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Simple Summary: Endocrine therapy with tamoxifen or other endocrine drugs represents the
standard treatment for estrogen receptor-positive breast cancer. In spite of effectiveness of this
therapy, onset of drug resistance worsens the prognosis of about 30% of patients. Autophagy has
recently been proposed as a key player of drug resistance, but the underlying mechanisms are
not completely understood. In this research, the authors investigate how autophagy triggers drug
resistance in breast cancer cells. The results evidence that tamoxifen affects lysosome integrity, which
suggests that this effect may contribute to the anticancer activity of this drug. Activation of autophagy
and overexpression of iron-binding proteins synergize in protecting the lysosomal compartment,
restraining drug effectiveness in breast cancer cells. According to these results, tamoxifen-resistant
cells show an increased autophagic flux and overexpress iron-binding proteins. These findings
indicate that screening for the level of iron-binding proteins may help to identify patients at risk for
developing drug resistance.
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estrogen receptor (ER) « or 3; its presence has primed the development of a number
of drugs aimed at interfering with estrogen synthesis, their binding to the receptor, or
intracellular ER signaling, in a therapeutic approach designated “endocrine therapy”.
Among the several endocrine drugs, tamoxifen (Tam), aromatase inhibitors, and other
selective ER modulators (SERMs) or downregulators (SERDs) represent the standard
treatment for ER* breast cancer. This approach has shown great clinical effectiveness, but
intrinsic (also called de novo) or acquired drug resistance in approximately 30% of ER*
breast cancer patients complicates the prognosis and accounts for disease progression and
reduced survival. The mechanisms underlying drug resistance of breast cancer have been
extensively investigated and partly elucidated [2,3]. Lack of expression or mutations of ER
was initially implicated as the most likely cause of endocrine resistance. However, recently
dysregulation of autophagy has emerged as a prominent mechanism contributing to the
resistance of breast cancer cells to anticancer drugs [4]. Autophagy is a phylogenetically
conserved catabolic process triggered by nutrient restriction or cellular stresses (for a
review see [5]). Autophagy partakes in the homeostatic control of normal cell populations,
as well as in cancer prevention, onset, and progression. While initially postulated to act
as an oncosuppressor in normal cells, dysregulation of autophagy is now regarded as
a progression factor for established cancer cells, which may, thus, gain drug resistance.
Although the involvement of autophagy in the onset of drug resistance in ER* breast
cancer is now well recognized, the underlying molecular mechanisms are only marginally
understood. Several reports point out that Tam and other SERMs and SERDs stimulate
autophagy in ER* breast cancer cells and tumors [6-8], and that expression of several
autophagy-related proteins is often greater in metastatic tumors compared to primary
breast cancer [9]. In keeping with this notion, pharmacological suppression of autophagy
reverts drug resistance of breast cancer, either increasing or restoring susceptibility to the
drugs [9,10]. For the reasons above, autophagy has been regarded as both a prosurvival
mechanism counteracting the lethal effects of anticancer drugs and an attractive target for
therapy of metastatic or chemotherapy-resistant breast cancer [11].

The lysosomal compartment is a key element of the autophagic machinery, accounting
for the exhaustive degradation of the engulfed substrates [12]. First characterized as the
main degrading organelles, lysosomes are now granted with complex regulatory functions
in both normal and pathological conditions, including cancer development and progres-
sion [13]. Lysosomes are known to account for the lower susceptibility of cancer cells to
chemotherapeutics which are weak bases by favoring their intralysosomal sequestration
and ensuing removal from the cell by exocytosis [14,15]. However, intralysosomal accumu-
lation of drugs to high concentrations, when not followed by their extracellular release, has
also been reported to trigger lysosomal membrane permeabilization (LMP) and activation
of lysosomal death pathways [16]. Thus, in this view, lysosomal destabilization may repre-
sent both a putative intrinsic mechanism of action of these drugs and an effective strategy
to increase susceptibility of cancer cells to anticancer therapy [17-19]. In a recent report,
Hultsh et al. found that lysosomes of a Tam-resistant subclone originated from T47D cells,
a luminal A breast cancer cell line, are more abundant and bigger than those of parental
cells [20]. Of interest, Tam-resistant T47D cells were more resistant to LMP induced by
lysosomotropic agents than the parental ones, further linking increased lysosomal stability
to Tam resistance.

In a previous study, we demonstrated that activation of the autophagic flux determines
the lysosomal relocation of the cytoplasmic metallothioneins (MT), a class of iron-binding
proteins, and grants rat hepatoma cells with a greater resistance to TNF-mediated cytotoxi-
city [21]. We also showed that the enhanced intralysosomal accumulation of MT abrogates
the TNF-mediated LMP, eventually protecting hepatoma cells against the lethal action of
the cytokine.

In this research, we investigated the putative molecular mechanisms that account
for increased resistance to endocrine therapy of ER" breast cancer cells by focusing on
the lysosomal compartment. Chronical exposure of MCF7 cells to Tam produced a cell
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line resistant to 5 pM Tam (MCF7-TamR), which displays an increased autophagic flux,
overexpression of the cytoplasmic iron-binding proteins MT2A and ferritin heavy chain,
and a greater resistance to Tam-induced lysosomal membrane permeabilization (LMP)
compared to the parental cells. We show here that autophagy plays a critical role in Tam
resistance of MCF7-TamR cells by safeguarding the lysosomes against Tam-mediated LMP.

2. Results
2.1. Generation and Characterization of a Tamoxifen-Resistant Subclone Derived from MCF7 Cells

To generate a reliable in vitro model of endocrine-resistant breast cancer cells, we
mimicked its onset by culturing the MCF?7 cells in the presence of increasing concentrations
of Tam up to 5 uM for about 15 months. At the highest concentration used, Tam significantly
slowed the growth of parental MCF7 (Figure 1a) and affected cell-cycle distribution; S and
G2/M phases were progressively depleted of cells, which accumulated in G0/G1 or, after
6 days of treatment, in a hypodiploid population likely representing dying cells (Figure S1,
Supplementary Materials). At the end of the selection time, a subclone of MCF7 cells,
designated MCF7-TamR, capable of growing unrestrained in the presence of 5 uM Tam,
was obtained. However, we observed that, even in the absence of Tam, the growth rate
of MCF7-TamR cells was slower than that of parental cells; in fact, after 6 days of culture,
the maximum cell density reached by MCF7-TamR was about half of that achieved by
parental cells (Figure 1a,b). Next, the ICs for Tam in the different cell lines was calculated
after 48 h of continuous treatment with drug. According to the different growth pattern
in the presence of the drug (Figure 1a,b) in MCF7-TamR cells, the calculated IC5y was
47.2 + 7.42 uM, a value significantly greater than that of parental cells (12.25 4= 1.91 uM),
but in good agreement with values previously reported by other authors [22,23]. To further
assess the drug resistance of the subclone, we measured the growth of both susceptible and
resistant cells in the presence of 12 uM Tam, representing the ICsq for parental MCF7 cells.
As expected, the growth of MCF?7 cells was completely blunted by the drug (Figure 1c).
By contrast, growth of MCF7-TamR was effectively slowed by Tam in these experimental
conditions, but not totally abrogated as in parental cells (Figure 1d).

