
cence and cell cycle arrest by targeting cyclin-dependent kinase 6 (CDK6) [97]. Two years
later, Chim et al. [98] studied the role of methylation of this miRNA in a large panel of
hematologic malignancies, including acute myeloid leukemia (AML), ALL, chronic lym-
phocytic leukemia (CLL), chronic myeloid leukemia (CML), MM, and non-Hodgkin’s
lymphoma (NHL) using methylation-specific polymerase chain reaction (PCR). They found
high methylation of miR-34a promoter in lymphoma (75%) and myeloma (37%) cell lines
compared to normal controls and confirmed that hypomethylating treatment leads to
re-expression of pri-miR-34a transcript in lymphoma cells with homozygous methylation.
In primary samples at diagnosis, miR-34a methylation was detected in 4% of CLL, 5.5%
of MM, and 18.8% of NHL samples, but no methylation was found in ALL, AML, and
CML samples. Further, frequent concomitant inactivation of miR-34a and miR-34b/c
by CpG methylation was observed in CRC, pancreatic cancer (PAC), BC, OC, urothelial
carcinoma (UCA), and renal cell carcinoma (RCC). Interestingly, a statistically significant
correlation of miR-34a methylation and the absence of p53 mutation in CRC was con-
firmed, suggesting that miR-34a inactivation may substitute for loss of p53 function in
cancer [99]. To this day, the downregulation of miR-34s expression due to the elevated
promoter methylation has been observed also in other tumors, including non-small cell
lung carcinoma (NSCLC) [100], esophageal squamous cell carcinoma (ESSC) [101], malig-
nant pleural mesothelioma (MPM) [102], HCC [103], laryngeal squamous cell carcinoma
(LSCC) [104], bladder cancer (BLC) [105], or GC [106]. Importantly, 3,6-dihydroxyflavone
was found to regulate the imbalance between DNA methylation and demethylation in BC
by inhibiting DNMT1 activity and increasing TET1 expression. This effect led to demethy-
lation of miR-34a promoter and increased levels of this tumor-suppressive miRNA [107].
Expression of miR-449a was found to be significantly silenced by DNA methylation in
medulloblastoma (MB) [108] and NSCLC [109]. In addition, a negative correlation was
observed between miR-449a levels and nicotinamide N-methyltransferase (NNMT) and
knock-down of NNMT led to re-expression of miR-449a, inhibition of tumor growth, and
activation of phosphatase and tensin homolog (PTEN) [109].

Concerning histone modifications, Lin et al. [110] proved that depletion of HDACT in-
hibits the metastatic abilities of GC cells by regulating the miR-34a/CD44 pathway. Similar
results were observed also in cisplatin-resistant OC cell lines, where HDAC1 knockdown
suppressed cell proliferation, increased apoptosis, and chemosensitivity by downregulating
c-MYC and upregulating miR-34a [111]. Interestingly, expression of this miRNA may be
negatively regulated also by IncRNA Linc-ROR that inhibits histone H3 acetylation in the
miR-34a promoter [112]. Expression of miR-449a/b in tumors is epigenetically repressed
through histone H3 Lys27 trimethylation; drug treatment targeting histone methylation
resulted in strong induction of these miRNAs [113]. You et al. [114] indicated that this
methylation is mediated through the zinc finger protein SUZ12, which is a part of the
PRC2 complex. In HCC cells, upregulation of HDAC1-3 was detected and associated with
the reduced levels of miR-449 [115]. Further, histone H3 lysine 27 acetylation (H3K27ac)
was found to be altered during acquisition or resistance to anaplastic lymphoma kinase
inhibitors in patients with ALK (anaplastic lymphoma receptor tyrosine kinase) fusion-
positive LC; its decreased levels correlated with downregulation of tumor-suppressive
miR-34a and miR-449a and increased proliferation [116] (Table 2).



Cancers 2021, 13, 1333

12 of 45

Table 2. Epigenetically regulated expression of miR-34-5p/449-5p family and miR-34b-5p /449c-5p family.

DNA Methylation
. miRNA Cluster Methylation Epigenetic miRNA Family . Associated Processes/Targets
Cancer Type miRNA (miRBase 22.1) Status Regulator (miRBase 22.1) Seed Region Clinical Outcomes Reference
. miR-34a-3p AAUCAGC
PAC miR-34a - HyperMet - miR-34-5p/449-5p GGCAGUG Senescence, cell cycle, CDK6 [97,99]
. mir-34b~34c miR-34b-3p AAUCACU
miR-34b (chr11) HyperMet - miR-34b-5p /449¢-5p AGGCAGU . [59]
. mir-34b~34c miR-34c-3p AUCACUA
miR-34c (chrl1) HyperMet - miR-34-5p/449-5p GGCAGUG - [59]
- ) Hyper/ ) miR-34a-3p AAUCAGC Senescence, cell cycle, CDK6,
PC miR-34a HypoMet miR-34-5p /449-5p GGCAGUG stage, Gleason score 71171
. mir-34b~34c miR-34b-3p AAUCACU
miR-34b (chr11) HypoMet - miR-34b-5p /449¢-5p AGGCAGU PSA level [117]
. mir-34b~34c miR-34c-3p AUCACUA
miR-34c (chrl1) HypoMet ] miR-34-5p,/449-5p GGCAGUG PSA level (171
. mir-34b~34c miR-34b-3p AAUCACU
GC miR-34b (chrl1) HyperMet - miR-34b-5p /449c-5p AGGCAGU Cell growth [106]
. mir-34b~34c miR-34c-3p AUCACUA
miR-34c (chrl1) HyperMet - miR-34-5p /449-5p GGCAGUG Cell growth [106]
. miR-34a-3p AAUCAGC .
CRC miR-34a - HyperMet - MiR-34-5p,/449-5p GGCAGUG P53 mutation status [97,99]
. mir-34b~34c miR-34b-3p AAUCACU
miR-34b (chr11) HyperMet - miR-34b-5p/449¢-5p AGGCAGU - [59]
. mir-34b~34c miR-34c-3p AUCACUA
miR-34c (chrl1) HyperMet - miR-34-5p,/449-5p GGCAGUG - [59]
. miR-34a-3p AAUCAGC
oc miR-34a ] HyperMet ; miR-34-5p /449-5p GGCAGUG ] ]
. mir-34b~34c miR-34b-3p AAUCACU
miR-34b (chr11) HyperMet - miR-34b-5p/449¢-5p AGGCAGU - [59]
. mir-34b~34c miR-34c-3p AUCACUA
miR-34c (chrl1) HyperMet - miR-34-5p/449-5p GGCAGUG - [59]
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DNA Methylation
Concrtype min A Nelton gl AR gt ARSI g,
o mnaw - G owmo s Ao -
L -
e -
wms MEERSC g miser -
UcA miR-34a - HyperMet - mier‘si‘If_';sZi%_Sp ééggégg - [99]
. -
wise SRS L e oo -
RCC miR-34a - HyperMet - mier‘sii'ssjﬁ%_Sp ééggégg - [97,99]
. -
I -
STS miR-34a - HyperMet - miergi?sé/l;&%—Sp ééggégg - [99]
e -
wise S e s o oo -
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Table 2. Cont.

DNA Methylation
CncerType  minva NACl Melvlaion bl ATy ot A e eI o
B mmsw - mpews oS Ao -
miR-34b miz;iftl)'{):%‘lc HyperMet - miR—r;lig—_gsBi%c—Sp ﬁéggigg Early stages, ESCC differentiation ~ [100,101]
miR-34c mlz;ii)zf e HyperMet - miergigs;ﬁg-Sp éggiggé Early stages, ESCC differentiation ~ [100,101]
ww o wwss mpews | msw T Ao -
mise TSRS mkakw Ao Gllod meminmen (i,
mine TS wkwey UG Gllodm e
MB miR-449a mir'?f}?fg)“ga HyperMet - miR-34-5p,/449-5p GGCAGUG WNT group [108]
LSCC miR-34a - HyperMet - miergi?sé/l;i%—Sp ééggégg Smoking, stage, LNP, OS [104]
Melanoma miR-34a - HyperMet - miRﬁiﬁﬁ?ﬁl};ﬁp ééggégg - [97]
e wmon - s owme | pS T MUGEC M e B
T N -
LC miR-34a - HyperMet - miRﬁiﬁﬁ?ﬁL};-Sp éégﬁéﬁg - 71
wac wse o mpeemeRm T o -
NHL miR-34a - HyperMet - mier‘;i'ssjﬁ%_Sp ééggégg - [98]
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Table 2. Cont.