Onset of endocrine resistance can be attributed to several mechanisms, the most com-
mon of which are the reduced expression or malfunctioning of the ER or upregulation of
the PI3K/AKT/PTEN pathway. We first investigated the expression of both ER and pAkt
in both cell lines and observed that neither the intracellular amount nor the Tam-dependent
modulation of both ER and pAkt was significantly changed in MCF7-TamR versus MCF7
cells (Figure S2a,b, Supplementary Materials, and Figure S9 for the original blots). To
verify whether endocrine resistance was afforded by the presence of a dysfunctional ER, we
analyzed the estrogen response of the cells using the E-screen, a test originally devised to
demonstrate the ER activation [24] and so far used to ascertain the estrogenic activity [25]
of different substances. Proliferation of MCF7 cells was increased by 17-3 estradiol in
the range of 10-100 pM, which produced the greater proliferative response. As expected,
5 uM Tam abrogated the growth stimulation brought about by estradiol. MCF7-TamR
cells responded to 17-f3 estradiol treatment in the range of 100 pM-10 nM, and again
growth was strongly reduced by Tam, which suggests that ER of these cells retained the
capability to respond to the estrogens and to be inhibited by Tam (Figure S2¢, Supplemen-
tary Materials). Altogether, these results rule out the possibility that Tam resistance of
this subclone depends on both a dysfunctional ER signaling and an upregulation of the
PIBK/AKT/PTEN pathways.
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Figure 1. Effect of tamoxifen (Tam) on growth of human breast cancer cell lines. (a,b) Growth of MCF7
and MCF7-TamR cells, respectively, in the absence or presence of 5 uM Tam. (c¢) Growth of MCF7 and
MCEF7-TamR cells (d) in the presence of 12 uM Tam, which represents the calculated ICsg for Tam
for the parental cell line. Data represent the mean + SD of at least three independent experiments.
Different letters indicate statistically different means as determined by ANOVA followed by a
Student-Newman-Keuls post hoc test; statistical significance was set at p < 0.05.

2.2. Tamoxifen Affects the Lysosomal Compartment in MCF7 Cells

Since several anticancer drugs affect the lysosomal compartment of target cells [26,27],
we next investigated whether Tam also had such an activity. Accordingly, 5 uM Tam
triggered lysosomal membrane permeabilization (LMP), as evidenced by the appearance of
cells with a weak and diffuse, rather than bright and punctate, LysoTracker Red fluorescence
(Figure 2a, arrows); for such a reason, cells showing LMP were subsequently indicated as
“pale cells”. Such cells became evident by day 2, i.e., earlier than growth reduction and cell
death onset (Figure S3a, Supplementary Materials), and they increased to about 15% of
the total population by days 4-6 of treatment (Figure 2b). In cells showing LMP, lysosome
number/cell decreased with time (Figure 2c). In contrast, lysosome size tended to increase
(Figure 2d), indicating that Tam markedly affected the lysosomal compartment of MCF7
cells early on. A reduction in SQSTM1/p62 and an accumulation of LC3-1I were evident at
days 2 and 4 of treatment (Figure 2e); abrogation of SQSTM1/p62 degradation and further
accumulation of LC3-II in the presence of E64d and leupeptin confirmed that Tam triggered
autophagic flux in MCF7 cells.
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Figure 2. Tam (5 pM) triggers lysosomal membrane permeabilization (LMP) and autophagic flux in
MCEF?7 cells. (a) LMP triggered in MCF7 cells (arrows) after 6 days of Tam treatment. (b) Number
of pale cells, counted every second day of Tam treatment. (c) Effect of Tam on the number of
lysosomes/cell and (d) on the mean lysosomal area. For each sample, at least 25 single cells were
used for measurements. (e) Relative amount of the autophagy substrate SQSTM/p62 and of LC3-1/11
analyzed for up to 6 days of continuous Tam treatment; refer to Figure S7 for the original blots.
The pictures in panel (a,e) are representative of three independent experiments. Data and statistical
analysis are as in Figure 1.

We next investigated whether the lysosomal effects of Tam were dose-dependent and
affected cell viability. We exposed MCEF?7 cells to increasing concentrations of Tam for 24 h
and observed that the number of cells undergoing LMP increased with Tam concentration
(Figure 3a). Tam treatment dose-dependently affected viability of MCF?7 cells (Figure 3b),
but with a different kinetic from LMP development, which always preceded death. The
reduction in viability, in fact, was negligible for Tam concentrations up to 15 uM, which,
on the other hand, already triggered significant LMP. Cell death became highly significant
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only upon treatment with 20 uM Tam, which reduced the culture viability by about 50%.
According to the above observation, clonogenic efficiency dropped dose-dependently and
fell to about 50% with 20 uM Tam (Figure 3c). By considering the overall trend of both
loss of viability and clonogenic efficiency, 20 uM can be regarded as the LDsy of Tam
for MCF7 cells under our experimental conditions. Using this Tam concentration, we
eventually observed that LMP appeared as early as after 20 min of treatment and occurred
in about 90% of cells after 2 h (Figure 3d,e, first and second panels from left). In addition
to increasing the percentage of pale cells, Tam treatment also brought about the release of
cathepsin B from permeabilized lysosomes (Figure 3e, third and fourth panels from left).
On the basis of these findings, and according to the fact that this treatment did not elicit
significant cell death (Figure S3b, Supplementary Materials), we decided to use 20 uM Tam
for most of the subsequent experiments.
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Figure 3. Tam-induced LMP is dose- and time-dependent in MCF?7 cells. (a,b) Dose-dependency
of Tam-induced LMP (a) or loss of viability (b) in cells treated for 24 h with Tam as indicated. (c)
Reduction in clonogenic potential of MCF7 cells exposed for 24 h to the indicated concentrations of
Tam. (d) Time-course of LMP induced by 20 uM Tam. (e) LMP (first and second panels) and release
of cathepsin B-GFP (CB-GFP; third and fourth panels) induced by treatment with 20 uM Tam for 2 h;
C and 20 pM Tam indicate controls and MCEF?7 cells treated with 20 uM Tam for 2 h, respectively. For

panels (a-d), data and statistical analysis are as in Figure 1. Pictures in (e) are representative of three
independent experiments.
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2.3. Tam-Induced Alterations of the Lysosomal Compartment Are Reversible and Associated with
Autophagy Activation

We next assessed whether Tam-induced LMP is a transient alteration in MCF?7 cells.
We used washout experiments in which cells were treated with 20 pM Tam for 2 h and
then shifted to Tam-free medium for up to 24 h before viability assessment. We found that
viability was significantly altered neither at the end of the 2 h of Tam treatment nor at the
end of the 24 h recovery in normal growth medium after Tam removal (Figure 4a), and
that this did not depend on the absence of LMP (Figure 4b). Rather, although massively
induced by Tam treatment, LMP reverted to control levels as soon as 4 h after drug removal
(Figure 4b). The number of lysosomes/cell and the overall lysosomal area (Figure 4c,d,
respectively) followed the same trend and returned to control values within about 4 h of
recovery. These findings suggest that Tam-induced lysosomal damage is reversible and
that MCF?7 cells may escape from death by attenuating Tam-induced LMP.