Histone Modifications

. miRNA Cluster Histone Epigenetic miRNA Family . Associated Processes/Targets
Cancer Type miRNA (miRBase 22.1) Modification Regulator (miRBase 22.1) Seed Region Clinical Outcomes Reference
. ) . miR-34a-3p AAUCAGC Gemcitabine-induced autophagy,

BC miR-34a H3Ac Linc-ROR miR-34-5p /449-5p GGCAGUG apoptosis [112]
. mir-34b~34c miR-34b-3p AAUCACU

miR-34b (chr11) H3K27me3 - miR-34b-5p/449¢-5p AGGCAGU - [94]
. mir-34b~34c miR-34c-3p AUCACUA

miR-34c (chr11) H3K27me3 - miR-34-5p /449-5p GGCAGUG . [94]

LC miR-449a mlr—é(lf}?fs~)449a H3K27me3 Suz12 miR-34-5p/449-5p GGCAGUG Metastasis, LNP, MAP2K1 [114]

. Proliferation, clonogenicity,

. miR-34a-3p AAUCAGC

CHC miR-34a - H3K27me3 EZH2 . tumor growth, NOTCH1/2, [119]

miR-34-5p/449-5p GGCAGUG AGCED
. miR-34a-3p AAUCAGC . .
GC miR-34a - HAc HDAC1 miR-34-5p/449-5p GGCAGUG Metastasis, CD44, prognosis [110]
. miR-34a-3p AAUCAGC Proliferation, apoptosis,

oc miR-34a - HAc HDACI miR-34-5p /449-5p GGCAGUG chemosensitivity (1]

0SS miR-449a mlr'?f}?fg)“ga H3K27me3 - miR-34-5p /449-5p GGCAGUG Cell cycle, CDK6, CDC25A [113]
. mir-449c~449a miR-449b-3p AGCCACA

miR-449b (chr5) H3K27me3 - miR-34-5p/449-5p GGCAGUG Cell cycle, CDK6, CDC25A [113]

HCC miR-449a mlr'?f}?f;ma HAc HDACI1-3 miR-34-5p /449-5p GGCAGUG thferahon'c ?&%P’Ttos‘s’ growth, [115]

PAC—pancreatic cancer, PC—prostate cancer, GC—gastric cancer, CRC—colorectal cancer, OC—ovarian cancer, BC—breast cancer, CC—cervical cancer, UCA—urothelial carcinoma, RCC—renal cell
carcinoma, STS—soft tissue sarcoma, ESCC—esophageal squamous cell carcinoma, MPM—malignant pleural mesothelioma, MB—medulloblastoma, LSCC—laryngeal squamous cell carcinoma, BLC—bladder
cancer, HCC—hepatocellular carcinoma, LC—lung cancer, NKTCL—NK/T-cell lymphoma, NHL—Non-Hodgkin lymphoma, CHC—cholangiocarcinoma, OSS—osteosarcoma, HyperMet—hypermethylation,
HypoMet—hypomethylation, H3Ac—histone 3 acetylation, H3K27me3—histone 3 lysine 27 trimethylation, HAc—histone acetylation, DNMT—DNA methyltransferase, TET1—ten-eleven translocation
methylcytosine dioxygenase 1, EZH2—enhancer of zeste homolog 2, HDAC—histone deacetylase, CDK6—cyclin dependent kinase 6, PSA—prostate-specific antigen, LNP—lymph node positivity, OS—overall
survival, HNF4y—hepatocyte nuclear factor 4 gamma, MAP2K1—dual specificity mitogen-activated protein kinase kinase 1, CDC25A—cell division cycle 25A; # the bold sequence indicates the mature miRNA
used for in vitro/in vivo experiments (-3p or -5p).
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4.3. The miR-141-3p/200a-3p Family, miR-200ab-5p Family, miR-200bc-3p/429 Family,
miR-200c-5p/550a-3p Family

MiR-200s may be found in four different miRNA families together with miR-141-3p,
miR-429, and miR-550a-3p. They are clustered and expressed as two separate polycistronic
pri-miRNA transcripts—mir-200b-200a-429 located on chromosome 1 and mir-200c-141
located on chromosome 12 [8]. These miRNAs are frequently silenced in advanced cancers
and have been implicated in epithelial-to-mesenchymal transition (EMT) and tumor inva-
sion by targeting transcriptional repressors of E-cadherin ZEB1 and ZEB2. Interestingly,
ZEB1 may repress mir-200c~141 cluster transcription in a negative feedback loop [120]. To
this day, two different promoters of mir-200b~429 cluster with comparable activity and
susceptibility to DNA methylation have been described [121]. In 2011, hypermethylation
of miR-200s was detected and correlated with their decreased levels and poor progno-
sis of BLC patients [122]. In addition, resistance to cisplatin treatment was observed in
patients with epigenetically silenced expression of these miRNAs [123]. On the contrary,
hypomethylation and subsequent overexpression of miR-200a and miR-200b were found in
PAC. In addition, both miRNAs were significantly increased in the sera of PAC and chronic
pancreatitis patients compared to healthy donors, thus indicating clinical utility [124]. In
the case of mir-200b~429 cluster, promoter methylation was confirmed in HCC, resulting
in miR-200b downregulation, ZEB1 upregulation, and CD13 and CD24 expression. In-
terestingly, restoration of miR-200b expression was positively correlated with EpCAM.
These results suggested that miR-200b-ZEB1 circuit may regulate diverse stemness of
HCC [125]. On the other hand, mir-200b~429 cluster was found to be hypomethylated in
pancreatic ductal adenocarcinoma (PDAC), while the expression of mir-200c~141 cluster
was inhibited through promoter methylation. This downregulation was associated with
the more invasive character and increased metastatic potential of PDAC cells in vitro and
in vivo due to the enhanced expression of Wiskott-Aldrich syndrome protein-interacting
protein family member 1 (WIPF1) and YAP/TAZ transcriptional co-activators [126].

Roy et al. [127] investigated tobacco-specific methylation patterns in miRNA loci
associated with the prognosis of oral cancer patients. They found a significant correla-
tion between hypermethylation of miR-200a/b and worse 5-year survival. Recently, flap
endonuclease 1 (FEN1) was proven to interact with DNMT3A through proliferating cell
nuclear antigen (PCNA) to suppress miR-200a-5p expression mediated by methylation,
which resulted in increased levels of hepatocyte growth factor (MET) and epidermal growth
factor receptor (EGFR) and thus elevating proliferation of BC cells [128]. Similarly, Kindlin
2 [129] and MYC protein [130] may form a complex with DNMT3A in the cell nucleus
to induce CpG methylation of mir-200b~429 cluster promoter in BC. On contrary, DNA
demethylase TET family members may activate transcription of epigenetically silenced
miR-200s in BC and thus inhibit stemness, EMT, and metastasis formation [131]. Similarly,
TET-dependent DNA demethylation was found to be essential for miR-200s, miR-141, and
miR-429 reactivation and subsequent mesenchymal-to-epithelial transition in somatic cell
reprogramming [132]. Interestingly, Choi et al. [133] suggested the direct involvement
of H. pylori infection in epigenetic silencing of miR-200a/b through CpG methylation in
gastric carcinogenesis. Finally, hypomethylation of miR-200a/b was found in local/local
advanced prostate cancer (PC) patients, while hypermethylation was detected in patients
with metastatic disease [117]. In addition, unmethylated promoter of mir-200c~141 cluster
was found in LNCaP, 22RV1, and DU145 PC cell lines, while its hypermethylation was
observed in PC3 cells [134]. These data indicate that epigenetic regulation of miRNAs
expression through CpG promoter methylation is context-dependent.

The miR-200 family also controls the transition between cancer stem-cell-like and
non-stem-cell-like phenotype of BC cells. While the mir-200c~141 cluster was silenced
primarily by DNA methylation, mir-200b~429 cluster was repressed through polycomb
group-mediated histone modifications [135]. Today, EZH2 is a well-known catalytic sub-
unit of PRC2 complex responsible for H3K27 trimethylation. This enzyme is frequently
upregulated in various human cancers, such as HCC [95], GC, or glioblastoma multiforme
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(GBM) [136] and is associated with epigenetic silencing of miRNAs expression, including
miR-200 families. Importantly, EZH?2 appeared to be essential for DNMT1 recruitment to
the promoter region of mir-200b~429 cluster [136].

Recently, IncRNAs have been identified to play an important role in epigenetic reg-
ulation of miRNAs expression. The plasmacytoma variant translocation 1 gene (PVT1)
and GIHCG have been reported to bind to EZH2 and recruit it to the mir-200b~429 cluster
promoter in cervical cancer (CC) [137] and HCC [138]. Enkhbaatar et al. [139] observed
that KDM5B, a histone H3K4 demethylase, represses the expression of the miR-200 family
in cancer cells by changing the methylation status of its regulatory regions thus facilitating
the EMT process and cancer progression. Concerning histone acetylation, proline, glutamic
acid, and leucine-rich protein 1 (PELP1) were found to bind to miR-200a and miR-141 pro-
moters and regulate their expression by recruiting chromatin modifier HDAC?2 in BC [140].
In human lung adenocarcinoma cells, silencing of HDAC1/4 significantly increased miR-
200b expression by upregulating H3 acetylation. As a result of miR-200b rescue, decreased
levels of E2F3, survivin, and Aurora-A were detected, while the elevated levels of cleaved
caspase-3 and higher sensitivity of cells to chemotherapy were observed [141]. Finally, P300
and PCAF (lysine acetyltransferase 2B—KAT2B) were identified as important co-factors of
ZEBI1 responsible for histone acetylation on the mir-200c~141 cluster promoter [142]. In
addition, IncRNA H19 may form a complex with hnRNP U/PCAF/RNAPolll, activating
miR-200 family expression in HCC by increasing histone acetylation [143]. These data
suggest the development of combined anticancer therapy based on the targeting of miR-200
family together with IncRNAs (Table 3).
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Table 3. Epigenetically regulated expression of miR-141-3p/200a-3p family, miR-200ab-5p family, and miR-200bc-3p /429 family.

DNA Methylation
Cncerype  mitna NACHr Ml fpigeeic AT gt AR
PAC miR-200a mir-(zc(l)l(il;;429 HypoMet - mﬂi'lligé%%é 5?50;'31’ iﬁgéﬁgﬁ Serum, SIP1 methylation [124,126]
miR-200b mir'(zc(})fﬁ;‘m HypoMet - mﬁ'ii?gggﬁés” iggéggg Serum, SIP1 methylation [124,126]
miR-200c mir('f}?rolcg)m HyperMet - mﬁiﬁggggﬁgg éf_gp é%gﬁggg Invasion, WIPF1, OS [126]
miR-141 mir(f}?rolcg)m HyperMet - miR'ﬁ%{i% _2501;)a-3p ﬁﬁgﬁg‘ég Invasion, WIPF1, OS [126]
miR-429 mir'(zc(})l(ﬁ)”‘m HypoMet - miR-200bc-3p /429 AAUACUG - [126]
e e TS o pwn  pRSbep GG sedwsninel
miR-141 mir(—C2}£)1f)1c2~)141 HyperMet DNMTI ik i% _2505‘3'31’ T DNMTS3A, TET1/3 [134]
GC miR-200a mir—(ZC(})I(])E;429 HyperMet - mﬂi-llél_é%%gé?g;ﬁp ﬁégéggg H. pylori infection [133]
miR-200b mir—(ZC(;l(il:l))~429 HyperMet - mﬁﬁg%gi}iéﬁzg iLA]gI?ET[AjS H. pylori infection [133]
BLC miR-200a mir—(ZC(l)l(il;;429 HyperMet - mﬂ;—}ég%%éi?g;-?)p i{Ajgé[ng(é Invasiveness, differentiation [122]
i PR RN AMAGIG b e (o
ma TS L S MG b dfmin
HCC miR-200b mir'(zci(ﬁ;‘lzg HyperMet - mf\;i?gggﬁéﬁzg iﬁgﬁgﬁg Prognosis, BMI1, ZEB1 [125]
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Table 3. Cont.

DNA Methylation
. miRNA Cluster Methylation Epigenetic miRNA Family " Associated Processes/Targets
Cancer Type miRNA (miRBase 22.1) Status Regulator (miRBase 22.1) Seed Region Clinical Outcomes Reference
. DNMT3A/ . . .
. mir-200b~429 HyperMet .11 miR-200bc-3p /429 AAUACUG Invasion, metastasis, SOX2,
BC miR-200b (chr1) HypoMet Kmd%g‘é{ ;\AYC miR-200ab-5p AUCUUAC CD133, EMT, BC subtype [121,129-132]
. DNMT3A/ .
. mir-200b~429 HyperMet miR-141-3p/200a-3p AACACUG . .
miR-200a (chrl) HypoMet FEﬁllir/r 1'1’?3NA miR-200ab-5p AUCUUAC Proliferation, MET, EGFR [128,131,132]
. mir-200b~429 miR-200bc-3p /429 AAUACUG
cC miR-200b (chr1) HypoMet - miR-200ab.5p AUCUUAG HIPK3, RBBP6 [118]
. mir-200b~429 miR-141-3p/200a-3p AACACUG
oral miR-200a (chr1) HyperMet - miR-200ab-5p AUCUUAC OS, smokers/chewers [127]
. mir-200b~429 miR-200bc-3p /429 AAUACUG
miR-200b (chrl) HyperMet - miR-200ab-5p AUCUUAC OS, smokers/chewers [127]
. mir-200c~141 } miR-200bc-3p /429 AAUACUG Proliferation, migration, colony
MM miR-200c (chr12) HyperMet miR-200c-5p/550a-3p ~ GUCUUAC formation [87]
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Table 3. Cont.

Histone Modifications

. miRNA Cluster Histone Epigenetic miRNA Family . Associated Processes/Targets
Cancer Type miRNA (miRBase 22.1) Modification Regulator (miRBase 22.1) Seed Region Clinical Outcomes Reference
. mir-200b~429 H3K27me3 EZH2/SUZ12 miR-141-3p/200a-3p AACACUG .
BC miR-200a (chr1) HAc HDAC2/PELP1 miR-200ab-5p AUCUUAC CSCs, metastasis, ZEB1/2, OS [135,140]
. mir-200b~429 miR-200bc-3p /429 AAUACUG
miR-200b (chr1) H3K27me3 EZH2/SUZ12 miR-200ab-5p AUCUUAC CSCs [135]
miR-429 mlr'(zci’gkl’)”‘m H3K27me3 EZH2/SUZ12 miR-200bc-3p/429  AAUACUG CSCs [135]
. mir-200c~141 miR-141-3p/200a-3p ~ AACACUG .
miR-141 (chr12) HAc HDAC2/PELP1 miR-141-5p AUCUUCC metastasis, ZEB1/2, OS [140]
. mir-200b~429 miR-200bc-3p /429 AAUACUG
LC miR-200a (chr1) H3K4me3 JARID1B miR-200ab-5p AUCUUAC EMT, ZEB1/2 [139]
. mir-200c~141 miR-200bc-3p /429 AAUACUG
miR-200c (chr12) H3K4me3 JARID1B miR-200c-5p/550a-3p GUCUUAC EMT, ZEB1/2 [139]
. mir-200b~429 miR-200bc-3p /429 AAUACUG Proliferation, apoptosis, cell cycle,
miR-200b (chr1) H3Ae HDAC1/4 miR-200ab-5p AUCUUAC chemoresistance, E2F3 [141]
. mir-200b~429 miR-141-3p/200a-3p AACACUG . .
GC miR-200a (chrl) H3K27me3 EZH2 miR-200ab-5p AUCUUAC Disease progression [136]
. mir-200b~429 miR-200bc-3p /429 AAUACUG . .
miR-200b (chr1) H3K27me3 EZH2 miR-200ab-5p AUCUUAC Disease progression [136]
miR-429 mlr'(zc(})fﬁ;‘lzg H3K27me3 EZH2 miR-200bc-3p/429  AAUACUG Disease progression [136]
. mir-200b~429 miR-200bc-3p /429 AAUACUG . . . .
CcC miR-200b (chr1) H3K27me3 EZH2/PVT1 miR-200ab-5p AUCUUAC Proliferation, cell cycle, migration [137]
. EZH2/GIHCG . Proliferation, migration,
HCC miR-200b m1r-(2£31;)~429 H3I§§Zr:ee’ hnRNP U/PCAF/ mﬁ;ﬁfgggﬁé 129 iﬁgéggg liver metastasis, EMT, [95,138,143]
RNA Pol II/H19 p tumor size, stage, OS
. EZH2/GIHCG . Proliferation, migration,
miR-200a m1r—(2£3‘t{)~429 H3I§§ZT63 hnRNP U/PCAF/ mllir'llél_é%%g 5_05?3'319 :ﬁgéﬁgﬁ metastasis, EMT, [138,143]
RNA Pol II/H19 p tumor size, stage, OS
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Table 3. Cont.

Histone Modifications

. miRNA Cluster Histone Epigenetic miRNA Family . Associated Processes/Targets
Cancer Type miRNA (miRBase 22.1) Modification Regulator (miRBase 22.1) Seed Region Clinical Outcomes Reference
. EZH2/GIHCG Proliferation, migration,
miR-429 mlr'(zgfﬁ;‘m H3I§§Zme3 hnRNP U/PCAF/  miR-200bc-3p /429 AAUACUG metastasis, EMT, [138,143]
¢ ¢ RNA Pol II/H19 tumor size, stage, OS
. mir-200c~141 hnRNP U/PCAF/ miR-200bc-3p /429 AAUACUG .
miR-200c (chr12) H3Ac RNAPolI[/H19  miR-200c-5p/550a-3p ~ GUCUUAC EMT, metastasis [143]
. mir-200c~141 hnRNP U/PCAF/  miR-141-3p/200a-3p AACACUG .
miRk-141 (chr12) H3AC RNA Pol I1/H19 miR-141-5p AUCUUCC EMI, metastasis [143]
. . mir-200b~429 miR-141-3p/200a-3p AACACUG . .
glioma miR-200a (chr1) H3K27me3 EZH2 miR-200ab-5p AUCUUAC Disease progression [136]
. mir-200b~429 miR-200bc-3p /429 AAUACUG . .
miR-200b (chr1) H3K27me3 EZH2 miR-200ab-5p AUCUUAC Disease progression [136]
miR-429 mlr'(zci(ﬁ;‘m H3K27me3 EZH2 miR-200bc-3p /429 AAUACUG Disease progression [136]