Since autophagy is considered to be essential for cell survival, we investigated whether
autophagy or lysophagy was activated during recovery from Tam-induced LMP using the
tandem fluorescent LC3 (tfLC3) [28,29] or galectin-3 (tfGal3) [30,31] reporters. We found
that Tam treatment increased both autophagic flux and lysophagy (Figure 4e,f, respectively).
The results show that both autophagy and lysophagy started early during Tam treatment
and remained elevated during recovery after drug washout.

To probe the contribution of autophagy to MCF7 survival after Tam-induced lysosomal
damage, MCF?7 cells were treated with 20 uM Tam for 2 h in the presence of 3-methyladenine
(3-MA) or chloroquine (CQ), which were kept with the cells during the 24 h of recovery
after Tam washout. As expected, inhibition of autophagy during recovery after Tam
treatment significantly reduced cell survival (Figure 4g), confirming that autophagy played
a prosurvival role in Tam-treated MCF7 cells. The data gathered so far support the view
that autophagic disposal of damaged lysosomes effectively counteracts the detrimental
effects of Tam-induced LMP.

2.4. Tam-Resistant MCF7 Cells Are Less Prone to Undergo Tam-Induced Lysosomal Damage

We subsequently asked whether Tam resistance correlates with a greater capacity of
cancer cells to resist drug-induced LMP. For these experiments, we used the MCF7-TamR
cell line (Figure 1b,d). The lysosomes of MCF7-TamR cells displayed higher resistance to
LMP induced by 20 uM Tam for 2 h than lysosomes of parental cells (Figure 5a-d). We then
investigated whether the atypical resistance to Tam-induced LMP relies on the activation
of autophagic flux and the impact of autophagy inhibition on drug susceptibility of MCF7-
TamR cells. Consistent with the data above, we found that autophagic flux was significantly
higher in MCF7-TamR than in parental cells (Figure 5e) and that impairing autophagy
with a number of validated selective inhibitors restored susceptibility of resistant cells to
5 and 20 uM Tam (Figure 5f). In fact, while they did not significantly affect cell viability
when used alone, the inhibitors reduced the viability of MCF7-TamR cells in the presence
of Tam at both 5 and 20 pM. This finding demonstrates that restraining autophagy restored
susceptibility to Tam of otherwise Tam-resistant breast cancer cells. Of interest, the Tam-
sensitizing effect of autophagy inhibition, particularly that afforded by CQ and 3-MA, was
evident already with 5 uM Tam, a concentration to which MCF7-TamR cells are resistant,
and, as expected, more pronounced with 20 uM. Collectively, these results point out that
Tam resistance of MCF7-TamR largely relies on autophagy, thus representing a survival
mechanism.
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Figure 4. Tam-induced LMP is transient, and its reversion is accompanied by autophagy activation.
(a,b) Effect of drug removal and of recovery in normal growth medium for up to 24 h on viability (a)
and LMP induction (b) in MCF?7 cells treated with 20 uM Tam for 2 h. Viability and LMP in controls
were measured before Tam addition; Tam was removed at time 0. (c,d) Effect of Tam removal on
lysosome number (c) and overall area of lysosomal compartment (d). (e,f) Activation of autophagy
(e) and lysophagy (f) in MCF7 cells exposed to Tam and allowed to recover as in (a). The number
of cells analyzed is shown in each bar. (g) Effect of autophagy inhibition on viability of MCF?7 cells
treated as in (a) and allowed to recover for 24 h. Data and statistical analysis are as in Figure 1.
C: control MCF7 cells.
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Figure 5. MCF7-TamR cells are resistant to Tam-induced growth inhibition and LMP and show a higher autophagic flux.
(a) Effect of treatment with 20 uM Tam for 2 h on LMP in MCF7 and MCF7-TamR cells. (b) LMP induced by 20 uM Tam
for 2 h on MCF7-TamR cells. (c,d) Effect of treatment with 20 uM Tam for 2 h on the number of lysosomes/cell (c) and the
mean lysosomal fluorescence (d). (e) Autophagic flux in parental and MCF7-TamR cells. The number of cells analyzed is
indicated in each bar. (f) Effect of autophagy inhibition with chloroquine (CQ, 50 uM), 3-methyladenine (3-MA, 5 mM),
or bafilomycin Al (Baf Al, 1 uM) on viability of MCF7-TamR cells exposed to 5 or 20 uM Tam for 24 h. CQ or 3-MA was
added 60 min before Tam; Baf Al and Tam were added simultaneously. (g) Relative content of MT2A, FtH, or Hsp70
messenger RNAs (mRNAs) in MCF7-TamR cells transfected for 72 h with 20 nM of the indicated small interfering RNAs
(siRNAs). (h) LMP triggered by 20 uM Tam for 2 h in TamR cells silenced or not for 72 h with 20 nM of indicated siRNAs.
WT: wildtype parental MCF7 cells; TamR: MCF7-TamR cells; C: untreated cells. NT: non-transfected cells; siNEG: control
siRNA. Data and statistical significance of panels (b—d) and (f-h) are as in Figure 1; for panel (e), the Student’s t-test was
used. ** p < 0.05 and *** p < 0.001. Panel (b) shows pictures representative of three experiments.
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2.5. Expression of Lysosome-Protecting Factors Is Dysrequlated in MCF7-TamR Cells and
Contributes to Tam Resistance

We then measured the relative expression of a set of genes linked to endocrine resis-
tance in both MCF7 and MCF7-TamR cells (Table 1).

Table 1. Relative amount of estrogen receptor (ER), Atg protein, and lysosomal protective factor mRNAs in MCF7 and

MCEF7-TamR cells.
Cell line ER«x ERpB Atg5 Atg7 MT2A FtH FtL Hsp70
MCEF7 1.0 £ 0.08 1.0+0.15 1.0+0.1 1.0+0.2 1.0+04 1.0+0.1 1.0+£012 1.040.05

MCF7-TamR 09 £ 0.15

0.9 £0.18 09+04 1.7£04 76 £72* 22+05* 0.8+0.2 1.1 £0.04

Data represent the mean + SD of three experiments; *: statistical significance (Student’s t-test) was set to p < 0.05. ERx, ER: estrogen
receptor o and f3; Atg5, Atg7: autophagy-related protein 5 and 7; MT2A: metallothionein 2A; FtH, FtL: ferritin heavy and light chain;

Hsp70: heat-shock protein 70.

We first observed that the expression of ERx and 3 was almost unchanged between
parental and resistant cells, a finding that ruled out that Tam resistance depended on the
absence of ER. Autophagy-related protein 5 (Atg5) expression was unchanged, while that
of Atg7 was moderately increased, suggesting that autophagy was activated. We then
extended the analysis to genes belonging to the group of iron-binding proteins, which
are known to protect the lysosomal compartment against drug-induced LMP [21,32,33]
and already reported to be dysregulated in some breast cancer subtypes [34-36]. We
found that both metallothionein 2A (MT2A) and ferritin heavy chain (FtH) mRNAs were
significantly overexpressed in MCF7-TamR, while ferritin light chain (FtL) and heat-shock
protein 70 (Hsp70) mRNA levels were essentially unchanged. Our findings demonstrate
that dysregulation of autophagy and overexpression of iron-binding proteins coexist in
MCEF7-TamR cells.

Next, we investigated whether overexpression of the above iron-binding proteins
is actually critical in conferring Tam resistance to MCF7-TamR cells. To this aim, we
knocked down the iron-binding proteins significantly upregulated in this subclone and
measured the proportion of cells undergoing LMP after treatment with 20 uM Tam for
2 h. Downregulation of MT, FtH, or Hsp70 with different small interfering RNAs (siRNAs)
(Figure 5g) significantly increased the number of cells undergoing LMP. As observed in
particular with the MT2A-2, FtH-2, and Hsp70-2 siRNAs, the level of LMP attained was
similar to that of MCF?7 cells treated with Tam in the same way (Figure 5h). This finding
reveals that both overexpression of iron-binding proteins and elevation of autophagic flux
contribute to the atypical Tam resistance displayed by MCF7-TamR cells.

2.6. Autophagy Grants Tam Resistance to MCF7 Cells by Protecting the Lysosomes from
Drug-induced LMP

Next, we investigated whether dysregulated expression of the genes mentioned above
protected the lysosomes from Tam-induced LMP and whether resistance to LMP corre-
lated with Tam resistance. First, wildtype MCF7 cells were transiently transfected with
plasmids encoding GFP alone, MT2A-GFP, FtH-GFP, or Hsp70-GFP (Figure S4a—c, Sup-
plementary Materials, and Figure S10 for the original blots) and exposed to 20 uM Tam
for 2 h before LMP assessment. Ectopic expression of all proteins, excluding GFP alone,
protected lysosomes of parental cells from LMP (Figure 6a, microscopic pictures). Interest-
ingly, LysoTracker Red-fluorescent lysosomes of transfected cells were also positive for GFP
fluorescence of chimeric proteins (Figure 6a, graphs). This observation demonstrates that ec-
topic GFP-tagged proteins were transported to the lysosomes, presumably because of their
autophagy-mediated sequestration and lysosomal delivery. In keeping with the morpholog-
ical analysis, LMP dramatically decreased in transfected compared to non-transfected and
GFP-transfected MCF7 cells (Figure 6b), confirming that autophagy-mediated lysosomal
accumulation of iron-binding proteins prevented Tam-induced lysosomal damage even
when cells were exposed to high concentrations of the drug.
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Figure 6. Overexpression and lysosomal relocation of MT2A, FtH, or Hsp70 abrogate Tam-induced LMP and elicit Tam
resistance in MCF7 parental cells. (a) Lysosomal relocation of GFP, MT2A-GFP, FtH-GFP, or Hsp70-GFP (from first to fourth
row, respectively). Images are representative of at least three independent transfections. Intensity plots (arbitrary intensity
units) of red and green fluorescence of the organelles encompassed by the white arrow. (b) Attenuation of LMP induced
by 20 pM Tam for 2 h in MCF7 parental cells non-transfected or overexpressing GFP, MT2A, FtH, or Hsp70. LMP was
evaluated only in GFP-expressing cells, counted in three to five microscopic fields from three independent transfections.
(c) Clonogenic potential of MCF7 cells non-transfected or stably transfected with GFP, MT2A, or Hsp70 and exposed to 5 or

10 uM Tam for 24 h. NT: non-transfected parental cells. For panels (b,c), data and statistical analysis are as in Figure 1.



Cancers 2021, 13, 1252

12 of 23

Next, we verified whether overexpression of iron-binding proteins and their autophagy
mediated contribution to restrain Tam-induced LMP allowed higher survival after Tam
treatment. We performed a clonogenic assay using MCF7 cells stably transfected with
GFP alone, MT2A-GFP, or Hsp70-GFP. Tam strongly reduced clonogenic capability of both
non-transfected and GFP-transfected cells, but not that of cells overexpressing either MT2A
or Hsp70 (Figure 6¢). Of interest, although the number of colonies formed by Tam-treated,
MT2A-transfected, or Hsp70-transfected MCF7 cells was similar to that of untreated cells,
their size was smaller (data not shown), which was consistent with the reduced growth rate
of Tam-resistant cells compared to parental ones (as evidenced by Figure 1a,b, respectively).

To better clarify whether prevention of LMP produced by overexpression of iron-
binding proteins depends on autophagy, we assessed lysosomal integrity in MCF7 cells
transiently transfected as above in the presence of the autophagy inhibitor 3-MA. Examina-
tion of lysosomes by confocal microscopy confirmed that overexpression of MT2A, FtH, or
Hsp70 in the absence of 3-MA prevented LMP induction by 20 uM Tam (Figure 7, third
row). Conversely, inhibition of autophagy completely abrogated lysosomal protection
as evidenced by the greatly reduced number of LysoTracker Red- and GFP-positive lyso-
somes, indicating that lysosomal integrity depended on functioning autophagy (Figure 7,
fourth row).

FtH-GFP MT2A-GFP Hsp70-GFP

3-MA

20 uyM Tam

20 uM Tam
+ 3-MA

Figure 7. Inhibition of autophagy restores susceptibility to Tam-induced LMP in MCF7 cells over-
expressing MT2A, FtH, or Hsp70. Cells transfected as indicated were left untreated (first row) or
treated with 5 mM 3-methyladenine (3-MA, 60 min pretreatment before Tam addition; second row),
20 uM Tam for 2 h in the absence or presence of 3-MA (third and fourth row, respectively). After
staining with LysoTracker Red as in Figure 2a, cells were imaged by confocal microscopy.
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Collectively, the present results support our hypothesis that autophagy-mediated
lysosomal delivery of protective factors triggers Tam resistance of MCF7-TamR cells by
reducing Tam-induced LMP and cytotoxicity.