PAC—pancreatic cancer, PC—prostate cancer, GC—gastric cancer, BLC—bladder cancer, HCC—hepatocellular carcinoma, BC—breast cancer, CC—cervical cancer, MM—multiple myeloma, LC—lung
cancer, HypoMet—hypomethylation, HyperMet—hypermethylation, H3K27me3—histone 3 lysine 27 trimethylation, HAc—histone acetylation, H3K4me3—histone 3 lysine 4 trimethylation, H3Ac—histone
3 acetylation, DNMT—DNA methyltransferase, TET1-3—ten-eleven translocation methylcytosine dioxygenase, FEN1—flap endonuclease 1, PCNA—proliferating cell nuclear antigen, EZH2—enhancer of zeste
homolog 2, HDAC—histone deacetylase, PELP1—proline-, glutamic acid- and leucine-rich protein 1, JARID1B—]Jumonji/ ARID1B, PVT1—plasmacytoma variant translocation 1, hnRNP U—heterogenous
nuclear ribonucleoprotein U, PCAF—P300/CBP-associated factor, RNA Pol II—RNA polymerase II, SIP1—Smad-interacting protein 1, WIPF1—WAS/WASL-interacting protein family member 1, OS—
overall survival, CDDP—<cisplatin, BMI1—polycomb complex protein, ZEB1/2—zinc finger E-box-binding homeobox %, EMT—epithelial-mesenchymal transition, EGFR—epidermal growth factor receptor,
HIPK3—homeodomain interacting protein kinase 3, RBBP6—RB binding protein 6, CSCs—cancer stem cells; # the bold sequence indicates the mature miRNA used for in vitro/in vivo experiments (-3p or -5p).
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4.4. mir-17~92a-1 Cluster, mir-106a~363 Cluster

Mir-17~92a-1 is a polycistronic miRNA cluster located on chromosome 13; it includes
six mature miRNAs: miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a-1. Cluster
mir-106a~363 is found on chromosome X and contains miR-106a, miR-18b, miR-20b, miR-
19b-2, miR-92a-2 and miR-363 [8]. Both clusters are commonly upregulated in various solid
tumors and hematologic malignancies [144]. In addition, miR-17, miR-20a, miR-20b, and
miR-106a belong to the same miRNA family based on the seed sequence similarity [8]. MiR-
19a/b was found to directly promote multidrug resistance in GC cells. Demethylation of
its promoter using 5-Aza-CdR led to increased expression of both miRNAs and subsequent
downregulation of CpG binding protein 2 (MeCP2) via direct binding to its 3'-UTR [145].
Similar results were observed in the case of GBM, where the expression of miR-20a was
negatively correlated to levels of DNMT1; overexpression of this miRNA was associated
with resistance to temozolomide treatment. Subsequently, elevated levels of DNMT1
induced cell apoptosis [146]. Upregulated levels of miR-106a were observed in HCC [147]
and GC [148] and inversely correlated with promoter methylation. Similarly, upregulated
levels of miR-20b were detected in ESCC patients and associated with decreased promoter
methylation, increased cell proliferation, migration, and invasion through inactivation of
tumor-suppressive genes RB1 and TP53INP1 [149]. Decitabine treatment was performed to
identify miRNAs influenced by methylation in NK/T-cell lymphoma (NKTL). Expression
of miR-20b was epigenetically silenced in SNK6 cells, and STAT3 was detected as probable
target of this miRNA [150]. In contrast, miRNAs from the mir-17~92a-1 cluster were
identified as important tumor suppressors in PDAC; their expression was downregulated
in tumor tissue via DNMT1 promoter hypermethylation [151,152]. Further, decreased
levels of miR-18b were detected in melanoma by virtue of hypermethylation, and its
expression was re-induced using 5-Aza-CdR [153]. Finally, IncRNA PVT1 was identified to
promote gallbladder cancer proliferation by epigenetically suppressing miR-18b via DNA
methylation [154].

The mir-17~92a-1 cluster was found to be aberrantly overexpressed in mixed-lineage
leukemia-rearranged acute leukemias due to the elevated acetylation of histone H3 and H3K4
trimethylation. It plays an important role in the development of the disease through inhibiting
cell differentiation and apoptosis while promoting cell proliferation [155]. Zhang et al. [156]
demonstrated that acetylation of AGO2 specifically increases the binding of miR-19b into
miRISC complex, thus enhancing its maturation. In addition, high levels of both miR-19b
and acetylated AGO2 were associated with the poor prognosis of LC patients. HDAC
inhibitor Vorinostat was shown to reduce levels of BRCA1l-associated RING domain 1
(BARD1) by increasing the expression of miR-19a/b in AML [157] (Table 4).
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Table 4. Epigenetically regulated expression of mir-17~92a-1 cluster and mir-106a~363 cluster.

DNA Methylation

CncerType  minwa TNAChs Mewlon gt IR gpgonr AP Toeel e e
PAC miR-19a mir-17-92a-1 (chr13)  HyperMet DNMT1 ﬁg:}gfég ggﬁgﬁéﬁ CSCs [152]
miR-19b mir-17~92a-1 (chr13) ~ HyperMet DNMT1 ﬂig}g;’g 8338‘3‘22 CSCs [152]
GC miR-19a mir-17~92a-1 (chr13) ~ HypoMet MeCP2 Eﬁgiggg ggggﬁéﬁ MeCP2, MDR [145]
miR-19b ﬂﬁ%giigé ((Ccflllrrl)?)) HypoMet MeCP2 ﬁg:}ggg ggﬁgﬁéﬁ MeCP2, MDR [145]
miR-106a mir-106a~363 (chrX) HypoMet - mﬂfgif;:égia;ggp Kfﬁéﬁﬁg LNP, stage, diagnosis [148]
KOO i miee ey Hypo e RS et 041
glioma miR-20a mir-17~92a-1 (chr13)  HypoMet DNMT1 miRn—llis—_Sz}())?-Sglg—?;p ggigf}gé Tgﬁfiﬁé‘:;f gg’viﬁt‘fﬁéfu [146]
Be  mnam o) e - nSEwE CCUCUML Pl L
melanoma miR-18b mir-106a~363 (chrX)  HyperMet - Iﬁg}f& '533’ figg%‘é‘é fgﬁgfgfﬁéﬁﬁ“ﬁﬁfff’ oprosis [153]
GB miR-18b mir-106a~363 (chrX) HyperMet DNMT1/EZH2/PVT1 n;g;—_lf; ?pp Sgg(é%é/é Proliferation, HIF1«x, prognosis [154]
NKTCL miR-20b mir-106a~363 (chrX) ~ HyperMet - miglii'ég/’;g%p ggﬁgﬁgé STAT3 [150]




Cancers 2021, 13, 1333 24 of 45

Table 4. Cont.

Histone Modifications

CncerType  mina NACh Mo el AR o Aol uesel e e
AL mRy ey O e SHSCAGU Pelieion syl lony g
mise e miklade  cuocce) Tl spenods olony
mikan el e
RISy AUUCCAC Pl s ey 15
DLBCL miR-19a mir-17~92a-1 (chr13) HAc HDAC1/2 Eﬁ:}gzgg gggﬁééé vOrino]:;:Ft]?ela iment [157]

PAC—pancreatic cancer, GC—gastric cancer, HCC—hepatocellular carcinoma, ESCC—esophageal squamous cell carcinoma, GB—gallbladder cancer, NKTCL—NK/T-cell lymphoma, ALL—acute lymphoblastic
leukemia, DLBCL—diffuse large B-cell lymphoma, HyperMet—hypermethylation, HypoMet—hypomethylation, H3Ac—histone 3 acetylation, H3K4me3—histone 3 lysine 4 trimethylation, DNMT—DNA
methyltransferase, MeCP2—methyl CpG-binding protein 2, EZH2—enhancer of zeste homolog 2, PVT1—plasmocytoma variant translocation 1, HDAC—histone deacetylase, CSCs—cancer stem cells,
MDR—multidrug resistance, LNP—lymph node positivity, CDKN1A—cyclin dependent kinase inhibitor 1A, TMZ—temozolomide, LRIG1—LRIG1—leucine rich repeats and immunoglobulin like domains 1,
RB1—retinoblastoma associated protein 1, OS—overall survival, EMT—epithelial-mesenchymal transition, MDM2—mouse double minute 2 homolog, HIF1x—hypoxia inducible factor 1 &, STAT3—signal
transducer and activator of transcription 3, MLL—mixed-lineage leukemia, BARD1—BRCA-1 associated RING domain 1; # the bold sequence indicates the mature miRNA used for in vitro/in vivo experiments

(-3p or -5p).