2.7. Overexpression of Iron-Binding Proteins and Activation of Autophagy Are Required to
Restrain Tam-Mediated LMP in Breast Cancer Cell Lines of the Luminal A Subtype

Eventually, we checked whether the above conclusions gathered from MCEFE7 cells
extended to other breast cancer cell lines by investigating the susceptibility to Tam-induced
LMP of other cell lines of the luminal A subtype such as T47D, MDA-MB-415, and ZR-75-
1 [37]. The lysosomal compartment of MDA-MB-415 and ZR-75-1 cells was heavily affected
by treatment with 20 uM Tam for 2 h, a finding that was in good agreement with the results
gathered with MCF7 cells (Figure 8a). Furthermore, the growth of both MDA-MB-415 and
ZR-75-1 was significantly slowed starting from 3 days of culture in the constant presence
of 5 uM Tam (Figure 8b). By contrast and quite surprisingly, the lysosomes of T47D cells
were only marginally affected by Tam treatment, in strict analogy to that observed in
MCEF7-TamR cells (Figure 8a).
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Figure 8. Abundance of iron-binding proteins and capability to activate autophagy concur to
shape the susceptibility to Tam-induced LMP of breast cancer cell lines of the luminal A subtype.
(a) Susceptibility to Tam-induced LMP of breast cancer cells treated with 20 uM Tam for 2 h and
subsequently stained with LysoTracker Red for LMP quantification. (b) Growth characteristics of
MDA-MB-415 and ZR-75-1 cells in the absence or presence of 5 uM Tam. (c¢) Heat map representing
the Log?2 fold change of the iron-binding protein mRNAs in different breast cancer cell lines; the
relative mRNA content was normalized to that of MCF7 cells, which was set to 1; blue or red colors
indicate genes that are down- or upregulated, respectively. (d) Effect of siRNA-mediated knockdown
of Hsp70 and MT2A on susceptibility to Tam-induced LMP in T47D cells. For panels (a,b,d) data and
statistical analysis are as in Figure 1.
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Since an increased intracellular level of iron-binding proteins accounts for Tam-
resistance of MCF7-TamR cells, we also investigated the relative expression of these
lysosome-protecting factors in all the other cell lines (Figure 8c). The analysis revealed that
T47D cells overexpress both Hsp70 and MT2A, which could explain their high resistance to
Tam-induced LMP. In order to verify this possibility, we silenced either Hsp70 or MT2A in
T47D cells before measuring LMP. As expected, silencing significantly increased suscepti-
bility of these cells to Tam-induced LMP (Figure 8d). This finding agrees with the results
obtained in the similar experiment performed with MCF7-TamR cells (see Figure 5h).

Figure 8c also shows that MDA-MB-415 and ZR-75-1 cells overexpress some iron-
binding proteins (Hsp70, FtH, and MT2A, or Hsp70, respectively); however, in spite of
this, both retained a high susceptibility to Tam-induced LMP (Figure 8a), which appar-
ently argues against the postulated lysosome-protecting activity of these proteins. To
rule out the possibility that overexpressed endogenous iron-binding proteins might be
mutated or dysfunctional in these cell lines and, thus, unable to prevent Tam-induced
LMP, MDA-MB-415 and ZR-75-1 cells were transiently transfected with plasmids encoding
GFP, MT2A-GFP, FtH-GFP, or Hsp70-GFP (Figure S4b,c, Supplementary Materials) and
subsequently treated with 20 pM Tam for 2 h. However, lysosome detection and counting
by confocal microscopy revealed that enforced expression of the iron-binding protein-GFP
did not further protect the lysosomes against Tam-induced damage (Figure 8a,b, and
Figures S5 and S6, Supplementary Materials, respectively). We next verified whether such
an unexpected lack of lysosome protection depended on an impaired Tam-induced activa-
tion of autophagy, as otherwise observed in MCF7 and T47D cells. Tam treatment triggered
LC3-II accumulation in both MDA-MB-415 and ZR-75-1 cells (Figure 8b,d); however, its
amount was not significantly increased by E64d and leupeptin, which suggests that Tam
does not stimulate autophagic flux in these cells. To test whether activation of autophagy
restrains Tam-induced lysosomal damage, transfected cells were starved for 2 h in HBSS
before evaluation of lysosome integrity. Starvation almost completely protected the lysoso-
mal compartment of both cell lines from Tam-mediated damage and restored the lysosome
number to the values of untreated cells (Figure 8a,c; Figures S5 and S6, Supplementary
Materials). These findings definitely demonstrate that both dysregulation of lysosome-
protecting factors and activation of autophagy are required to enhance the resistance of
breast cancer cells to Tam-induced lysosomal damage.
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Figure 8. Overexpression of iron-binding proteins and activation of autophagy are both necessary to prevent Tam-induced

lysosomal damage in breast cancer cells. (a,b) Susceptibility of MDA-MB-415 (a) and ZR-75-1 (b) cells overexpressing GFP,
MT2A, FtH, or Hsp70 to LMP induced by treatment with 20 uM Tam for 2 h. (c,d) Effect of treatment with 20 uM Tam
for 2 h on activation of autophagy in MDA-MB-415 (c) and ZR-75-1 (d) cells transfected as in (a,b); refer to Figure S8 for
the original blots. For panels (a,b), data and statistical analysis are as in Figure 1. Panels (c,d) are representative of three

independent experiments.

3. Discussion

Intrinsic or acquired endocrine resistance is a major clinical complication that worsens
the prognosis for about 30% of breast cancer patients [38]. During the last few years,
autophagy has been recognized as a key player behind drug resistance of breast cancer cells
and, consequently, identified as a potential target for circumventing it [39,40]. However,
overcoming drug resistance by targeting autophagy still falls short of being achieved,
mostly because there is no clear understanding of the subtle molecular mechanisms via
which autophagy drives drug resistance.

In this research, we show that Tam triggers both lysosomal damage and autophagy
in MCF7 cells. The finding that LMP also occurs with Tam concentrations that can be
achieved in breast cancer tissue in vivo [41,42] suggests that Tam-mediated lysosomal
damage may be a significant feature of anticancer activity of Tam. Lysosomes have been
reported to play a critical role in both triggering cancer cell death and inducing drug
resistance via different mechanisms. Several commonly used anticancer agents induce
LMP and lysosomal death, confirming that these organelles are suitable therapeutic targets
for cancers [43,44]. By contrast, lysosomal sequestration and subsequent exocytosis of
anticancer agents that are weak hydrophobic bases limit the intracellular availability of
active drug(s) and contribute to drug resistance [14,45,46]. In our system, LMP induced
by a 2 h treatment with 20 uM Tam did not cause sudden death, which showed up
only when autophagy was impaired. This evidence further highlights autophagy as a
survival response of Tam-treated breast cancer cells [47,48] and supports the possibility
that its activation reduces Tam toxicity by antagonizing drug-induced lysosomal damage.
Activation of autophagy might theoretically lead to survival either by promoting lysophagy,
the selective removal of Tam-damaged lysosomes [31,49], or by preventing lysosomal
damage itself through alternative autophagy-based protective mechanisms. The first
mechanism seems to operate in MCF7 cells, in which lysophagy is promptly activated in
response to a 2 h exposure to Tam to remove dysfunctional lysosomes that might trigger cell
death. By contrast, in cells transiently overexpressing the known regulators of intracellular
iron availability MT2A, FtH, or Hsp70 [32,50,51], an alternative protective mechanism
based on autophagic sequestration and lysosomal delivery of these proteins prevents
Tam-induced lysosomal damage and promotes cell survival. The models used in our
study seem to confirm such a dual possibility, since lysosomes of transiently transfected
MCEF7 accumulated iron-binding proteins and became more resistant to Tam-induced
damage compared to non-transfected cells. In these conditions, pharmacological inhibition
of autophagy completely abrogated lysosome protection, confirming its critical role in
cancer cell survival. The same kind of response was observed in MCF7-TamR cells, which
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overexpress MT2A and FtH as a result of adaptation to Tam. Interestingly, Tam-resistant
cells, which also show a higher autophagic flux and a lower proneness to undergo Tam-
induced LMP than parental cells, were re-sensitized to therapeutic concentrations of
Tam when either autophagy was impaired or the overexpressed lysosome-protecting
factors were downregulated. The present and previous observations from our group [21]
demonstrate that overexpression of lysosome-protecting factors is inherently associated
with drug resistance of cancer cells. They also suggest that autophagy contributes to
drug resistance far beyond the production of anabolic units to support the metabolic
requirements of cancer cells facing various kinds of stress. Our findings gathered from
both MCF7-TamR and other breast cancer cell lines of the luminal A molecular subtype
agree with clinical observations that overexpression of MT2A, FtH, or Hsp70 represents a
poor prognostic factor for metastatic breast cancer of different subtypes, which significantly
correlates with their aggressiveness and drug resistance [35,36,52]. Our results further
support the possibility that upregulation of factors safeguarding lysosome integrity against
LMP induced by a variety of agents [20,32,33,53,54] may contribute to drug resistance
in breast cancer if autophagy is concurrently activated or dysregulated. This paradigm
is evidenced by the information gathered from T47D, MDA-MB-415, and ZR-75-1 cells.
Although all these lines are validated models of breast cancer of the luminal A molecular
subtype, they show a different pattern of response to Tam treatment. Although T47D
cells are known to express the ER, their growth has been reported to be less affected by
Tam compared to MCF7 or other luminal A cells [55,56]. We show here that these cells
overexpress Hsp70 and MT2A, and that they are intrinsically highly resistant to Tam-
induced LMP. We also provide a demonstration that knockdown of these proteins restores
susceptibility of these cells to LMP. By contrast, MDA-MB-415 and, even if to a lesser
extent, ZR-75-1 cells have been found to overexpress most of the lysosome-protecting
factors investigated in this research; however, in spite of this finding, both appear to be as
susceptible to LMP as MCF7 cells. In particular, in these two cell lines, we also detected a
lower capability of Tam to trigger the autophagic flux compared to what occurs in MCF7
and T47D cells. Of interest, in these cells, autophagy inhibitors revealed that Tam leads
to a blockade of autophagy, rather than its activation. This, by impairing the autophagy-
mediated delivery of these proteins to the lysosomes, forestalls the protection of lysosomal
compartment against Tam-induced damage. Our results might impact the choice of the
best therapeutic approach for advanced, endocrine-resistant ER* breast cancer with an
upregulated PI3K/PTEN/Akt/mTOR pathway [57]. In such cases, endocrine inhibitors are
routinely combined with rapamycin analogues (“rapalogues”) that inhibit the mechanistic
target of rapamycin complex 1 [1,58,59]. Rapalogues are clinically useful for several
cancers, including breast cancer, but they are also powerful inducers of autophagy [60-62].
According to our present observation with MDA-MB-415 and ZR-75-1 cells, in endocrine-
resistant breast cancers overexpressing MT2A, FtH, or Hsp70, rapalogues might enhance
the autophagy-mediated relocation of these factors to the lysosomes, blunting LMP and
further exacerbating drug-resistance. A set of experimental investigations and preclinical
studies indeed revealed that pharmacological inhibition of autophagy increases the clinical
effectiveness of rapalogues [63].

The findings gathered by our investigation demonstrate that autophagy-mediated
suppression of Tam-induced lysosomal damage is a likely mechanism via which autophagy
may trigger endocrine resistance in MCF7 cells that overexpress iron-binding proteins or
other lysosome-protecting factors. Correspondingly, screening for overexpression of these
factors might lead to early identification of ER™ breast cancer patients at risk for endocrine
resistance and help to devise the most suitable therapeutic approaches to minimize the risk
and optimize the effectiveness of anticancer treatment.
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4. Materials and Methods
4.1. Cell Cultures

MCEF?7 cells were grown in DMEM (D6429, Merck, Milan, Italy) supplemented with
10% fetal bovine serum, 100 U/mL penicillin, and 100 pg/mL streptomycin. For experi-
ments, cells were seeded at 1.5 or 3 x 10*/cm? and, 24 h later, exposed to Tam (sc-208414,
Santa Cruz Biotechnology, Heidelberg, Germany) in complete growth medium; for long-
term treatments, Tam was replaced every third day. Cell line authentication was performed
at BMR Genomics. T47D cells were kindly provided by Prof. M. De Bortoli and Prof.
F. Cavallo and maintained in RPMI 1640 or DMEM, respectively, with supplements as
indicated for MCF7 cells. MDA-MB-415 and ZR-75-1 cells were obtained from Cell Bank,
Interlab Cell Line Collection, Genova, Italy and routinely grown as described for MCF7
cells; for ZR-75-1 cells, 1% nonessential amino acids were added to the culture medium.

The Tam-resistant subclone (MCF7-TamR) was generated by growing the parental
MCEF?7 cells in DMEM with increasing concentrations of Tam. Starting from 0.1 uM Tam,
the concentration of drug was approximately doubled (0.25, 0.5, 1, 2, 4, and 5 pM) every
time the cells restarted to grow in the presence of the drug. Over a selection time of
about 15 months, cells gained the capability to stably grow in the presence of 5 uM Tam.
Following selection, the cells were maintained under constant presence of Tam in the culture
medium. With the only exception being the data reported in Figure 4g and Figure S2c
(Supplementary Materials), all the experiments performed with this subclone were made
with cells maintained in the presence of 5 uM Tam.