Cancers 2021, 13, 1333

25 of 45

4.5. miR-15-5p/16-5p/195-5p/424-5p/497-5p Family

The miR-15-5p/497-5p family consists of seven different miRNAs, including miR-
15a-5p, miR-15b-5p, miR-16-5p, miR-195-5p, miR-424-5p, miR-497-5p, and miR-6838-5p.
While miR-15a is clustered together with miR-16-1 on chromosome 13, miR-15b is located
in another cluster on chromosome 3 together with miR-16-2, whereas mir-497~195 cluster
is found on chromosome 17. Finally, miR-424 is clustered together with other miRNAs
(miR-503, miR-542, miR-450a/b) from different families on chromosome X [8]. MiR-15a/b
and miR-16 are well-known important tumor suppressors with downregulated levels
in various hematologic malignancies. Hypermethylation of these two clusters was also
associated with the progression of MDS into AML and poor prognosis [158]. Concerning
the mir-497~195 cluster, its methylated promoter was identified in BC. Forced expression
of these two miRNAs resulted in decreased proliferation and invasion of cells by targeting
RAF-1, CCND1 [159], and mucin-1 (MUCT1) [160]. Similar results were obtained in the
case of miR-497 and GC cells [161]. Downregulation of this cluster was detected also
in HCC. Interestingly, decreased expression of these miRNAs was affected not only by
promoter hypermethylation but also by aberrant methylation status of their transcription
factors NEUROG2 (neurogenin-2) and DDIT3 (DNA damage-inducible transcript 3) [162].
Significant downregulation of miR-195 due to its methylation was described also in PC.
Using 5-Aza-CdR, levels of this miRNA increased, which resulted in suppressed cell
proliferation, migration, invasion, and EMT of PC cells [163]. MiR-424 also functions as an
important tumor suppressor, and its expression is inversely correlated with promoter DNA
methylation in GBM [164], CC [118], endometrial endometrioid adenocarcinoma [165], and
OC [166].

In 2012, mir-15a~16-1 transcriptional repression by c-Myc and HDAC3 in mantle cell
and other non-Hodgkin B-cell lymphomas was described [167]. Later on, the same results
were observed in CLL [79] and NSCLC; using HDAC inhibitor trichostatin A, levels of miR-
15a and miR-16 increased significantly together with its host gene DLEU2 [168]. HDAC3
can anchor to the miR-195 promoter via SP1 interaction and consequently can repress
miR-195 transactivation by deacetylating histone in HCC cells [169]. Finally, IncRNA PVT1
directly interacts with EZH2, and the complex binds to the promoter region of miR-195,
resulting in increased H3K27me3 levels, decreased expression of miR-195, and changed
response to paclitaxel treatment in CC cells. Interestingly, direct sponging of miR-195 by
PVT1 was also observed [170] (Table 5).
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Table 5. Epigenetically regulated expression of miR-15-5p/16-5p/195-5p /424-5p /497-5p family.

DNA Methylation
CncerType  minwa TNAChs Mewlon gt IR gpgonr AP Toeel e e

PC miR-195 mir-497-195 (chr17)  HyperMet . ﬂ?;f;;%g;}’)p CaalaYY Proliferation, migration, EMT [163]
GC miR-497 mir-497~195 (chr17)  HyperMet - mierTSR_'S‘LP?Z%};_SP :éégg‘éi thferaﬁ‘;&?f a;;og‘; apoptosis, 1161
HCC miR-195 mir-497~195 (chrl7)  HyperMet - nﬁﬁ;%%};%? i‘é‘égég}i - [162]
miR-497 mir-497~195 (chrl?) HyperMet - mierlli?-?;;g;@ 2232822 - [162]
0] @ miR-424 mir-424~450b (chrX) HyperMet - mierllig{-;gf;g};-Sp ﬁééﬁggi Proliferation, migration, KIF23 [166]
BC miR-195 mir-497~195 (chrl7)  HyperMet - n;f{Rllé525i’)%};55ip ié‘égégg Pronferatioé‘gfr‘r’fion' RAFL, [159]

miR-497 mir-497~195 (chr17) HyperMet - mier‘lig_'S‘LgZ%@_Sp ﬁééfg‘éi thfergtciﬁ%ii“ﬁﬁg’ RAFL  1159,160]
glioma miR-424 mir-424~450b (chrX) HyperMet - mier‘lig_'S‘?ﬁz};_Sp ﬁééiggi I“V”i‘l’gﬁll’l‘l’s:;tsifﬁgmde’ [164]
cC miR-424 mir-424~450b (chrX) ~ HyperMet - miRﬁ?_;‘}fZ%‘;_Sp ﬁééﬁgég HIPK3, RBBP6 [118]
EEA miR-424 mir-424~450b (chrX) ~ HyperMet - mier‘li?_?sZ%@_Sp ﬁééﬁgég CCND1, RICTOR [165]
AML miR-15a mir-15a~16-1 (chr13) ~ HyperMet - mierlliSR_'Sfj‘f;};_Sp ﬁgggg’ég P ro%r‘coiizs,’ ggﬁ?ws [158]
miR-15b mir-15b~16-2 (chr3) HyperMet - mirﬁ;_sl;l/)g};{,p iéégg‘ég PrOgBIEOEiZ' Ifgl%‘“is [158]
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Histone Modifications
CnerType  miwa NAC Moo il AT pgons AN PO g

LC miR-15a mir-15a~16-1 (chr13) HAc HDAC3 miRn—nli?-_SlpS?f‘;};—Sp igggg‘gi Cell grOWth'gglf;y formation, [168]
miR-16 mir-15a~16-1 (chr13) HAC HDAC3 mi;{r_‘?;:;f)'/l‘;g;’_Sp cacuall  Cellgrowth, colony formation, [168]

cC miR-195 mir-497-195 (chr17)  H3K27me3 EZH2/PVT1 n;rllefSZSi% ;35_-’;19 géé‘iégg EMT, paclitaxel sensitivity [170]
HCC miR-195 mir-497~195 (chr17) HAc HDAC3/SP1 “1‘111le16525§;1;@9755§;? i‘é‘égégg - [169]
CLL miR-15a mir-15a~16-1 (chr13) H3K4me2 HDACs mierlli?-_slSjlg;-@ ﬁggggég Apoptosis, MCL-1 [79]
miR-16 rrrr‘lllrr _1155?;1166'_12(8‘;:35;) H3K4me2 HDACs miR{rlli(f-{;g;/_fgS-?)p gﬁigﬁgg Apoptosis, MCL-1 [79]

miR-15-5p/497-5p AGCAGCA

NHL miR-15 mir-15a~16-1 (chrl3) HAc HDAC3 mierllig{-_Slp??g};-Sp igggg[ég ¢-MYC expression-associated [167]
miR-16 mir-15a~16-1 (chr13) HAc HDAC3 miﬁ‘.‘iﬁféﬁ'}ﬁ‘é’_g,p i‘éggégg -MYC expression-associated [167]

PC—prostate cancer, GC—gastric cancer, HCC—hepatocellular carcinoma, OC—ovarian cancer, BC—breast cancer, CC—cervical cancer, EEA—endometrial endometrioid adenocarcinoma, AML—acute myeloid
leukemia, LC—lung cancer, CLL—chronic lymphoblastic leukemia, NHL—Non-Hodgkin lymphoma, HyperMet—hypermethylation, HAc—histone acetylation, H3K27me3—histone 3 lysine 27 trimethylation,
HDAC—histone deacetylase, EZH2—enhancer of zeste homolog 2, PVT1—plasmocytoma variant translocation 1, SP1—specificity protein 1, EMT—epithelial-mesenchymal transition, KIF23—kinesin-like
protein 23, CCND1—cyclin D1, MUCl—mucin 1, IDH—isocitrate dehydrogenase, HIPK3—homeodomain interacting protein kinase 3, RBBP6—RB binding protein 6, BCL2—B-cell lymphoma 2, ROR1—receptor
tyrosine kinase like orphan receptor 1, MCL-1—myeloid cell leukemia 1; # the bold sequence indicates the mature miRNA used for in vitro/in vivo experiments (-3p or -5p).
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4.6. miR-23-3p Family, mir-23b~24-1 Cluster, mir-23a~24-2 Cluster

MiR-23-3p family includes four miRNAs: miR-23a-3p, miR-23b-3p, miR-23¢, and
miR-130a-5p. In addition, miR-23a is found in a cluster on chromosome 19 together with
miR-27a and miR-24-2, while miR-23b is localized on chromosome 9 together with miR-27b,
miR-24-1, and miR-3074 [8]. MiR-23a/b function as important tumor suppressors, and
their downregulation may be caused by hypermethylation in numerous cancers, including
osteosarcoma (OSS) [171], laryngeal cancer [172], PC [173], CC [174], MM, Waldenstrom
macroglobulinemia [175], and HCC [176]. On the other hand, miR-23a elevation associated
with CpG hypomethylation was observed in another study dealing with HCC patients [162].
Interestingly, miR-23b is epigenetically inactivated through its host gene C9orf3; this inacti-
vation was connected to HPV-16 E6 infection in CC [177]. MiR-27a/b are dual-function
miRNAs, meaning they can function as both oncogenes and tumor-suppressors based on
the cellular context. MiR-27a was found to be epigenetically silenced by methylation in
PC [178], while miR-27b hypermethylation was observed in tamoxifen-resistant BC. Im-
portantly, re-expression of this miRNA after treatment with 5-Aza-CdR sensitized MCF-7
cells to tamoxifen, reversed EMT-like properties, inhibited invasion, and downregulated
its target gene HMGB3 [179]. Similarly, miR-27b-3p was confirmed to be downregulated
in GC, and treatment with 5-Aza-CdR enabled partial demethylation of CpG island in
its promoter region [180]. Contrary to these results, miR-27b oncogenic properties were
observed in CC as increased levels were associated with cell proliferation and invasion
and reduced apoptosis. In addition, IncRNA TOB1-AS1 was able to degrade its expression.
However, epigenetic silencing of TOB1-AS1 by promoter methylation restrained miR-27b
inhibition and contributed to CC progression [181]. Downregulation of miR-24 associated
with promoter hypermethylation was observed in PC [182]; however, the exact mechanism
has not been described.