For determination of the IC5y, MCF7 and MCF7-TamR cells were seeded in 96-wells plates
at2 x 10*/cm? in normal growth medium and allowed to adhere for 48 h as described [23].
Cells were then incubated in the presence of 0.01, 0.1, 1, 10, 100, or 1000 uM Tam for an
additional 48 h, after which the relative cell number was measured by MTT as described
for the viability assay. The ICs for each cell line was calculated using either CalcuSyn
(Biosoft, Cambridge, UK) or the freely available ICsy Calculator tool (AAT Bioquest, https:
/ /www.aatbio.com/tools/ic50-calculator (accessed date on 10 November 2020)).

4.2. Viability Assay

Viability was evaluated with the MTT test. Cells were seeded in 96-well plates at
1.5 x 10* cells/cm? in 100 pL of growth medium; after treatments, 20 uL of a 5 mg/mL
solution of MTT (M2128, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bro-
mide, Sigma-Aldrich, Milan, Italy) was added to each well for 2 h at 37 °C under normal
growth conditions. The formazan precipitates that form by activity of the mitochondrial
dehydrogenases in living cells were dissolved in 100 uL of DMSO by rocking the plates over
an orbital shaker for 60 min at room temperature before measurement of the absorbance at
595 nm with the iMark Microplate Reader (Bio-Rad Laboratories, Segrate, Italy).

4.3. Flow Cytometry

For cell-cycle analysis, cells were detached with trypsin, centrifuged at 600x g for
10 min at 4 °C, resuspended in cold 70% ethanol for 30 min, washed, and resuspended
in PBS. After staining with propidium iodide (180 ug/mL), aliquots of 5000 cells/sample
were analyzed with an Accuri C6 flow cytometer (Becton-Dickinson, Milan, Italy).

For cell death assessment, cells treated or not with 5 or 20 uM Tam for 48 or 2 h,
respectively, were detached and centrifuged as above; then, they were resuspended in
200 puL of binding buffer before addition of 5 uL annexin-V-FITC (BMS500FI/100, Annexin
V-FITC Apoptosis detection kit, Affymetrics, eBioscience, Bender MedSystems GmbH,
Vienna, Austria). After 10 min of incubation at room temperature in the dark, 10 uL of a
20 pg/mL propidium iodide solution was added; at least 5000 cells/sample were analyzed
with an Accuri C6 flow cytometer.
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4.4. Analysis of Lysosomal Alterations
4.4.1. Lysosomal Membrane Permeabilization

For LMP analysis, cells were loaded with 100 nM LysoTracker Red DND-99 (L7528,
ThermoFisher Scientific, Monza, Italy) for 20 min at the end of Tam treatments. After
dye removal, cells were imaged in phenol red-free DMEM with a Leica or Axiovert-35
epifluorescence or an LSM800 confocal microscope (Zeiss, Milan, Italy). Cells displaying
either less intensely red-stained lysosomes or a cytoplasmic diffuse red fluorescence were
cells undergoing LMP and were routinely indicated “pale cells”.

Release of cathepsin B-GFP (CB-GFP) was assessed in cells transfected as described [64]
with the pCB-GFP (a gift of G. Gores, Mayo Clinic, College of Medicine, Rochester, MN, USA)
using the K2 Transfection system (T060-0.75, Biontex Laboratories GmbH, Miinchen, Germany).
After treatments, cells were fixed with 4% paraformaldehyde for confocal examination.

4.4.2. Lysosome Number, Lysosomal Area, and Mean Lysosomal Fluorescence

The number of lysosomes/cell, their mean surface, and their relative fluorescence
were measured in cells stained with LysoTracker Red as above. Images acquired with
the fluorescence or confocal microscope were analyzed with the Spot detector module of
the Icy analytical software, version 2.1.0.1, Biolmage Analysis unit, Institut Pasteur, Paris,
France [65].

4.5. Clonogenic Assay

MCEF?7 cells were seeded at 600 or 100 (for Figures 2c and 5c, respectively) cells/well
in 24-well plates, allowed to adhere overnight, and treated for 24 h with the indicated
concentrations of Tam. The medium was then replaced and survivors allowed to grow
for 14 days, after which the established colonies were fixed with 4% paraformaldehyde,
stained for 20 min with 0.1% (w/v) crystal violet, washed with distilled water, and counted
with the Colony Counter macro of Image]J. Only for the clonogenic assay presented in
Figure 5¢, cells were transfected with plasmids encoding GFP, MT2A-GFP, or Hsp70-GFP.
Stable transfectants were selected with 700 ng/mL G418 (A1720-1G, Sigma Aldrich) and
used for experiments. Expression of the relevant proteins was confirmed by fluorescence
microscopy examination of the monolayers.

4.6. Real-Time RT-PCR

Total RNA was extracted with the TriReagent (T9424, Sigma Aldrich,) and reverse-
transcribed with the FireScript RT cDNA synthesis Kit (06-12-00200, Solis BioDyne, Tartu,
Estonia). Next, 50-100 ng RNA /sample was amplified in a CFX Connect (Bio-Rad Laborato-
ries,) with the HOT FIREPol Evagreen qPCR Supermix (08-36-00001, Solis BioDyne). PCR
primers (Table S1, Supplementary Materials) were designed with Primer3. The relative mRNA
level was calculated using the 2-AACT method (Bio-Rad Maestro, Bio-Rad Laboratories).

4.7. Overexpression and Analysis of Lysosomal Relocation of Iron-Binding Proteins

MCEF?7 cells were transiently transfected 24 h after seeding in u-Slide 8 well (80826,
Ibidi GmbH, Gréfelfing, Germany) with plasmids encoding human MT2A-GFP (Addgene
plasmid 11613, a gift from Steven Johnson) and Hsp70-GFP (Addgene plasmid 15215, a gift
from Lois Greene). The FtH-GFP vector was constructed by subcloning the complementary
DNA (cDNA) of human wildtype Ft heavy chain, excised from the pUD-HFt plasmid (a gift
from Sonia Levi) [66], into the pEGFP-N2. Then, 48 h after transfection, cells were treated
with Tam in the absence or presence of 3-methyladenine (3-MA), stained with LysoTracker
Red DND-99, and analyzed with a confocal microscope. Green and red fluorescence was
measured using the Intensity Profile module of the Icy analytical software, version 2.1.0.1,
Biolmage Analysis unit, Institut Pasteur, Paris, France.



Cancers 2021, 13, 1252

19 of 23

4.8. Western Blotting

Analysis of p62/SQSTM1, LC3 (P0067 and L7543, Sigma-Aldrich), ERe, GFP (sc-8005
and sc-9996, Santa Cruz Biotechnology), pAkt, and Akt (9271S and 4691, respectively, Cell
Signaling, Danvers, MA, USA), and normalization versus (3-actin (A5441, Sigma-Aldrich)
were performed as described [21]. Bands were detected with the ChemiDoc XRS5+ Imaging
System (Bio-Rad Laboratories).