Recently, HDAC3 inhibition by class I-specific HDAC inhibitor entinostat was de-
scribed to decrease the activity of the chromatin remodeling enzyme SMARCA4, which
in turn de-repressed miR-27a. Elevated levels of this miRNA led to PAX3:FOXO1 mRNA
destabilization and sensitization to chemotherapy in rhabdomyosarcoma cells [183]. Simi-
larly, inhibition of HDACS in diffuse large B-cell lymphoma resulted in increased miR-27b
levels, inhibition of MET signaling pathway, and decreased tumor growth [184] (Table 6).
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Table 6. Epigenetically regulated expression of miR-23-3p family, mir-23b~24-1 cluster, and mir-23a~24-2 cluster.
DNA Methylation
. miRNA Cluster Methylation Epigenetic miRNA Family " Associated Processes/Targets
Cancer Type miRNA (miRBase 22.1) Status Regulator (miRBase 22.1) Seed Region Clinical Outcomes Reference
. Proliferation, migration, cell
PC miR-23b mir-23b~24-1 (chr9) HyperMet - mlgzggzgp ggé[cjﬁgg cycle, colony formation, EMT, [173]
RSP SRC, AKT, OS, RFS
. . Hyper/ miR-27-3p UCACAGU
miR-27a mir-23a~24-2 (chr19) HypoMet - miR-27a-5p GGGCUUA Cell growth, stage [178]
mir-23b~24-1 (chr9) miR-24-3p Ggeucag  Cellgrowth, apoptosis, racial
miR-24 mir-23a~24-2 (chr19) HyperMet - miR-24-5p GCCUACU difference, AEIr{r,\E?Fl, IGFBP5, [182]
. . miR-27-3p UCACAGU Proliferation, invasion, GSPT1,
GC miR-27b mir-23b~24-1 (chr9) HyperMet - miR-27b-5p CAGCUUA stage, tumor size [180]
. . miR-23-3p UCACAUU
HCC miR-23a mir-23a~24-2 (chr19) HypoMet - miR-23-5p CGGUUCC - [162]
. . miR-27-3p UCACAGU
miR-27a mir-23a~24-2 (chr19) HypoMet - miR-27a-5p GGGCUUA - [162]
. . miR-23-3p UCACAUU . . S
miR-23b mir-23b~24-1 (chr9) HyperMet - miR-23-5p GGGUUCC Proliferation, migration [176]
. . miR-27-3p UCACAGU Invasion, EMT, tamoxifen
BC miR-27b mir-23b~24-1 (chr9) HyperMet - miR-27b-5p GAGCUUA resistance, HMGB3 [179]
. ool og miR-23-3p UCACAUU Apoptosis, uPA, ZEB1, c-MET,
CC miR-23b mir-23b~24-1 (chr9) HyperMet DNMT1 miR-23-5p CGGUUCC HPV-16 E6, Corf3 [174,177]
. . miR-23-3p UCACAUU Proliferation, migration, invasion,
0SS miR-23a mir-23a~24-2 (chr19) HyperMet - miR-23-5p GGGUUCC RUNX2, CXCL12 [171]
. . miR-23-3p UCACAUU Proliferation, apoptosis, colony
MM miR-23b mir-23b~24-1 (chr9) HyperMet - miR-23-5p CGGUUCC formation, SP1 [175]
. . miR-23-3p UCACAUU Proliferation, apoptosis, colony
WM miR-23b mir-23b~24-1 (chr9) HyperMet - miR-23-5p CGGUUCC formation, SP1 [175]
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Table 6. Cont.

Histone Modifications

. miRNA Cluster Histone Epigenetic miRNA Family . Associated Processes/Targets
Cancer Type miRNA (miRBase 22.1) Modification Regulator (miRBase 22.1) Seed Region Clinical Outcomes Reference
. miR-130-3p/454-3p AGUGCAA
BC miR-130a - H3K27me3 - miR-23-3p UCACAUU - [94]
. . HDAC3/ miR-27-3p UCACAGU PAX3:FOXOL1 fusion,
RMS miR-27a mir-23a~24-2 (chr19) HAc SMARCA4 miR-27a-5p GGGCUUA chemosensitivity, entinostat [183]
DLBCL miR-27b mir-23b~24-1 (chr9) HAc HDAC6 rﬂi&%ﬂ; giégégg Proliferation, viability, MET, OS [184]

PC—prostate cancer, GC—gastric cancer, HCC—hepatocellular carcinoma, BC—breast cancer, CC—cervical cancer, OSS—osteosarcoma, MM—multiple myeloma, WM—Waldenstrom’s macroglobulinemia,
RMS—rhabdomyosarcoma, DLBCL—diffuse large B-cell lymphoma, HyperMet—hypermethylation, HypoMet—hypomethylation, H3K27me3—histone 3 lysine 27 trimethylation, HAc—histone acetylation,
DNMT—DNA methyltransferase, HDAC—histone deacetylase, SMARCA4—SWI/SNF-related matrix associated actin dependent regulator of chromatin, subfamily a, member 4, EMT—epithelial-mesenchymal
transition, OS—overall survival, RES—recurrence free survival, AR—androgen receptor, IGF1—insulin-like growth factor 1, IGFBP5—insulin-like growth factor binding protein 5, ETV1—ETS variant transcription
factor 1, GSPT1—GI1 to S phase transition 1, HMGB3—high mobility group box 3, uPA—urokinase-type plasminogen activator, ZEB1—zinc finger E-box-binding homeobox 1, HPV-16—human papillomavirus 16,
RUNX2—RUNX family transcription factor 2, CXCL12—C-X-C motif chemokine ligand 12, SP1—specificity protein 1, PAX3—paired box gene 3, FOXO1l—forkhead box protein O1; # the bold sequence indicates
the mature miRNA used for in vitro/in vivo experiments (-3p or -5p).
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4.7. miR-130-3p/301-3p/454-3p Family

Hypermethylation of miR-130-3p was described in PC tissues as well as in drug-
resistant cell lines; its expression correlated with the level of methylation. Importantly,
colony-stimulating factor 1 (CSF-1) was confirmed as a direct target of miR-130-3p responsi-
ble for decreased sensitivity to anticancer drugs. Thus, demethylation with 5-Aza-CdR led
to reactivation of miRNA expression, downregulation of CSF-1, and decreased multidrug
resistance [185]. Interestingly, miR-130b belongs to the same cluster as miR-301b, which
is located on chromosome 22; these two miRNAs share target genes. Downregulation of
this cluster mediated by elevated promoter methylation was detected in PC and associ-
ated with cell proliferation [186]. On contrary, Fort et al. [187] observed upregulation of
these miRNAs in neoplastic and metastatic prostate tissue and described oncogenic role of
this cluster. However, elevated levels were not due to decrease in DNA methylation, as
the promoter of these genes was found to be lowly methylated in normal and neoplastic
tissue. Concerning miR-454-3p, Bao et al. [188] analyzed the expression of this miRNA in
chondrosarcoma tissues. They found downregulated levels of miR-454-3p and upregulated
levels of IncRNA HOTAIR. Subsequently, they observed that HOTAIR is able to induce
methylation of miR-454-3p by recruiting EZH2 and DNMT1 to promoter regions, which
resulted in lower apoptosis and increased proliferation of cells. Thus, HOTAIR could serve
as a promising therapeutic target for chondrosarcoma. Deregulated expression of miR-
130a/b was observed also in endometrial cancer. Detailed analyses proved that 5-Aza-CdR
and HDAC inhibitors may increase the levels of these miRNNAs and inhibit the malignant
behavior of cells [189] (Table 7).

4.8. miR-29-3p Family

The miR-29-3p family consists of three miRNAs: miR-29a-3p, miR-29b-3p, and miR-
29c¢-3p that are clustered together on two different chromosomes, chromosome 1 (mir-29b-
2~29c cluster) and chromosome 7 (mir-29b-1~29a cluster) [8]. These miRNAs are usually
downregulated in various cancers, thus serving as tumor suppressors and important epi-
miRNAs. However, only little is known about the epigenetic regulation of their expression.
Mazzoccoli et al. [190] identified methylation of CpG sequences in promoter regions of both
clusters; this methylation was decreased after decitabine treatment or DNMT3B inhibition
by siRNA in Burkitt lymphoma cells. Interestingly, it was suggested that the expression of
mir-29b-1~29a cluster may be suppressed by DNMT3B in a DNA-methylation-dependent
manner, and in turn, miR-29a/b may suppress DNMT3B by binding to its 3’-UTR region.
Deregulation of miRNAs as well as DNMT3A led to the epigenetic silencing of CDH1 and
contributed to the metastasis formation in GC [191]. In addition, LASP1 was confirmed as
a direct target of epigenetically silenced miR-29b responsible for invasive potential of GC
cells [192]. These results were subsequently confirmed also in OC [193], and similar data
were achieved for DNMT1 and miR-29b in PAC [194]. Interestingly, the expression of this
miRNA may be downregulated through methylation by IncRNA DCST-AS1 in GBM [195].

Epigenetic regulation of miR-29 family through histone modifications was firstly
described in 2010 when SP1 was found to participate in a NFkappaB/HDAC complex
that repressed miR-29b transcription in AML [196]. Similarly, PRMTS5 is able to interact
with SP1 in a transcription repressor complex and silence miR-29b via histone 4 arginine
residue H4R3 dimethylation, which results in transcription activation of FLT3 receptor
tyrosine kinase [197]. In MM, HDACs are considered to function as important oncogenes.
Recently, a novel circuitry regulating MM cell growth and survival was identified as
miR-29b was proved to specifically target HDAC4. In turn, HDAC4 inhibited miR-29b
expression by histone deacetylation that resulted in increased levels of prosurvival targets
SP1 and MCL-1 [198] (Table 7).
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Table 7. Epigenetically regulated expression of miR-130-3p/301-3p/454-3p family and miR-29-3p family.

DNA Methylation
Cncorype  minA SACe Mellaion  Bigemeic AT ooyt ASOded oS e
PC miR-130b  mir-301b~130b (chr22)  HyperMet - mﬂigfiz%{fgs"gp éggggﬁg DNA":;EE;;SPO“SQ [186]
miR-301b  mir-301b~130b (chr22)  HyperMet - mfﬁ;RBéfggE ; glgil}fgp égggggg DNA-cslzrr:;%eenrce:ponse, [186]
oc miR-130b  mir301b~130b (chr22)  HyperMet - iR ﬁ?@%ﬁgsﬁp AsToeAs CSF'i;:gigeﬁg%aﬁon' [185]
- et DVTVEEE/ /Sty AGUGCM  Arep e
PAC miR-29b mir-29b-2~29c (chrl) HyperMet DNMT1 mrlrll{li_gzbg__;gp Sgggﬁg@ Migration, angiogenesis [194]
GC miR29b  mir-29b-2~29¢ (chrl)  HyperMet DNMT3A m?‘ﬁi’gzlf_';gp aneasea ngﬁ;ﬁg‘%&g{rﬁi‘ﬁé ASPL 191,102]
miR-29¢ mir-29b-2~29¢ (chrl) HyperMet DNMT3A IEIRR—-ZZ;C_—?; éi(cjéggé Migration, DNMT3A, CDH1 [191]
ocC miR-29b mir-20b-2~29c (chrl)  HyperMet DNMT3A /B mﬁ?‘ﬁi'gzs_'ggp 3883882 DNMT3A /B [193]
GBM miR-29b mir-29b-2~29¢ (chrl) HyperMet DCST1-AS1 mrg_r{z_gzs__;gp IAJS(SSSSé Proliferation, OS [195]
BL miR-29a mir-29b-1~29a (chr?) HyperMet DNMT3B IE}{R_';;;?S}; égg:&cjﬁ CDK 6%111\1%}1%?%}?35};4 CL1 [190]
—_— miR-29-3p AGCACCA .
MRy ey yperMet  DNMI3® mRATH UGS o vt Tt e 1)
miR-29¢ mir-29b-2~29¢ (chrl)  HyperMet ) rrr?iiRR-_2299c_-35F;> éggégzgé CDK6,C]§lll\Ii\}/1Ei}§iB,a§"%P:?ls;ii/[CL-l L1901
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Table 7. Cont.

Histone Modifications

miRNA Family

miRNA Cluster Histone Epigenetic Associated Processes/Targets

. . #
Cancer Type miRNA (miRBase 22.1) Modification Regulator (miRBase 22.1) Seed Region Clinical Outcomes Reference
. miR-130-3p/454-3p  AGUGCAA
BC miR-130a - H3K27me3 - miR-23-3p UCACAUU - [94]
. miR-29-3p AGCACCA
CLL miR-29b mir-29b-1~29%a (chr7) H3K4me?2 HDACs miR-29b-1-5p CUGGUUU Apoptosis, MCL-1 [79]
mir-29b-2~29¢ (chrl) miR-29b-2-5p UGGUUUC
. miR-29-3p AGCACCA
AML miR-29b mir-29b-1~2%a (chr7) HAc HDACL/3 miR-29b-1-5p CUGGUUU SP1, KIT mutations, FLT3 [196,197]
mir-29b-2~29¢c (chrl) H4R3me2 PRMT5 miR-29b-2-5p UGGUUUC
. . H4Ac HDAC3 miR-29-3p AGCACCA Viability, colony formation,
MCL miR-29a mir-29b-1~29a (ch7)  pago7mes PRC2/EZH2 miR-29a-5p CUGAUUU IGFRIR, CDK6 [199]
iRA9D mir-29b-1~29a (chr7) H4Ac HDAC3 mrlrl‘{ﬂ;gzsl?’% égggggé Viability, colony formation, [199]
mir-29b-2~29¢ (chrl)  H3K27me3 PRC2/EZH2 miR-29b-2—5§ Ueauuue IGFRIR, CDK6
. . H4Ac HDAC3 miR-29-3p AGCACCA Viability, colony formation,
miR-29¢ mir-29b-2~29¢ (chrl)  pap7mes PRC2/EZH2 miR-29¢-5p GACCGAU IGFRIR, CDK6 [199]
, miR-29-3p AGCACCA . o
MM miR-29b mir-29b-1~29a (chr7) HAc HDAC4 miR-29b-1-5p CUGGUUU Cell survival, migration [198]
mir-29b-2~29¢ (chrl) miR-29b-2-5p UGGUUUC SP1, MCL-1

PC—prostate cancer, OC—ovarian cancer, CHS—chondrosarcoma, PAC—pancreatic cancer, GC—gastric cancer, GBM—glioblastoma multiforme, BL—Burkitt lymphoma, BC—breast cancer, CLL—chronic
lymphoblastic leukemia, AML—acute myeloid leukemia, MCL—mixed-lineage leukemia, MM—multiple myeloma, HyperMet—hypermethylation, H3K27me3—histone 3 lysine 27 trimethylation, H3K4me2—
histone 3 lysine 4 dimethylation, HAc—histone acetylation, H4R3me2—histone 4 arginine 3 dimethylation, H4Ac—histone 4 acetylation, DNMT—DNA methyltransferase, EZH2—enhancer of zeste homolog 2,
HDAC—histone deacetylase, PRMT5—protein arginine methyltransferase 5, PRC2—polycomb repressing complex 2, CSE-1—colony stimulating factor 1, MDR—multidrug resistance, STAT3—signal transducer
and activator of transcription 3, LASP1—LIM and SH3 protein 1, CDH1—E-cadherin 1, OS—overall survival, CDK6—cyclin dependent kinase 6, TCL-1—T-cell leukemia/lymphoma 1, MCL1—myeloid cell
leukemia 1, SP1—specificity protein 1, FLT3—fms-like tyrosine kinase 3, IGFR1R—insulin-like growth factor receptor 1; # the bold sequence indicates the mature miRNA used for in vitro/in vivo experiments

(-3p or -5p).
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5. Clinical Utility of microRNA Clusters and Families and Epigenetic-Based Therapeutics

A growing number of studies have indicated deregulated expression of miRNAs
in cancers and their clinical potential to serve as promising diagnostic, prognostic, and
predictive biomarkers as well as novel therapeutic targets. Aberrant DNA hypermethy-
lation of miRNA genes is commonly observed during tumor development and results in
downregulation of tumor-suppressive miRNAs. Kunej et al. [69] revealed that miRNAs
can be regulated by DNA methylation in only one cancer type, indicating they are cancer
type-specific and may be used for better classification of carcinomas with unknown pri-
mary tissue of origin. On the other hand, miR-34b was reported to be silenced by DNA
methylation in 24 cancer types [96]. Thus, this miRNA could serve as a general cancer
biomarker. Importantly, it was shown that digital methylation-specific PCR assay [200]
as well as droplet digital PCR [201] may be used to quantify miR-34b/c methylation in
serum-circulating DNA of MPM patients, indicating that these approaches could be used
for early detection of the disease. Similarly, the feasibility of using miR-34b/c methylation
detection in bowel lavage fluid for CRC screening was analyzed. Unfortunately, sensitivity
and specificity were not high enough for clinical use [202]. Recently, Ohtsubo et al. [203]
analyzed methylation status of 16 tumor-suppressive miRNAs in bile from patients with
pancreaticobiliary diseases. They found significantly higher methylation rates of miR-
200a/b in patients with PAC compared to benign diseases indicating the clinical utility
of this approach for distinguishing between malignant and benign disease. Further, the
methylation status of two functional promoters of miR-200b was associated with hormone
receptor status in BC patients. While the P1 was hypermethylated in metastatic lymph
nodes compared to matched primary tumors, P2 hypermethylation was found in patients
with loss of estrogen or progesterone receptor and its hypomethylation was associated
with gain of HER2 and androgen receptor expression [121]. These data indicate a potential
use of DNA methylation of miRNA promoters for better classification of tumor diseases.