4.9. Determination of Autophagic Flux and Lysophagy

A total of 3 x 10* cells/cm? were seeded onto a p-Slide 8 well (80826, Ibidi GmbH)
and transfected with either ptfLC3 or ptfGal3 (Addgene plasmids 21074 and 64149, re-
spectively) for measurement of autophagic flux and lysophagy. For washout experiments,
cells transfected with the indicated plasmids were exposed 24 h later to 20 uM Tam for
2 h and allowed to recover for up to 24 h in normal growth medium. Following fixation
with 4% paraformaldehyde, samples were imaged with the LSM800 confocal microscope.
The number of yellow- and red-fluorescent dots representing the autophagosomes and
autolysosomes or the lysosome-containing autophagosomes and autolysosomes in ptfLC3-
or ptfGal3-transfected cells, respectively, was counted with the Green and Red Puncta
Colocalization Image] Plugin (R.K. Dagda (University of Nevada School of Medicine),
D. Shiwarski (Carnegie Mellon University) and C.T. Chu (University of Pittsburgh)) on
a number of cells indicated in the relevant bars, extracted from at least three different
microscopic fields/condition.

4.10. siRNA-Mediated Downregulation of Iron-Binding Proteins

Silencing of FtH, Hsp70, and MT2A was achieved by transfecting the cells with the
Silencer Select predesigned siRNAs (Ambion, Carlsbad, CA, USA). For each target, two
siRNAs were used: for FtH, siRNAs s5383 and s5385; for Hsp70, siRNAs 5194536 and s6965;
for MT2A, siRNAs s194629 and s226631. siRNAs were transfected at the final concentration
of 20 nM with the Lipofectamine RNAIMAX (13778100, ThermoFischer Scientific) for 72 h,
after which the cells were treated with Tam as indicated; silencing was verified by real-time
RT-PCR. As a control, the Silencer Select Negative Control n° 1 siRNA (Ambion) was used
at the same concentrations and for the same times of the other siRNAs.

4.11. Statistical Analysis

Data represent the mean + SD of at least three independent experiments, each per-
formed in triplicate. Differences between groups were analyzed with the one-way ANOVA
followed by a Student-Newman-Keuls post hoc test or by the Student’s ¢-test using the
Instat package (Version 3.10, GraphPad Software, San Diego, CA, USA). A p-value < 0.05
was considered statistically significant.

5. Conclusions

Autophagy plays a relevant role in the onset of endocrine resistance of ER* breast
cancer. Although several hypotheses have been proposed, a unifying theory explaining
how this occurs at the molecular level is still lacking. Here, we show that Tam damages the
lysosomal compartment and triggers LMP in all the ER™ breast cancer cell lines tested. Col-
lectively, our data, thus, demonstrated that LMP may represent an important mechanism
via which this anticancer drug exerts its biological action. At the same time, our findings
revealed that susceptibility to Tam-induced LMP varies according both to the capability
of Tam to activate autophagy in target cells and to the level of cytoplasmic iron-binding
proteins. In fact, T47D cells, which overexpress MT2A and Hsp70, are less prone to undergo
Tam-induced LMP and cell death compared to MCF7 and the other luminal A cell lines
tested. On the other hand, silencing MT2A or Hsp70 in these cells restores LMP, which
confirms that these iron-binding proteins act as lysosome-protecting factors that restrain
drug-induced lysosomal damage and ensuing cytotoxicity.
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However, our findings also revealed that the level of lysosome-protecting factors is not
the unique factor that determines the proneness to Tam-induced LMP. MDA-MB-415 and
ZR-75-1 cells, which overexpress MT2A or Hsp70 similarly to T47D cells, are susceptible to
Tam-induced LMP comparably to MCF7 cells. Analysis of autophagic flux showed that,
in these cells, Tam does not trigger autophagy, which prevents the lysosome-protecting
effect brought about by MT2A or Hsp70 overexpression from showing up. In keeping
with this result, we demonstrated that enforced activation of autophagic flux by starvation
restores protection of the lysosomal compartment against Tam-induced LMP. Collectively,
our data confirmed that the activation of autophagy, which occurs as a consequence of
Tam treatment, contributes to Tam resistance of ER* breast cancer cells by relocating
inside the lysosomal lumen the protective factors capable of restraining the drug-induced
lysosomal damage.

In conclusion, our results demonstrated that lysosome-protecting factors, such as
the iron-binding proteins, by synergizing with activated autophagy, might represent an
additional risk factor for onset of Tam resistance. According to this view, early identifi-
cation of breast cancer patients which overexpress such protective factors might help to
deploy suitable therapeutic strategies to limit the onset, as well as to overcome an already
established drug resistance.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/6/1252/s1: Figure S1: Effect of continuous treatment of MCF7 cells with 5 uM Tam for 0,
4 and 6 days on cell cycle progression; Figure S2: Relative expression of ER« (a) and pAkt (b) in
MCF7 and MCF7-TamrR cells treated or not with 5 uM Tam for 24 h. (c) Effect of 17-f3 estradiol on
growth of MCF7 and MCF7-TamR cells for 6 days, both in the absence or presence of 5 uM Tam;
Figure S3: Effect of treatment of MCF7 and MCF7-TamR cells with 5 uM Tam for 48 h (a) or 20 uM
Tam for 2 h (b) on viability and apoptosis induction; Figure S4: Ectopic expression of the indicated
GFP-tagged proteins in MCF7 (a), MDA-MB-415 (b) and ZR-75-1 (c) cells; Figure S5: Susceptibility to
LMP induced by 20 uM Tam for 2 h in MDA-MB-415 cells transfected with GFP alone or the indicated
GFP-tagged proteins; Figure S6: Susceptibility to LMP induced by 20 uM Tam for 2 h in ZR-75-1
cells transfected with GFP alone or the indicated GFP-tagged proteins; Figure S7: Original western
blotting analysis of LC3 (top), SQSTM/p62 (middle) and -actin presented as Figure 2e; Figure S8:
Original western blotting analysis of LC3 and 3-actin, presented as Figure 8c (top images) or Figure

8d (bottom images); Figure S9: Original western blotting analysis of ERx and (3-actin, presented as
Figure S2a (top images) and of pAkt, total Akt and -actin presented as Figure S2b (bottom images);
Figure S10: Original western blotting analysis of GFP (left) or 3-actin (right) presented as Figure S4a
(top images), Figure S4b (middle images) and Figure S4c (bottom images); Table S1: Sequence (5’ to
3') of primers used for the Real-Time relative quantification of the indicated mRNAs.
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