Since the epigenetic status of a tumor may influence its behavior, epigenetic-based
therapeutics are tested in several clinical trials with the aim to reprogram cancer cells back
to a normal state and overcome chemoresistance, which is one of the major challenges
in cancer therapy. Currently, there are six epigenetic drugs approved for clinical use
by the FDA, especially in hematologic malignancies [204]. In addition, small molecules
inhibiting key enzymes of the epigenetic machinery are widely studied, including DNMT
and HDAC inhibitors. Patients with chronic myelomonocytic leukemia (CMML) are
frequently treated with hypomethylating agents (HMAs) azacitidine or decitabine. Using
these drugs, Berg et al. [205] observed significant upregulation of miR-125a associated with
anti-leukemic effects. Importantly, the data were validated in a clinical context, as miR-
125a levels increased in CMML patients treated with HMAs, especially in cases showing
clinical response to these drugs. Similarly, Chen et al. [168] found that HDACs inhibitors
trichostatin A and sodium butyrate significantly upregulated the expression of miR-15a
and miR-16 through the increase of histone acetylation in the region of DLEU2/miR-
15a/16-1 promoter in LC cells. Subsequently, the expression of BCL-2 decreased, and
cell proliferation was reduced. These results indicate that patients with low levels of
miR-15a/16 or high levels of HDACs could benefit from HDACs inhibitor-based therapy.

Concerning association with chemoresistance, it was shown that HDAC1 upregulation
is a crucial event in drug resistance development in OC. Inhibition of this enzyme by
siRNA reduced c-Myc expression, increased miR-34a levels, and sensitized cells to cisplatin-
induced apoptosis [111]. Unfortunately, targeting of DNMTs/HDAC:s is still very unspecific
and may lead to severe changes in the whole genome. Since miRNA clusters contain
multiple miRNA genes, their targeting may provide better therapeutic outcomes as multiple
signaling pathways are affected. However, some miRNA clusters are known to contain
miRNAs with dual functions, and activation of such clusters transcription may result
in deregulation of several different proteins involved in tumor-suppressive as well as
oncogenic signaling pathways. Thus, further research in this area is needed.
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Another strategy for epigenetic therapy includes miRNA-based approach. Firstly,
miRNA mimics may be used to re-establish the levels of tumor-suppressive miRNAs.
Recently, interesting results were published indicating the promising therapeutic potential
of miR-489 in triple-negative BC. The authors chemically modified the guide strand of
this miRNA by replacing uracil with 5-FU so that tumor-suppressive and DNA damaging
components were combined together into a novel therapeutic agent. This drug showed
superior effects over miR-489 or 5-FU in inhibition of tumor progression, suggesting
its therapeutic efficacy [206]. Inversely, antagomiRs or miRNA sponges are applied to
block the function of oncogenic miRNAs. Importantly, binding sites of the sponge are
specific to the miRNA seed region, which allows them to block the whole family of
related miRNAs [207]. Finally, 22nt long antisense oligonucleotides called miRNA masks
are used to compete with miRNAs of interest for 3’-UTR binding sites of target genes.
While antagomiRs or miRNA sponges are essential for studying the overall function of
particular miRNA, miRNA masks are preferentially used for revealing the specific outcome
of regulation of the target gene by the miRNA [208]. Currently, several companies are trying
to develop successful miRNA-based cancer therapeutics. In 2013, MiRNA Therapeutics
introduced MRX34, a miR-34a mimic, delivered by a liposomal agent Smarticles and
tested its potential in patients with various advanced solid tumors. However, this first-
in-human clinical trial of a miRNA-based therapy was halted by FDA due to severe
immune-mediated toxicities in four patients [209]. Encouraging results were published
in the case of Mesomir-1, a TargomiR drug, including miR-16 mimic, bacterially derived
minicells, and antibody to EGFR. Recently, phase 1 of clinical trial was completed in
MPM or NSCLC patients with acceptable safety profile; however, additional studies are
needed [210]. Importantly, a subclass of miRNAs, epi-miRNAs, has been identified. They
play an important role in the modulation of epigenome by regulating the expression of key
enzymes of epigenetic machinery; thus, they are considered promising therapeutic targets
in cancer. Amodio et al. [198] proved that miR-29b targets HDAC4 and highlighted that
both molecules are involved in a functional loop. Firstly, silencing of HDAC4 by shRNAs
inhibited cell survival and migration and induced apoptosis and autophagy of MM cells
due to the downregulation of SP1 and MCL-1, direct targets of miR-29b. Subsequently,
hyperacetylation of miR-29b accompanied by elevated levels of this miRNA was observed
just as in the case of SAHA (Vorinostat) treatment. Importantly, overexpression of miR-29b
potentiated SAHA activity in a murine xenograft model of human MM. These results
indicate that miR-29b could serve as a promising epi-therapeutic approach in the treatment
of this disease.

During the several last years, advanced methods for studying the role of miRNA clus-
ters and families in tumor development have been established. Using hierarchical cloning
method, Wang et al. [211] constructed a synthetic miRNA cluster, which accommodated
18 different miRNA precursors and demonstrated that the maturation and function of
individual precursors are independent of their position in the cluster. Further, genome
editing methods, such as CRISPR/Cas9, are being introduced in miRNAs research as a
powerful tool to delineate the function and regulation of miRNA clusters and families.
In 2018, a study by Gonzalez-Vallinas et al. [212] was published showing that simulta-
neous overexpression of miRNAs located on chromosome 14q32 by CRISPR, activating
technology promoted migration and invasion of lung adenocarcinoma cells similarly to
individual miRNA mimics, including miR-323b-3p, miR-487a-3p, and miR-539-5p. These
results indicate that using CRISPR-based strategies, we will be able to further elucidate
miRNA clusters” functionality, which will facilitate the development of novel targeted ther-
apies. Last but not least, computational methods, as well as various databases, are being
established to complement costly and time-consuming biological experiments. Although
clustered and homologous miRNAs are expressed at various levels due to maturation and
degradation processes, they are prone to present similar deregulation patterns in particular
tumor types [213]. Using multiple types of data to calculate miRNA and disease similarity
based on mutual information, adding miRNA family and cluster information to predict
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human disease-related miRNAs, a new computational method termed FCMDAP, was
developed to improve the prediction accuracy of disease-related miRNAs [214]. Finally,
EpimiR database collecting regulations between 19 kinds of epigenetic modifications and
617 miRNAs across seven species may be used to search coordinated regulation between
miRNAs and epigenetics [215].

6. Conclusions

Deregulated expression of miRNAs is a hallmark of a number of solid tumors as
well as hematologic malignancies. Recently, the reciprocal regulation between miRNAs
expression and epigenetic machinery has been indicated, and crucial epigenetic enzymes,
such as DNMTs, HDACs, HATs, or TETs, were found to be strongly enriched among the epi-
miRNAs targets indicating the involvement of miRNAs in key cellular processes, including
cell differentiation, pluripotency, or chemoresistance. In this review, we have highlighted
the association between aberrant DNA methylation, histone methylation or histone acetyla-
tion, and altered miRNAs expression. As miRINAs are frequently clustered in the genome,
multiple miRNAs may be produced from the same primary transcript, and their expression
is affected by the same epigenetic changes. In addition, miRNAs from the same family may
be clustered together or they are expressed from different clusters with a close functional
relationship. Importantly, aberrant methylation of serum-circulating miRNAs may be
detected with modern and high-sensitive methods, thus epigenetically regulated miRNAs
could serve as promising diagnostic, prognostic, and predictive biomarkers as well as
novel therapeutic targets. Currently, different strategies for epigenetic-based therapies
are being developed, including DNMT/HDAC inhibitors or miRNA-based approaches.
However, more work needs to be done to improve specificity and reduce the side effects of
these molecules. Further, improved systems for miRNA delivery to the target site must
be designed. Finally, a combination of computational applications and laboratory-based
experimental data will allow the gain of more detailed knowledge of complicated networks
of feedback between miRNAs and epigenetic mechanisms, enabling further development
of epigenetic anticancer drugs.
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